QAE A nm
erospace o
An SAE International Group p AE ROS PAC E AS5506

STANDARD

Issued 2004-11

ARCHITECTURE ANALYSIS & DESIGN LANGUAGE (AADL)

This Architecturd Analysis & Design Language (AADL) standard document was prepateq by the SAE AS-
2C Architecture| Description Language Subcommittee, Embedded Computing~Syst¢ms Committee,
Aerospace Avipnics Systems Division. This subcommittee is chaired byl Bruce Lewis
(bruce.a.lewis@uys.army.mil +1-256-876-3224), US Army Aviation and Missile Command (AMCOM)
Software Enginepring Directorate (SED), Acquisition Technology Division:

The starting point for the AADL standard development was MetaH,@anh“architecture desgription language
and non-commeycialized supporting toolset, developed at Honeywell Technology Laboratories under the
sponsorship of the US Defense Advanced Research Projects Agency (DARPA) and US Army Aviation and
Missile Commang (AMCOM).

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.
Copyright © 2004 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
Tel: 724-776-4970 (outside USA)
Fax: 724-776-0790
Email: custsvc@sae.org

SAE WEB ADDRESS: http://www.sae.org

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

2

3

4

5

6

7

8

9

TABLE OF CONTENTS

1O] PSPPSR 9
1.1 0T 00T (=T o | 9
LV =1 (o o 7Y o] [T 4o o [P 11
1.3 Structure of DOCUMENT..... ...ttt ennneees 11

1.3.1 F N 2 G To (= €T o SRR 11

1.3.2 Structure of Clauses and SUDCIAUSESccuuiiiiiiiiieiiiee e 13
1.4 Error, Exception, Anomaly and ComplianCe...........cccuiiiiiiiiie i 14
1.5 Method of Description and Syntax Notationcoooeiiiiiiii e 15
1.6 Method af Description for Discrete and Temporal Semantics 17

REFERENGES ...ttt e evae e enre e ennne e e s enrees ST e, 22
2.1 Normat[ve RefErenCeS........coooviiiieiee e e e e e e, 22
2.2 Informative REfErENCESooiviiiiiiieeeee e £ e e 22
2.3 Terms @and Definitions...........ooiiiiii e e e e e 22

ARCHITECTURE ANALYSIS & DESIGN LANGUAGE SUMMARY oeveveiiiiieeeeecieee o, 23

COMPONENTS, PACKAGES, AND ANNEXESc.coootiiiiiee i e veeeeesseeeeesseeeee e e 28
4.1 AADL SpecCificationscccuuiiiiiiiiiiiiciiee e N 28
v S N = To €= T | 1 U PETUTE ¥ oo UURTUPURRRRTY RRTR 30
4.3 COMPONENE TYPES ...uvviieeiiiiieeeiiiiee e esieeeeeeieee e e sz e ereeeesneeeessnnseeesssnseeesssnseeessnnsesdoennieessnnie e e 32
4.4 Component ImplementationsS...........cooocuiiiiiii e o tieiiee e e rreee e e e e, 36
45 Subco

4.6 Annex $ubclauses and Annex Libraries

5.1 Data.. .. N
5.2 Subprograms and Subprogram, Calls
53 Thread

5.4 Thread|Groups
5.5 Procesges
5.6 Predeclared Runtime_Services

6.1 Procesgors

6.2 Memo

6.3 Buses

L I oY o Y SO R 89
SYSTEM COMPOSITION. ...ce e ettt ettt e s e e e e e e e s s ae e e e e e e e e s st saneeeaaeesaansssaeeeaeeeessnneees 92

T S 11 (=] 1 - T RSSO 92
FEATURES AND SHARED ACCESS ...ttt e e e e e e e e e e eeeaae s 95

8.1 0T USSR 96

8.2 Port Groups and POrt GroUD TYPESeiiiieaiiiiiieiiiie ettt e e e et e e e e e e e e ee e e e e e e e e e e eneneeeas 102

8.3 SUbPrograms AS FEATUMES........ccci ittt e e e et e e e e nee e e e e neeeeeennes 106

8.4 SubProgram ParameEtersoooiiiiiie it 112

8.5 SUDCOMPONENT ACCESSuviiiiiiieeeeeeteeee et e e e e e e e e e et e e e e e e e e e e aabareeeeeeeeeeeanaes 113
CONNECTIONS AND FLOWS ..ottt sttt s e e e e et e e e e bee e e e s nnte e e e snnbeeeeeneeas 117

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

LS Bt B 0 o1 1= Te1 1o) o =SSR 117
9.1.1 o] A 070 g T o T Tor 1 0] o 1= SRR 117
9.1.2 Parameter CONNECHIONS...........iiiiiie e e e e e 128
9.1.3 ACCESS CONNECHONSeiiiiiiiiii ettt e e et ee e e e bt e e e e e abe e e e anbeeeeenbeeeeeannees 131

£ 0 o R 134
9.2.1 FIOW SPECIfICAtIONS.......eeiiiiiiiiie et e e 135
9.2.2 FIoW IMPIEemMeENtationseeiiii e 138
9.2.3 ENGA-TOENG FIOWS ... ittt e e e et e e e e e e e e enbae e e e nnes 142

10 PROPERTIES ... tiiiee ittt ettt e e ettt e e sttt e e s ettt e e e e sste e e s ansbaeaeassaeeeennsteeesansteeesanseeeesnnses 146

101 PrOPErty SIS e 146
10.1.1 Property Types 147
10.1.2 Prgperty Names.......ccooiiiiiiiiiiieee e eiieeee e e esieeeeeee e e sseeeeeese L 151
10.1.3 Prgperty CoNSIaNtS.......ccveiiiiiiiiie e see e s e e 153

10.2 Predgclared Property SetS.........cooocciiiiiiee i 0 T e 155

10.3 Propgrty ASSOCIAtioNSceviiiiiiiiiiiiiicce e e e e e e fe e 156

104 Prop@rty EXPreSSIiONSuvviiiiiiiiiiiiieeeee et eesrraee e e e smians e eeeeeeeseeee foree e 162

11 OPERATIONAL MODESco ottt Fan e e e erne e e s snnee e e e e e 169

11.1 1Y/ ToTe L= ISP/ PSP OUPURROUPSRRORIY RSTRRTTOTPR 169

12 OPERATIONAL SYSTEMcccoiiiiiiiiiiie e S et o 177

121 Systgm INSTANCEScooiiiiiii i T e e 177

12.2 Systgm Bindingcoooiiiiiiiiii i e 178

12.3 Systgm OPErationcoeiiiiiiiiiiiiiee e P ettt rreee et e e srree e e snnee e de 183

13 LEXICAL ELEMENTSot eeeee e e e s nttee e s smnteeesennaeeaesnsseaesnnnseeessnnnenes fonseeeeennsnnesnnens 189

13.1 Char@icter Set.. ... S e 189

13.2 Lexicpl Elements, Separators, and\Delimiters...........cccooccvvveeeeeeieiiiiiieeenee o 190

13.3 IAENAIErS. ... S e 192

13.4 NUM@FICAl LITEralsS ... St sree e e 192
13.4.1 Depfimal LIterals ot e nee e e 193
13.4.2 Baped LIteralS....... il e e e e e e e e e e e e e 193

13.5 SNG LItErals ..o ettt e srree e sneee e snnee e de e 194

13.6 1070] 10111015 o | €< U UUPSERRRRUPURPRREY RSURRRR 194

13.7 Resefved WordsS) ... et e e eee e e e e s fe 195

APPENDIX A PREDECLARED PROPERTY SETS.....cccoeiiiieeeeeieee e eneieeeeesieee e o 197
A1 StandafdfAADL Property Setl.........oociiiiiiiiiieiiiie e ereee e sieee e sieee e seneee s seee e e 197
A.2 Project-Sch,ifiL, PIUPUI_ty S L e e e PP SRR 218

APPENDIX B PROFILES AND EXTENSIONS.......ooi ittt et 222
B.1 Allowed Subsets and ReSIHCHONSccoiiiiiiiiiii e 222

APPENDIX C GLOSSARY ettt e e e e bt e e e aht e e e e e anbe e e e e anraeeeearaeeeean 223

APPENDIX D SYNTAX SUMMARY ...ttt ettt ettt e e sttt e e e sttt e e e sbae e e e ssnteeeeeanteeeeeans 229

ANNEX A GRAPHICAL AADL NOTATION.oiiiiiiiie ettt a e e a e e 254

ANNEX B UNIFIED MODELING LANGUAGE (UML) PROFILEcccciuiieiiiiie e 254
Annex B.1 UML 1.4 Profile fOr AADL ...ttt e e e e e s e s snnnaeee e e e e e e e e nnnes 254
Annex B.2 UML 2.0 Profile for AADLttt e e e e e e e s e e e e e e e eanes 254

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

ANNEX C AADL DATA INTERCHANGE FORMATS ...ttt ettt et 254
Annex C.1 AADL XML SpeCifiCation..........cccuuiiiiiiiiiiiicee e e e 254
ANNEXD LANGUAGE COMPLIANCE AND APPLICATION PROGRAM INTERFACE..................... 254
Annex D.1 Ada Language Compliance and Application Program Interface............ccccoovvveeeieeiiiinnns 254
Annex D.2 C Language Compliance and Application Program Interfaceccccoccevieeeeieiiicnnns 254
ANNEXE ERROR MODEL......oiiiiiiiiii ettt et e e et e e e e eabae e e e e brea e e nnes 255
ANNEXF POSSIBLE TOOLS ...ttt ettt ettt e e et ae e e e et e e e e e are e e e e naree e e enees 256

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Table of Figures

Figure 1 Example Semantic CONNECLONS............uuiiiiiii i e e e e e e e e e e nrnanees 27
Figure 2 Component Type Extension HierarChyc..ooo e 33
Figure 3 Extension Hierarchy of Component Types and Implementationsccccocoviiiiin e, 37
Figure 4 Component Containment HIErarChyoocueiiiiiiiiie i e 42
Figure 5 Thread States and ACHIONSooii oo e e e e e e e e e e s e nnereees 66
Figure 6 Thread [Scheduling and Execution Statesccccoeiiiineeee e 69
Figure 7 Perfornling Thread Execution with Recoverycccccoviinin b 71
Figure 8 Procesg States and ACtiONS..........cccccviviiiieiniiieceeeeeieee e e e 79
Figure 9 Procesgor States and ACHONS..........cccvvvieiiieeiiiicceieeeee s B e ennreeee e e e e e 85
Figure 10 Containment Hierarchy and Shared ACCESS..........eeveirieiditeeeeeiiieeeeeieeeeeneee s o 114
Figure 11 Semantic Port CoONNECHIONc.coiiiiiiiiiiiiie e e e 118
Figure 12 Timind of Immediate & Delayed Data Connections............cccceveeviieeeeviieeeesniice o 124
Figure 13 Parameter CONNECHONSccoviiiiiiiiiiiiee et e e e srrnnee e e e e fre e 129
Figure 14 Semantic Access CONNECHION o i e 131
Figure 15 Flow Specification & Flow Implementationccccooiiiiiiiiiec e 135
Figure 16 Propefty Value Determination...............ooeeiiiiiiiiiieee e eeeeeeeeeee e fec 161
Figure 17 System Instance States; Transitions, and Actionscccoccceeeeeeiicciieeeeeees e, 184
Figure 18 Systemn Mode SWitCh SemantiCsccccoviiieiiiiiii e o 186

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Foreword

This standard was prepared by the Society of Automotive Engineers (SAE) Avionics Systems Division
(ASD) Embedded Computing Systems Committee (AS-2) Architecture Description Language (AS-2C)

subcommittee.

This standard addresses the requirements defined in SAE ARD 5296, Requirements for the Avionics
Architecture Description Language’.

The starting poir
and supporting
AMCOM sponso

The AADL stand
as POSIX and A

The AADL stand
extension mechd
subclauses for th

The AADL stand
through profiles 1

The AADL stand

The AADL stan
source text writtg

Fship.

ard is aligned with Object Management Grodp(OMG) Unified Modeling
or AADL as defined in the annexes.

ard includes a specification of an AADL-specific XML interchange format

bk) A-A-M & | el 1 " AA-edall loid & l
UTUT U AAUL oslaliudiU UCVTIUPITITTIU Wdo IVITldlT, all alfUlmncUiulc Uto

toolset, developed at Honeywell Technology Laboratories under~DA

ard provides explicit support for extensions to the core language thro
nism for defining and integrating new properties and{property sets. It als
e definition and integration of complementary sublanguages.

nin Ada 95 (ISO/IEC 8652/1295 (E)) and C (ISO/IEC 9899:1999).

ription language
RPA and Army

ard has been designed to be compatible with real-time operating systemy standards such
RINC 653.

Ligh the property
D includes annex

| anguage (UML)

Hard provides guidelines for users to transition between AADL modgls and program

1 This was the original name of the SAE AADL.

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Introduction

The SAE Architecture Analysis & Design Language (referred to in this document as AADL) is a textual
and graphical language used to design and analyze the software and hardware architecture of

performance-criti

ical real-time systems. These are systems whose operation stron

gly depends on

meeting non-functional system requirements such as reliability, availability, timing, responsiveness,
throughput, safety, and security. The AADL is used to describe the structure of such systems as an

assembly of software components mapped onto an execution platform.

It can be used to describe

functional interfaces to components (such as data inputs and outputs) and performance-critical aspects of
components (such as tlmlng) The AADL can also be used to descrlbe how components interact, such as

how data inputs
execution platfo
runtime architeg
language is des
core language d

specific notation$

The AADL was ¢
embedded real-
language can d
error behaviors,
allows a system
schedulability,
architectural trad

Since the AADL
the cross cutting
tools. The AAL
automatic gener
executive. Since
can be maintaine

s|zing analysis, and safety analysis.

components The Ianguage can also be used to descrlbe the dynam|
ure by providing support to model operational modes and mode
gned to be extensible to accommodate analyses of the runtimé)arch
pes not completely support. Extensions can take the form of new prope

that can be associated with components.

leveloped to meet the special needs of performance-eritical real-time sy
time systems such as avionics, automotive electfonics, or robotics
bscribe important performance-critical aspects, such as timing require
time and space partitioning, and safety and cettification properties. Su
designer to perform analyses of the composéd components and systemg
From these analyses, the desigr
eoffs and changes.

supports multiple and extensible.'anhalysis approaches, it provides the
impacts of change in the architecture in one specification using a vé
L specification language ,is designed to be used with analysis tools
htion of the source code needed to integrate the system components an
the models and the drchitecture specification drive the design and impl
d to permit model driven architecture based changes throughout the sys

1ectures that the

are allocated to
C behavior of the
ansitions. The

ies and analysis

stems, including
systems. The
ments, fault and
ch a description
such as system
er can evaluate

hbility to analyze
iriety of analysis
that support the
d build a system
ementation, they
tem lifecycle.

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Information and Feedback

The website at http://www.aadl.info is an information source regarding the SAE AADL standard. It makes
available papers on the AADL, its benefits, and its use. Also available are papers on MetaH, the
technology that demonstrated the practicality of a model-based system engineering approach based on
architecture description languages for embedded real-time systems.

The website provides links to three SAE AADL related discussion forums:

1.
AADL,

The SAE AADL User Forum to ask questions and share experiences about modeling with SAE

The AADL Toolset User Forum to ask questions and share experiences, with

Source Toolset Environment, and

The S
correctio

The website pro
also provides lin

Questions and inquiries regarding working versions of annexes<and future versions of {

be addressed to

Informal comme
correction proce

ltopic Title
Ireference
Ifrom Auth
lkeywords
ldiscussio
text of disg

E Standard Document Corrections & Improvements Foram that

vides information and a download site for the Open Source AADL Tool
s to other resources regarding the AADL standard and‘its use.

info@aadl.info.

nts on this standard may be sent via e-mail to errata@aadl.info. If appro
ure will be initiated. Comments should use the following format:

summarizing comment
AADL-ss.ss(pp)

or Name yy-mm-dd
keywords related to topic
L
ussion

ns, and improvements to the current release of the SAE AABL standard.

the AADL Open

records errata,

Environment. |t

he standard can

briate, the defect

where ss.ss is the section, clause or subclause number, pp is the paragraph or lin¢ number where

applicable, and
line.

Multiple commer
message.

y-mm-dd is-the ‘date the comment was sent. The date is optional, as

ts pet/e*mail message are acceptable. Please use a descriptive “Subje

is the 'keywords

Ct” in your e-mail

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-

evident or put ad

ditional information in the body of the comment, for example:

ltopic [c]{C}haracter

ltopic it[']s

meaning is not defined

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

1 Scope

This standard defines a language for describing both the software architecture and the execution platform
architectures of performance-critical, embedded, real-time systems; the language is known as the SAE
Architecture Analysis & Design Language (AADL). An architecture model defined in AADL describes the
properties and interfaces of components. Components fall into two major categories: those that
represent the execution platform and those representing the application. The former is typified by
processors, buses, and memory, the latter by application software modules. The model describes how
these components interact and are integrated to form complete systems. It describes both functional
interfaces and aspects critical for performance of individual components and assemblies of components.

The changes to ftreTuntimearchitecture are modetedas operatiomat-modesanmdmode transitions.

The language is japplicable to systems that are:
e real-lime,
e resolrce-constrained,
o safefy-critical systems,
e and those that may include specialized device hardware.

This standard dgfines the core AADL that is designed to be extensible. While the core language provides
a number of modleling concepts with precise semantics including:the mapping to executipn platforms and
the specification [of execution time behavior, it is not possible to’foresee all possible architecture analyses.
Extensions to gccommodate new analyses and uniquexhardware attributes take the form of new
properties and apalysis specific notations that can be associated with components. Users or tool vendors
may define extgnsion sets. Extension sets may be<proposed for inclusion in this gtandard. Such
extensions will bge defined as part of a new Annex appended to the standard.

This standard does not specify how the detailed design or implementation details jof software and
hardware components are to be specified.~"Those details can be specified by a variety of software
programming and hardware description languages. The standard specifies relevant chafacteristics of the
detailed design gnd implementation deseriptions, such as source text written in a programming language
or hardware description language,) from an external (black box) perspective. |These relevant
characteristics afe specified as, AADL component properties, and as rules of conformahce between the
properties and the described components.

This standard does not\prescribe any particular system integration technologies, such as operating
system or middjewar€, application program interfaces or bus technologies or topologies. However,
specific system architecture topologies, such as the ARINC 653 RTOS, can be modeled through software
and execution platform components. The AADL can be used to describe a varipty of hardware
architectures and software infrastructures. Integration technologies can be used to implement a specified
system. The standard specifies rules of conformance between AADL system architecture specifications
and physical systems implemented from those specifications.

The standard was not designed around a particular set of tools. It is anticipated that systems and
software tools will be provided to support the use of the AADL.

1.1 Purpose/Extent

The purpose of the AADL is to provide a standard and sufficiently precise (machine-processable) way of
modeling the architecture of an embedded, real-time system, such as an avionics system or automotive
control system, to permit analysis of its properties, and to support the predictable integration of its
implementation. Defining a standard way to describe system components, interfaces, and assemblies of
components facilitates the exchange of engineering data between the multiple organizations and

-9-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

technical disciplines that are invariably involved in an embedded real-time system development effort. A
precise and machine-processable way to describe conceptual and runtime architectures provides a
framework for system modeling and analysis; facilitates the automation of code generation, system build,
and other development activities; and significantly reduces design and implementation defects.

The AADL describes application software and execution platform components of a system, and the way in
which components are assembled to form a complete system or subsystem. The language addresses
the needs of system developers in that it can describe common functional (control and data flow)
interfacing idioms as well as performance-critical aspects relating to timing, resource allocation, fault-
tolerance, safety and certification.

The AADL descri tion software and

execution platfo
components. A
AADL describes

memory, commuinication channels, and devices interfacing with the externalZenvirorn

designs for such

description langliage such as VHDL2. The AADL can describe interfages and properti

software compq
configurations.
specified by ass
domain-specific

The AADL desc
system architec

t
mechanisms ar(iJ

passing, event
Thread scheduli
runtime architec

does not requife the use of any specific hardware architecture or any specific f

infrastructure.

m components. The language is not suited for detailed design orin
DL may be used in conjunction with existing standard languages 'in)th
interfaces and properties of execution platform components,-inclu

hardware components may be specified by associating source text writt

nents implemented in source text, such as threads, processe
Detailed designs and implementations of algorithms for such comy
bciating source text written in a software programming language such ag
modeling languages such as MatLab®/Simulink®3:

ibes how components are composed together and how they interact {
res. Runtime semantics of these components are specified in this st
available to exchange control and"data between components, ing
passing, synchronized access {6)shared components, and remote

ng protocols and timing requirements may be specified. Dynamic reco

ure may be specified through-operational modes and mode transitionq.

Rules of confor
components d
specifications.

ance are specified between specifications written in the AADL, source
cribed by those specifications, and physical systems construc
he AADL is'not intended to describe all possible aspects of any possil

system; selected syntactic and semantic requirements are imposed on components and
of the attributeq of an<AADL component are represented in an AADL model as p
component. The canfermance rules of the language include the characteristics des
properties as wellZas the syntactic and semantic requirements imposed on componer

nplementation of
ese areas. The
ding processor,
ment. Detailed
Een in a hardware
ps of application
5, and runtime
onents may be
Ada 95 or C, or

o form complete
bndard. Various
luding message
procedure calls.
pfiguration of the
The language
untime software

ext and physical
ed from those
le component or
systems. Many
foperties of that
cribed by these
ts and systems.

Compliance bet
analysis, e.g., by tools for source text processing and system integration.

ermined through

The AADL can be used for multiple activities in multiple development phases, beginning with preliminary

system design.
analysis, implementation, integration, verification and certification.

The language can be used by multiple tools to automate various levels of modeling,

2 VHDL is the “Very High Speed IC Hardware Description Language (Formerly Verilog Hardware Description

Language). See IEEE VHDL Analysis and Standardization Group for details and status.

3 MatLab and SimuLink are commercial tools available from The MathWorks.

-10 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

1.2 Field of Application

The AADL was developed to model embedded systems that have challenging resource (size, weight,
power) constraints and strict real-time response requirements. Such systems should tolerate faults and
may utilize specialized hardware such as I/O devices. These systems are often certified to high levels of

assurance.

Intended fields of application include avionics systems, automotive systems, flight

management systems, engine and power train control systems, medical devices, industrial process

control equipme

nt, robotics, and space applications.

applications as the need arises.

1.3 Structure of Document

The AADL may be extended to support other

1.3.1

This standard contains a number of sections, appendices, and annexes. The sections
AADL. The appg¢ndices provide additional information, both normative and informative
language. AnneXes define extensions to the core AADL and provide guidelines and an in

to enable the tr
some of the undjs

AADL concepts
are defined wit
succeeding sect
Glossary, provid
Syntax Summary
in this document

The core of the A

Section 2, Refer

Section 3, Archi
the language.

Section 4, Comp

the design elemgnts of the AADL. It also introduces the package, which allows organizat

elements in the ¢
annex-specific n

The next sectio

A Reader’s Guide

nsition of AADL models to other tools. Annexes may also provide info
brlying concepts incorporated into the AADL model.

are introduced in section 3, Architecture Analysis*& Design Language
n full syntactic and semantic descriptions as“well as naming and
ons. The vocabulary and symbols of the AADL are defined in Section 1
es informative definitions of terms used.in this document. Other appe
and Predeclared Property Sets. The rémainder of this section introducsg
and discusses standard conformance:

rchitecture Analysis & Design-llanguage document consists of the follow

bnces, provides normative and applicable references as well as terms an

ecture Analysis & Deésign Language Summary, introduces and defines

onents, Packages, and Annexes, defines the common aspects of compdg

esign space. This section closes with a description of annex subclause
btatiopal.extensions to the core AADL.

ns- introduce the language elements for modeling application and ex

define the core
about the core
erchange format
fmation to clarify

Summary. They
legality rules in
3. Appendix C ,
hdices include a
s notations used

ing:
d definitions.

the concepts of

nents, which are
on of the design
5 and libraries as

ecution platform

components in madeled systems or systems of systems

Section 5, Software Components, defines those modeling elements of the AADL that represent
application system software components, i.e., data, subprogram, thread, thread group, and process.

Section 6, Execution Platform Components, defines those modeling elements of the AADL that model
execution platform components, i.e., processor, memory, bus, and device.

Section 7, System Composition, defines system as a compositional modeling element that combines
execution platform and application system software components.

Section 8, Features and Shared Access, defines the features of components that are connection points
with other components, i.e., ports, subprograms, and provided and required access to support modeling
of shared access to data and buses.

11 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Section 9, Connections and Flows, defines the constructs to express interaction between components in
terms of connections between component features and in terms of flows through a sequence of
components.

Section 10, Properties, defines the AADL concept of properties including property sets, property value
association, property type, and property declaration. Property associations and property expressions are
used to specify values. Property set, property type, and property name declarations are used to extend
the AADL with new properties.

Section 11, Operational Modes, defines modes and mode transitions to support modeling of operational
modes with mode-specific system configurations and property values.

Section 12, Operational System, defines the concepts of system instance and binding of application

software to exe

including the sen

Section 13, Lexi
identifiers in AAI
lower case letter

The following Ap

Appendix A , Pre

Appendix B , Pr
standards body.

Appendix C , Gig

Appendix D , S
document.

The Annex secti
this release of th

Annex A, Graphi

Annex B, Unifie
UML to support
for AADL concey

Annex C, AADL
meta model and

Annex D, Langu

' laitf Tl 'H ot +lo ' FH £ 3l
UuUTl PICII.IUIIIIO. I'TIo STUULIUIT UTTITICTO UIT TATUULIVIT oSTITIAlItivo UT 1T U'u

hantics of system-wide mode switches.

cal Elements, defines the basic vocabulary of the language. As,defing]
DL are case insensitive. Identifiers differing only in the use of €orrespg
5 are considered as the same. Similarly, reserved words in AABL are cd
pendix sections complete the definition of the core AADLS

declared Property Sets, contains the standard AADL set of predeclared

bfiles and Extensions, contains profiles and extensions that have been

ssary, contains a glossary of terms.
ntax Summary, contains a summary~of the syntax as defined in the

bns introduce additions and extensions to the core AADL. Annex F has
e standard. Other Annexes will be part of the next release of the standa

cal AADL Notation, defines a graphical representation of the AADL.

erational system

d in this section,
nding upper and
se insensitive.

Droperties.
approved by the

sections of this

been included in

I Modeling Language (UML) Profile, defines a profile for UML that ex
modeling in terms-0f AADL concepts. This profile introduces another
ts.

Data Intetchange Formats, defines an XML-based interchange format i
an XML.schema.

age\Compliance and Application Program Interface, defines language-

source text to be

language specific rules for Ada 95 and C and specifies the Ada 95 and C Application Program Interface to
runtime service calls. AADL specifications and tools that process specifications are not required to
support source text written in the Ada 95 or C language, but if they do so then they must comply with this
annex.

Annex E, Error Model, defines the component and system compliance rules and semantics for AADL
specifications that deal with safety and security aspects of a system. AADL specifications are not
required to address these aspects of a system, but if they do then they must comply with this annex.

Annex F, Possible Tools, contains a description of tool support for the AADL.
The core language and the Annexes are normative, except that the material in each of the items listed
below is informative:

Text under a NOTES or Examples heading.

-12-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Each clause or s

All implementations shall conform to the core language.

ubclause whose title starts with the word “Example" or “Examples".

separately to one or more Annexes that represent extensions to the core language.

In addition, an implementation may conform

The following appendices and annexes are informative and do not form a part of the formal specification

of the AADL:

Appendix C , Glossary

Appendix D , Syntax Summary

Annex F, Possible Tools.

1.3.2

Each section of
Each section, cl

Structunle of Clauses and Subclauses

he core standard is divided into clauses and subclauses that havea cg
huse, and subclause first introduces its subject and then presents the

the following format. Not all headings are required in a particular clause or-subclause.

centered and for

Syntax rules, co
variant of Backu

Naming rules d
defined identifier

Legality rules d
processing tools

Standard propet
components. Th

Mmatted as shown below.
Syntax

hcerned with the organization of the symbols,in the AADL expression
5-Naur-Form (BNF) that is described in detailin’Section 1.5.

Naming-Rules

bfine rules for names that represent defining identifiers and refereng

D.
Legality Rules

bfine restrictions on™~AADL specifications. Legality rules must be va

Standard Properties

fies define the properties that are defined within this standard for varid
e listed'properties are fully described in Appendix A .

mmon structure.
remaining text in
Headings will be

5, are given in a

es to previously

dated by AADL

us categories of

oemantics

Semantics describes the static and dynamic meanings of different AADL constructs with respect to the
system they model. The semantics are concerned with the effects of the execution of the constructs, not
how they would be specifically executed in a computational tool.

Processing Requirements and Permissions

AADL specifications may be processed manually or by tools for analysis and generation. This section
documents additional requirements and permissions for determining compliance. Providers of processing
method implementations must document a list of those capabilities they support and those they do not

support.

-13-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is

informative.

Examples

Examples illustrate the possible forms of the constructs described. This material is informative.

1.4 Error, Exception, Anomaly and Compliance

The AADL can

and this standa
specifications. T
WG10.4-1992];
(implementations

A fault is defineg
from an anoma
compute time or
lead to a compo
programmer mak

An error in a |
component to de
when an add ins

A failure in a ph
component fails
depend on that g

A component fai
fault, error, failu
when a failed ¢
erroneous.

used.to anm‘ify r‘lnlnnnr’lahln systems
rd even when that system contains failed components that no_lon
[his section defines the terms fault, error, exception, anomaly and-non
and defines how those terms apply to AADL specificationsyyphys
), models of components, and tools that accept AADL specifications as i

to be an anomalous undesired change in thread execution behavior, |
ous undesired change in data being accessed by 4¢hat thread or froj
deadline constraint. A fault in a physical component’is a root cause tha
nent error or failure. A fault is often a specific event such as a transistor
ing a coding mistake.

hysical component occurs when an existing fault causes the inter
viate from its nominal or desired operation. For example, a component
ruction produces an incorrect result because a transistor in the adding ¢
ysical component occurs whenian error manifests itself at the compon
when it does not perform<its’hominal function for the other parts of
omponent for their nominal operation.

ure may be a fault within a system that contains that component. Thus,

bmponent causes-the containing system or another dependent compq

A component may persiskin a faulty state for some period of time before an error occu

fault latency. A

component may persist in an erroneous state for some period of timg

A system can he r‘nmlnlianf with its Specification

ger satisfy their
compliance [IFIP
cal components
hputs.

ossibly resulting
Im violation of a
t may eventually
burning out or a

hal state of the
error may occur
rcuitry is faulty.

ent interface. A
the system that

the sequence of

e may repeat itself-within a hierarchically structured system. Error propagation occurs

nent to become

rs. This is called
before a failure

occurs. This is CTIIed error latency.

An exception represents a kind of exceptional situation; it may occur for an erroneous or failed component
when that error or failure is detected, either by the component itself or another component with which it
interfaces. For example, a fault in a software component that eventually results in a divide-by-zero may
be detected by the processor component on which it depends. An exception is always associated with a
specific component. This document defines a standard model for exceptions for certain kinds of
components (e.g. defines standard recovery sequences and standard exception events).

An anomaly occurs when a component is in an erroneous or failed state that does not result in a standard
exception. Undetected errors may occur in systems. A detected error may be handled using
mechanisms other than the standard exception mechanisms. For example, an error may propagate to
multiple components before it is detected and mitigated. This standard defines nominal and exceptional
behaviors for components. Anomalies are any other undefined erroneous component behaviors, which
are nevertheless considered compliant with this standard.

-14 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

An AADL specification is compliant with this standard if it satisfies all the syntactic and legality rules
defined herein.

A component or system is compliant with an AADL specification of that component or system if the
nominal and exceptional behaviors of that component or system satisfy the applicable semantics of the
AADL specification, as defined by the semantic rules in this standard. A component or system may be a
physical implementation (e.g. a piece of hardware), or may be a model (e.g. a simulation or analytic
model). A model component or system may exhibit only partial semantics (e.g. a schedulability model

only exhibits te

mporal semantics).

semantics, except as permitted by this standard.

Noncompliance
components as

A tool that ope
compliance of i
explicit permissiq
by the tool are ¢
AADL standard
language to be
not supported 4
appropriate.

Compliance of a
with the exceptiq
Compliance of a
cannot in genera
degree required
checking.

1.5 Method ¢f Description and:Syntax Notation

The language
requirements ex
means of narrati

The context-free
1960] as defined

f

nomalous rather than noncompliant.

ates on AADL specifications is compliant with this standafd’ if the
put specifications with the syntactic and legality rules defined herei
n is given to omit a check; and if all physical or model components or sy
ompliant with the specifications used to generate those components (¢
hllows profiles of language subsets to be defined and requires a minim
supported (see Appendix B.1). A tool must clearly specify any portion
nd warn the user if a specification contains tnsupported language (

h AADL specification with the syntactic;and legality rules can be autom

component or system with its specification, and compliance of a tool w
|l be fully automatically checked. “A verification process that assures c
for a particular purpose must be used to perform the latter two king

s described by.means of a context-free syntax together with cq
bressed by narrative rules. The meaning of a construct in the langud
e rules.

syntax-of the language is described using the variant Backus-Naur F
herein.

Physical components and systems must exhibit all specified

y be handled by
to classify such

tool checks for
n, except where
5tems generated
r systems. The
im subset of the
of the language
onstructs, when

atically checked,

n of a few legality rules that are not.ingeneral tractably checkable for all specifications.

th this standard,
pmpliance to the
s of compliance

ntext-dependent
ge is defined by

prm (BNF) [BNF

Lower case words in courier new font, some containing embedded underlines, are used to denote
syntactic categories. A syntactic category is a nonterminal in the grammar. For example:

component_feature_list

Boldface words are used to denote reserved words, for example:

implementation

A vertical line separates alternative items.

software_category ::

Square brackets

thread | process

enclose optional items. Thus the two following rules are equivalent.

-15-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

property_association ::= property_name => [constant] expression

property_association
property_name => expression
| property_name => constant expression
Curly brackets with a * symbol enclose a repeated item. The item may appear zero or more times; the

repetitions occur from left to right as with an equivalent left-recursive rule. Thus the two following rules
are equivalent.

decldTation_Iist ::= declaracion { declaraciom T
decldration_list ::= declaration
| declaration declaration_list

Curly brackets with a + symbol specify a repeated item with one or-more occurrencgs. Thus the two
following rules ate equivalent.

declatration_list ::= { declaration }°*
declatation list ::= declaration { deciétration 1}~

Parentheses (rouind brackets) enclose several items to-group terms. This capability redlices the number
of extra rules to Ipe introduced. Thus, the first rule is equivalent with the latter two.

propgrty_association ::= identifier (=> | +=>) property_lexpression
propgrty_association ::=identifier assign property_expresjsion
assign::= => | +=>

Square brackets], curly brackets, ‘anid parentheses may appear as delimiters in the language as well as
meta-characters|in the grammat.* Square, curly, and parentheses that are delimiters in the language will
be written in bold face in gramimar rules, for example:

propgrty_association_list ::=

{ ®roperty_association { ; property_association }" }

The syntax rules may preface the name of a nonterminal with an italicized name to add semantic
information. These italicized prefaces are to be treated as comments and not a part of the grammar
definition. Thus the two following rules are equivalent.

component ::= identifier : component_classifier ;
component ::= component_identifier : component_classifier ;

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category, for example:
My_GPS: thread GPS.dualmode ;

The syntax description has been developed with an emphasis on an abstract syntax representation to
provide clarity to the reader.

-16 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

1.6 Method of Description for Discrete and Temporal Semantics

Discrete and temporal semantics of the language are defined in sections that define AADL concepts using
a concurrent hierarchical hybrid automata notation, together with additional narrative rules about those
diagrams. This notation consists of a hierarchical finite state machine notation, augmented with real-
valued variables to denote time and time-varying values, and with edge guard and state invariant
predicates over those variables to define temporal constraints on when discrete state transitions may
occur.

A semantic diagram defines the nominal scheduling and reconfiguration behavior for a modeled system
as well as scheduling and reconfiguration behavior when failures are detected. A physical realization of a
specification may_violate this definition for example due to runtime errors A violation of the defined
semantics is called an anomalous behavior. Certain kinds of anomalous behaviors afe,permitted by this
standard. Legaljlanomalous behaviors are defined in the narrative rules.

Semantics for i
System semanti
components.

Ovals labeled w
one of its discre
automaton for a

C

Directed edges
possible transitig
instantaneous, i.
state) to a discrg
in which a tran
destination state

<

ndividual components are defined using a sequential hierarchical hy
cs are defined as the concurrent composition of the hybfid automat

th lower case phrases are used to denote discrete‘states. A compone
e states for an interval of time whose duration may be zero or greater.
component has a unique initial discrete state, indicated by a heavy bordg

e
initial statD
P

abeled with one or more_cemma-separated, lower case phrases are
ns between the discrete states of a component. Transitions over an e

S
exXecuting compute

te state (called the-destination discrete state) has duration 0. During th
sition occurs, it (is;-undefined whether the component is in the sou

For example,

dispatch

[
o

brid automaton.
h of the system

nt may remain in
Every semantic
r. For example,

D

used to denote
dge are logically

b, the time interval in which a transition from a discrete state (called th¢ source discrete

e instant of time
ce state or the

D

Permissions that allow a runtime implementation of a transition to occur over an interval of time are
expressed as narrative rules. However, all implemented transitions must be atomic with respect to each
other, all observable serializations must be admitted by the logical semantics, and all temporal predicates
as defined in subsequent paragraphs must be satisfied.

Oblong boxes labeled with lower case phrases denote abstract discrete states that are defined as sets of
other discrete states and edges. Wherever such an abstract discrete state appears in a hybrid semantics
diagram, there will always be another hybrid semantics diagram showing an identically labeled oblong
box that contains discrete states and edges to define that abstract discrete state. For example,

-17 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

dispatch

l dispatch

/Sexecuting

complete

T

executing

If there are multi
are denoted. Th
a copy of its def
that connect thg
association bet
unambiguous. A
the formal name
states below will

ple oblong boxes with the same label in a diagram, then multiplelabstra
at is, the behavior is as if every occurrence of an abstract discrete state
ning set of discrete states and transitions. In this standard, abstract s
m will always be labeled so that the defining diagram, for an abstrac
veen edges in the defining diagram and edgescins the containin
n abstract state label or an edge label may includeftalicized letters that

but are used to distinguish multiple instances.\>For example, both
be defined by a single diagram labeled executing.

executing initializabtion }
f
|
J

gomplete initiglization

zuspended

dispatch complete computation

{ executing computation

J

Ct discrete states
vere replaced by
tates and edges
t state, and the
g diagram, are
are not a part of
bbstract discrete

If there is an external edge that enters or exits the containing oblong box in the defining diagram for an
abstract state, and there are no edges within that definition that connect any internal discrete state with
that external edge, then there implicitly exist edges from every contained discrete state in the defining
diagram to or from that external edge. That is, a transition over that external edge may occur for any
discrete state in the defining diagram. For example, in the following diagram there is an implicitly defined
halt edge out of both the ready and the running discrete states.

-18 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

l dispatch

Xecuting

e

o

Real-valued vari
states and edge
paragraphs. The
any expression i
in that diagram.
values for the rg
they are not expl

In addition to stal
discrete variable
semantics for fu
the subexpressi
rule stating tha
Compute_Time

Edges may be &
When a transitio
example, in the
transitions into th

!

¢ complete

Ables whose values are time-varying may appear in expressions-that g
5 of hybrid semantic diagrams. Specific forms of annotation ‘are defing
set of real-valued variables associated with a semantic diagram are tho
n that diagram, or in any of the defining diagrams for abstract discrete s

Real-valued time-varying variables will be named/using an italicized
al-valued time-varying variables of a hybrid semantic diagram are und
citly defined in narrative rules.

hdard rational literals and arithmetic operators, expressions may also co
5. The names of functions and discrete variables will begin with upper (
ction symbols and discrete variables will be defined using narrative rulg
n Max (Compute_Time) may appear in a semantic diagram, togethet

the value is the maximum value of a range-valued component

h occurs over an edge, the values of the variables are set to the assig
ollowing diagram,.the values of the variables ¢ and t are set to 0 whe
e ready discrete.state.

dizpatch
o=0, &0

nnotate discrete
d in subsequent
Se that appear in
ates that appear
ront. The initial
efined whenever

htain functions of
ase letters. The
s. For example,
with a narrative
property named

nnotated with assignmentsof values to variables associated with the s¢mantic diagram.

hed values. For
n the component

=
w

Discrete states may be annotated with expressions that define the possible rates of change for real-
valued variables during the duration of time a component is in that discrete state. The rate of a variable is
denoted using the symbol &, for example 5x=[0,1] (the rate of the variable x may be any real value in the

range of 0 to 1)
variable, then th

e rate of change of that variable in that state is defined to be 1. For

If, rates of change are not explicitly shown within a discrete state for a time-varying

example, in the

following diagram the rate of change for the variable ¢ is 1 while the component is in the discrete state
running, but its value remains fixed while the component is in the ready state, equal to the value that
existed when the component transitioned into the ready state.

-19-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

reswmne preempt

A discrete state may be annotated W|th Boolean- valued expressmns caIIed mvanants of that discrete
state. In this st3 vartables will always
satisfy the invaripnts of a dlscrete state for every possible transmon |nto that discrete\stpte. A transition
must occur out gf a discrete state before the values of any time-varying variables<ausg any invariant of
that discrete state to become false. Invariants are used to define bounds on the_duratipn of time that a
component can femain in a discrete state. For example, in the following diagrdm the pomponent must
transition out of the running state before the value of the variable ¢ exceeds 0.

Tpreempt

running
Sc=1
©=10

comp lete

An edge may be|annotated with Boolean-valued expressions called guards of that edge. |A transition may
occur from a solirce discrete state to a destination discrete state only when the valueq of the variables
satisfy all guardq for an edge between those discrete states. A guard on an edge is evalliated before any
assignments on that edge are perfofmed. For example, in the following diagram the component may only
complete when the value of thé variable ¢ is 5 or greater (but must complete befofe ¢ exceeds 10
because of the invariant).

running

aec=1

=10
I

complete
Tozh

A sequential semantic automaton defines semantics for a single component. A system may contain
multiple components. The semantics of a system are defined to be the concurrent composition of the
sequential semantic automata for each component. Except as described below, every component is
represented by a copy of its defined semantic automaton. All discrete states and labels, all edges and
labels, and all variables, are local to a component. The set of discrete states of the system is the cross-
product of the sets of discrete states for each of its cross product components. The set of transitions that
may occur for a system at any point in time is the union of the transitions that may occur at that instant for
any of its components.

-20-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

If an edge label appears in boldface, then a transition may occur over that edge only when a transition
occurs over all edges having that same boldface label within the synchronization scope for that label. The
synchronization scope for a boldface label is indicated in parentheses. For example, if a transition occurs
over an edge having a boldface label with a synchronization scope of process, then every thread
contained in that process in which that boldface label appears anywhere in its hybrid semantic diagram
must transition over some edge having that label. That is, transitions over edges with boldface labels
occur synchronously with all similarly labeled edge transitions in all components associated with the
component with the specified synchronization scope as described in the narrative. Furthermore, every
component in that synchronization scope that might participate in such a transition in any of its discrete
states must be in one of those discrete states and participate in that transition. For example, when the
synchronization scope for the edge label s is the same for all three of the following concurrent semantic
automata, a transition over the edge labeled s may only occur when all three components are in their
discrete states lpbeled a, and all three components simultaneously transition to thejr discrete states
labeled c.

B

If a variable appears in boldface, then there is a singlelinstance of that variable that|is shared by all
components in the synchronization scope of the variable. The synchronization scopp for a boldface
variable will be defined in narrative rules.

-29-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

2

2.1

References

Normative References

The following normative documents contain provisions that, through reference in this text, constitute

provisions of this

standard.

IEEE/ANSI 610.12-1990 [IEEE/ANSI 610.12-1990], IEEE Standard Glossary of Software Engineering

Terminology.

ISO/IEC 9945-1:1996 [IEEE/ANSI Std 1003.1, 1996 Edition], Information Techno

Operating Syste

ISO/IEC 14519:
Interfaces — Bing

ISO/IEC 8652:14
ISO/IEC 9899:14
Unified Modeling
2.2 Informat

The following inf

[BNF 1960] N
Communications

[IFIP WG10.4-1992] IFIP WG10.4 on-Dependable Computing and Fault Tolerance, 19

editor, “Dependa
volume 5, Spring

[Henz 96] “Thed
Science, Univer
Computer Scien

Interface (POSIX) — Part 1: System Application Program Interface (AP

999 [IEEE/ANSI Std 1003.5b-1999], Information Technology,< POSI
ing for System Application Program Interface (API) — Real-time Extensio

95, Information Technology — Programming Languagesy~ Ada.

99, Information Technology — Programming Languages — C.

Language Specification [UML 2004, version.174.2], July 2004, version 1
ve References

brmative references contain backgreund information about the items with
\UR, Peter (ed.), "Revised ,"Report on the Algorithmic Languag
of the ACM, Vol. 3 No. 5,(pp:299-314, May 1960.

bility: Basic Concepts and Terminology,” Dependable Computing and
er-Verlag, Wien, New York, 1992.

ry of Hybrid Automata”, Thomas A. Henzinger, Electrical Engineerin

ity of California at Berkley, Proceedings of the 11th Annual Sympoq
ce (LICS), IEEE Computer Society Press, 1996, pp. 278-292

2.3 Terms and-Definitions

ogy — Portable
) [C Language].

Ada Language
ns.

4.2.

the citation.

e ALGOL 60,"

02, J.-C. Laprie,
Fault Tolerance,

j and Computer
ium on Logic in

Terms are introduced throughout this standard, indicated by italic type. Informational definitions of terms
are given in Appendix C , Glossary. Definitions of terms used from other standards, such as the IEEE
Standard Glossary of Software Engineering Terminology [IEEE Std. 610.12-1990], ISO/IEC 9945-1:1996
[I[EEE/ANSI Std 1003.1, 1996 Edition], Information Technology — Portable Operating System Interface
(POSIX), or IFIP WG10.4 Dependability: Basic Concepts and Terminology [IFIP WG10.4-1992], are so
marked. Terms not defined in this standard are to be interpreted according to the Webster's Third New
International Dictionary of the English Language. Terms explicitly defined in this standard are not to be
presumed to refer implicitly to similar terms defined elsewhere. A full description of the syntax and
semantics of the concept represented by the terms is found in the respective document sections, clauses,
and subclauses.

-22 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

3 Architecture Analysis & Design Language Summary

This section provides an informative overview of AADL concepts, structure, and use. In this section the
first appearance of a term that has a specific meaning in this standard will be italicized.

An AADL specification consists of AADL global declarations and AADL declarations. The AADL global
declarations are comprised of package specifications and property set declarations. AADL declarations
include component types, component implementations, port group types, and annex libraries. AADL
component type and implementation declarations model kinds of physical system components, such as a
kind of hardware processor or a software program. This standard defines the following categories of
components: daga; - ory—bus—processor, device, and
system. They foym the core of the AADL modeling vocabulary.

Uuoporoyia cau, cau yroup, proce 5

A component tyge specifies a functional interface in terms of features, flow specificationg, and properties.
It represents specification of the component against which other, components can operate.
Implementations|of the component are required to satisfy this specification.

A component implementation specifies an internal structure in termis of subcomponents, connections
between the feafures of those subcomponents, flows across a sequence of subcompdnents, modes to
represent operafional states, and properties. Unlike many otheryfanguages, the AADL allows multiple
implementations|to be declared with the same functional interface.

Packages provid
declarations into

e a library-like structure for organizing component type and component implementation
separate namespaces and combining them into a system specification.

Components miay be hierarchically decompoesed into collections or assemblieg of interacting

subcomponents.
naming a compd
the subcompong
hierarchy of a

implementation.
starting at the to

A feature descr|
exchanged with
subprograms tQ
subcomponents
access specifieq

A subcomponent declares>a-component that is contained in another component,
nent type and component implementation to specify an interface and implementation for
nt. Thus, component types and implementations act as componeni classifiers. The
system instance is based upon the set of subcomponents of the fop-level system
It is completed by iteratively traversing the tree of the component clagsifiers specified
-level system implerentation subcomponents.

bes a funectional interface of a component through which control apd data may be
bther components. Features can be ports to support directional flow of fontrol and data,
represent synchronous procedure calls, and requires and provides access to
to représent shared access to data and bus components. Requiredl subcomponent
the need for a component to access components declared outside|the component.

Provided subcormpore e ODCOTMPOTTE O Slopm omponent is made
externally accessible. Ports in an AADL specification may map to a variable in a piece of source code,
i.e., a storage location in a physical memory.

d d d c d

Subcomponents allow systems to be specified as a static and tree-like containment hierarchy. The AADL
also allows components to reference subcomponents that are not contained exclusively in the
component. This allows a component to be accessed or used in more than one component. In the
AADL, data and bus components can have shared access. For example, static data items contained in a
source text software package and represented in AADL as data components may be used by threads in
different processes (whose protected address spaces may otherwise be distinct).

Syntactically the terms component type declaration, component implementation declaration, and
subcomponent declaration refer to specific grammar rules for each component category. Semantically, a
component may have subcomponents while it itself is a subcomponent of some other component. The

-23.

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

terms component and subcomponent must be interpreted semantically as a relationship between two
components that are identified by context.

Components, features, modes, connections, flows, and subprogram calls can have properties. A property
has a name, a type and a value. Properties are used to represent attributes and other characteristics,
such as the period and deadline of threads. When properties are associated with declarations of
component types, component implementations, features, subcomponents, connections, flows, and
modes, they apply to all respective instances within a system instance. The AADL also supports the
specification of instance specific values of any unit in the containment hierarchy of a system instance.
AADL tools may record these values for use in the analysis of the system instance or for use in the
construction of new system instances. Properties can have mode-specific and binding-specific values.

This standard dgfines a set of predeclared properties and property types. Additiangl properties and
property types fo support new forms of system analysis can be introduced through property sets.
Property values fan be associated with component types, component implementations, [subcomponents,
features, connedtions, flows, modes, and subprogram calls. For example, a property ig used to identify
the source codelfiles associated with a software component. Another example of the usg of properties is
specifying hardwlare memory, i.e., the number of addressable storage units and their size|

AADL component type and component implementation declarations can be organized into packages.
Each package provides a separate namespace for component type.and implementation declarations. A
component clasgifier in a package is referenced externally be qualifiing its name with the package name.
Packages can b¢ nested and referenced externally utilizing qualified names.

Features and flow specifications of component types may be partially specified. Similarly,
subcomponents,| connections, flows, and modes of_¢emponent implementations may have incomplete
specifications. | These specifications may be clater refined in component type jand component
implementation |extensions with the completion™of classifier references and propefty associations.
Component typg extensions can also introduce additional features, flow specifications} and properties.
Such extensions| can add new subcomponients, connections, flows, modes, and properties to component
implementations

A system modeled in AADL consists' of application software mapped to an execution|platform. Data,
subprograms, thfeads, thread groups, and processes collectively represent application sgftware. They are
called software gomponents~ “Processor, memory, bus, and device collectively represgnt the execution
platform. They gre called ;execution platform components. Execution platform components support the

organized into hierarchical structures W|th well- deflned mterfaces Operatlng systems may be represented
through properti¢ modeled as software
components.

Software components model source text, virtual address spaces, and units of concurrent execution.
Source text can be written in a programming language such as Ada 95, C, or Java, or domain-specific
modeling languages such as Simulink, SDL, ESTEREL, LUSTRE, and UML, for which executable code
may be generated. The source text modeled by a software component may represent a partial
application program or model (e.g., they form one or more independent compilation units as defined by
the applicable programming language standard). Rules and permissions governing the mapping between
AADL specification and source text depend on the applicable programming or modeling language
standard. Predeclared component properties identify the source text container and the mapping of AADL
concepts to source text declarations and statements. These properties also specify memory and
execution times requirements and other known characteristics of the component.

-24-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

AADL data components represent static data in source text.

This data can be shared by threads and

processes; they do so by the indicating that they require access to the external data component.
Concurrent access to data is managed by the appropriate concurrency control protocol as specified by a

property. Realizations of such protocols are documented in an appropriate implementati

standard.

Data types in the source text are modeled by the declarations: data component type and
implementation. Thus, a data component classifier represents the data type of data co
and subprogram parameters.

ion Annex in this

data component
mponents, ports,

The subprogram component models source text that is executed sequenhally Subprograms are callable

suspended, ready, and running. State transitions occupas-a result of d
e service calls. They can also occur if time constraints-are exceeded

AADL thread grdups support structural grouping of threads' within a process. A thread g
data, thread, and thread group subcomponents. A thread group may require and provi
components.

AADL process cpmponents model space partitions in terms of virtual address spaces

ents.

hreads of control
pduced from the
f a thread. The
b threads can be
spatch requests,

Error detection
h protocols such
spatch protocols
r require access

oup may contain
access to data

ntaining source

text that forms cpmplete programs as defined'in the applicable programming language standard. Access

protection of the virtual address space is enforced at runtime
Runtime_Prot
execute properl
of concurrent execution, they must contain at least one thread. Processes can contai

threads, and datg components;and can access or share data components.

if specified Qy the property
ction. The binarySimage produced by compiling and linking this dource text must
when loaded inte a-unique virtual address space. As processes do ndt represent units

thread groups,

Execution platfofm componéents represent hardware and software that is capable of scheduling threads,
of enforcing spgcified¢address space protection at runtime, of storing source text cqde and data, of
interfacing with |an_\external environment, and of performing communication for application system

connections.

AADL processor components are an abstraction of hardware and software that is

responsible for

scheduling and executing threads. In other words, a processor may include functionality provided by

operating systems. Alternatively, operating systems can be modeled like applicati
Processors can contain memory and require access to buses.
scheduling protocols. Threads are bound to processors for scheduling and execution.

AADL memory components model randomly accessible physical storage such as

on components.

Processors can support different

RAM or ROM.

Memories have properties such as the number and size of addressable storage locations. Binary images
of source text are bound to memory. Memory can contain nested memory components. Memory

components require access to buses.

AADL bus components model communication channels that can exchange control and data between
processors, memories, and devices. A bus is typically hardware that supports specific communication

-25-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

protocols, possibly implemented through software. Processors, memories, and devices communicate by
accessing a shared bus. Buses can be directly connected to other buses. Logical connections between
threads that are bound to different processors transmit their information across buses that provide the
physical connection between the processors. Buses can require access to other buses.

AADL device components model physical devices that interface with an external environment, e.g.
sensors and actuators providing an interface between a physical plant and a control system or a GPS
system. They may exhibit complex behaviors. Devices are logically connected to application software
components and physically connected to processors. They cannot store nor execute application software
source text themselves, but may include driver software executed on a connected processor. A device
requires access to buses.

AADL systems model hierarchical compositions of software and execution platform,components. A
system may corftain data, thread, thread group, process, memory, processor, bus, déevice, and system
subcomponents.| A system may require and provide access to data and bus compenents|

AADL modes rgpresent the operational states of software, execution platform, arld compositional
components in the modeled physical system. A component can have mode-specific property values. A
component can|also have mode-specific configurations of different™subsets of sub¢omponents and
connections. In pther words, a mode change can change the set of<active components and connections.
Mode transitiond model dynamic operational behavior that represents switching betwe¢n configurations
and changes in gomponent-internal characteristics, such as conditional execution sourcg text sequences
or operational stptes of a device, that are reflected in property’values. Other examples |of mode-specific
property values |nclude the period or the worst-case execution time of a thread. A chgnge in operating
mode can have the effect of activating and deactivatingthreads for execution and changing the pattern of
connections betyveen threads. A mode subclause in“a component implementation spgcifies the mode

Subcomponent and connection declarations as; well as property associations declare their applicability
(participation) in

data subprogra
subcomponent dccess. Data ports‘represent connection points for transfer of state data such as sensor
. i that can trigger
thread dispatch nsfer of events
with data, i.e., mpssages thatmay be queued. Ports groups support grouping of ports, sfich that they can
be connected to [other components through a single connection. Data subprograms repr¢sent entrypoints
to code sequenges insource text that are associated with a data type. Server subpragrams represent
connection point
remote. Subprogram-parametersreprese g —Data component
access represents provrded and required access to shared data. Bus component access represents
provided and required access to buses for processors, memory, and devices.

AADL connections specify patterns of control and data flow between individual components at runtime. A
semantic connection can be made between two threads, between a thread and a device or processor, or
between a thread, device, or processor and a mode transition. A mode transition is represented by a set
of one or more connection declarations that follow the component hierarchy from the ultimate connection
source to the ultimate connection destination. For example, in Figure 1 there is a connection declaration
from a thread out port in Thread1 to a containing process out port in Process3. This connection is
continued with a connection declaration within System1 from Process3’s out port to Process4’s in port.
The connection declaration continues within Process4 to the thread in port contained in Thread2.
Collectively, this sequence of connections defines a single semantic connection between Thread1 and

-26 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Thread2. Threads, processes, systems, and ports are shown in graphical AADL notation.
description of the graphical AADL notation see Annex A.

For a full

System

Processd * Port

Processa

Llrtimate connection sowrce

Flow specificatio]
a component. S
and a combinati
flows originating
paths, i.e., flows

Flows describe &
connections. TH
implementation
component is re
within one sul
implementations
e.g., latency orr

A physical syste
representing t

h
application, incl%

the complete ¢
subcomponents
specification.

An AADL specifi

) Uttimate connection destination
Connection

declarations

Figure 1 Example Semantic Connections

hs describe externally observable flow of information in terms of applicafion logic through
ich logical flows may be realized through ports and connections of different data types
bn of data, event, and event data ports. Flow specifications represent flow sources, i.e.,
from within a component, flow sinks, i.e., flows:ending within a component, and flow

through a component from its incoming ports to'its outgoing ports.

ictual flow sequences through componentstand sets of components ac
ey are declared in component implementations. Flow sequences take
and end-to-end flow. A flow implementation describes how a flow §
blized in its component implementation. An end-to-end flow specifies
component and ends within._another subcomponent. Flow spe
and end-to-end flows can-have expected and actual values for flow re
bunding error accumulation.

n is modeled by instantiating a system implementation that consists of
application software and execution platform components used
ing devices that:interface with the external environment. A system ins
mponent hierarchy as specified by the system classifier's subcomq
of their component classifiers down to the lowest level defined in

Cation ' may be used in a variety of ways by a variety of tools during a br

SS one or more
two forms: flow
pecification of a
b flow that starts
cifications, flow
lated properties,

subcomponents
to execute the
ance represents
onents and the
the architecture

bad range of life-

cycle activities,

a’ _for documentation durina nreliminary spnecification. for schedulaH
) - T —=F T

ility or reliability

analysis during design studies and during verification, for generation of system integration code during

implementation.

Note that application software components must be bound to ex

ecution platform

components - ultimately threads to processors and binary images to memory in order for the system to be
analyzable for runtime properties and the physical system to be constructed from the AADL specification.
Many uses of an AADL specification need not be fully automated, e.g. some implementation steps may

be performed by

hand.

The AADL core language is extensible through property sets, annex subclauses and annex libraries.
Annex subclauses consist of annex-specific sublanguages whose constructs can be added to component
types and component implementations. Annex libraries are declarations of reusable annex-specific

sublanguage ele

ments that can be referenced in annex subclauses.

-27 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

4 Components, Packages, and Annexes

The AADL defines the following categories of components: data, subprogram, thread, thread group,
process, memory, bus, processor, device, and system. This section describes those aspects of
components that are common to all AADL component categories. This section also describes packages
as an organizing mechanism. This section closes with the definition of annex subclauses and annex
libraries.

A component represents some hardware or software entity that is part of a system being modeled in
AADL. A component has a component type, wh|ch defines a functional interface. The component type
acts as the spesilication—ola—componentithat other componsn . It consists of
features, flows, gnd property assomahons

A feature models a characteristic of a component that is visible to other components. Features are
named, externally visible parts of the component type, and are used to exchange confrol and data via
connections witlh other components. Features include ports to support directional flow of data and
control, and subprograms including support for remote procedure call interactions (server subprograms).
Features define| parameters that represent the data values that<can be passed |nto and out of
subprograms. Fgatures specify component access requirements for external data and bus components.

A component has zero or more component implementations. A component implementdtion specifies an
internal structurg for a component as an assembly of subcomponents. Subcomponents are instantiations
of component classifiers, i.e., component types and implementations.

Components ard named and have properties. These.properties have associated expresgions and values
that represent atjributes and behaviors of a component.

Components can be declared in terms of othet.éomponents by refining and extending existing component
types and component implementations\._) This permits partially complete compgnent type and
implementation gleclarations to act as a. common basis for the evolution of a family of reJated component
types and implementations.

This standard fefines basic vconcepts and requirements for determining compliahce between a
component spedfication and-a-physical component. Within this framework, annexes to this standard will
specify detailed lcomplianceyrequirements for specific software programming, applicatign modeling, and
hardware description languages. This standard does not restrict the lower-level repregentation(s) used
for software components, e.g. binary images, conventional programming languages, application modeling
languages, nor foest it restrict the lower- Ievel representatlon(s) used for physical hardware component
designs, e.g. circd vy v :

4.1 AADL Specifications

An AADL specification is a set of declarations: component classifier, port group classifier, annex library,
package, and property-set. Package and property set declarations are global declarations. The content
of global declarations can be referenced by any declaration. Component classifiers, port group types,
and annex libraries that are declared directly in an AADL specification are anonymous declarations. They
can only be referenced by another anonymous declaration.

Packages provide a way for organizing collections of component classifier, port group type, annex library
declarations along with relevant property associations.

-28 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Property sets provide extensions to the core AADL that support additional modeling and analysis
capabilities.

System instances are identified to processing tools and methodologies by referencing a system
implementation component as the root of the system instance (see Section 12.1).

Syntax

AADL_specification

{ AADL_global_declaration | AADL_declaration }*

N] P 1 | . .
frecTraracIon T POCRAOgC _SPTC— | PTropPerTty_—STtT

AADL_global_.

AADL_declarafion =

componenft_classifier

| port_gfoup_classifier

| annex_library

component_classifier

component_type | component_type_extension |

componenf_implementation | componentNimplementation_extension

| assifier

port_group_c

port_|group_type | port_group_type_extension

Naming Rules

The AADL has ¢
must be unique,
externally. They
Package declarg

port group type

ne global namespace. The package and property set identifiers comp
These identifiers qualify the names of individual elements when the
can be referenced from other declarations and anonymous declarati
itions/represent labeled namespaces for component type, component
and.dnnex library declarations. Property sets represent labeled

rising this space

are referenced
bns (see below).
implementation,
namespaces for

property type angd property name declarations.

An AADL specification has one anonymous namespace. In this are found the identifiers of component
classifiers, port group classifiers, and annex libraries that are declared directly in an AADL specification.
These identifiers must be unique in the anonymous namespace. Declarations of component classifiers
and port group types can be referenced from other component classifier declarations in the anonymous
namespace. Any annex library items declared in the anonymous namespace are only accessible from
annex subclauses in component classifiers in the anonymous namespace.

AADL declarations in an AADL specification can refer to packages and property sets that may be
separately stored. Those packages and property sets are considered to be part of the global namespace.

Defining identifiers in AADL must not be one of the reserved words of the language (see Section 13.7).

-29-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The AADL identifiers and reserved words can be in upper or lower case (or a mixture of the two) (see
Section 13).

The AADL does not require that an identifier be declared before it is referenced.
Semantics

An AADL specification provides a global namespace for packages and property sets and an anonymous
namespace for component types, component implementations, annex libraries, and port group types.
Items in the global namespace and their content can be named by items in the global and in the
anonymous namespace. Iltems in the anonymous namespace can only be named by items in the
anonymous namespace.

Component type
software compo
component, i.e.,
structure, opera

component implgmentations. This can be used for example to model produet line archite

different execut
namespaces.

Port group types
or port groups d
be accessed ext

A property set is
predefined set of

and component implementation declarations model execution platform
hents of a system. A component type denotes externally visible’ ch
its features and its properties. A component implementation den
ional modes, and properties of a component. A compohent type ¢

on platforms. Packages allow such declarations~to be organize

provide the definition of an interface to a compoenent that represents a g
bfined within the component implementation.(see Section 8.2). This gr
brnally as a single unit.

used to introduce new property types'and properties (see section 10.1).
properties of the core AADL.

Declarations in
stored AADL sp
multiple AADL s
sets are tool spe

A method of pro
declarations ma
specification tex
project library.
specifications to
large models.

n AADL specification can refer to packages and property sets decl
cifications. This allows packages and property sets to be stored separ
ecifications. Mechanisms for locating such separately declared packa
ific.

Precessing Requirements and Permissions
essing must accept an AADL specification presented as a single string
appear.in any order. An AADL specification may be stored as m

that@are named or indexed in a variety of ways, e.g. a set of source file
reprocessors or other forms of automatic generation may be used t

and application
racteristics of a
tes the internal
An have several
ctures runing on
d into separate

ollection of ports
bup of ports may

They extend the

ely and used by
es and property

a%ed in separately

of text in which
ultiple pieces of
s, a database, a
D process AADL

A

d

roduce the required specification text. This approach makes AADL sc

lable in handling

4.2 Packages

A package provides a way to organize component types, component implementations, port group types,
and annex libraries into related sets of declarations by introducing separate namespaces. Package
names built using identifiers separated by double colons (“::”). This avoids the problem of duplicate
names which might occur when packages are developed independently and then combined to model an
integrated system. In other words, complete_sys::first_independent: :fuel_flow is distinct
from complete_sys: :second_independent: :fuel_flow. Packages cannot be declared inside
other packages.

-30 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Syntax

package_spec =
package defining package_name

(public package_declaration [private package_declaration]
| private package_declaration)

end defining package_name ;

: 33 2 e : +
FTaCTOIT 1 ddUl_UcUCIldadldtlOIl 5

package_decl

(

{ property_association{i}*

))

[properties

none_statement

package_name

{ packagf identifier :: }" package identifier

none_statement none

~e

NOTES:

The properties su
is provided to acc
empty subclause d

bclause of the package is optionaly-er requires an explicit empty subclause declaration. The latter
mmodate AADL modeling guidelines that require explicit documentation of empty subclauses. An
eclaration consists of the reserved word of the subclause and a none statement| (none ;).

Naming Rules

A defining packfage name consists of a sequence of one or more package identifiers separated by a

double colon (*:
the first identifie
the package nar
section of a pach

)- A defining_package name must be unique in the global namespace.
in a package name must be unique in the global namespace. Succee
ne must-be unique within the scope of the previous identifier. The pu
age.may be declared in separate package declarations; these two decl

This means that
ling identifiers in

lic and private
rations introduce

a single defining|paekage name.

Associated with every package is a package namespace that contains the names for all the elements
defined within that package. This means that component types, port group types, and defining entities
declared in an annex library using an annex-specific sublanguage can be declared with the same name in
different packages.

The package namespace is divided into a public part and a private part. ltems declared in the public part
of the package namespace can be referenced from outside the package as well as within the package.
Items declared in the private part of the package can only be referenced from within the public and private
part of the package.

The reference to an item declared in another package must be an item name qualified with a package
name separated by a double colon (“:”). Only the public package namespace is used to resolve these
references. If the qualifying package identifier is missing, the referenced component classifier, port group

-31-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

type, or item in an annex library must exist in the same package, or in case of references from
declarations in the AADL specification itself the referenced item must exist in the anonymous namespace.
Component types, component implementations, port group types, and items in annex libraries declared
directly in the AADL specification, i.e., the anonymous namespace, can only be referenced by other
declarations in the AADL specification itself.

Legality Rules

The defining package name following the reserved word end must be identical to the defining package
name following the reserved word package.

For each pack

ion. Tthe two sections may be declared in a single package declaration (or
package declarations.

private section

declaration in two separate

Semantics

A package pro
declarations, po
property associa
libraries with the

ides a way to organize component type declarations;-’component
t group types, and annex libraries into related sets of\declarations alqg
tions. It provides a namespace for component typ€s, port group types, and annex
package name acting as a qualifier. Nested package names allow forfunique package

implementation
ng with relevant

naming conventi
when
implementations
unique qualifier
giving them nest

independ

bns that address potential name conflicts in component type and implementation names
ently developed AADL specifications .are combined. Note that component
are named relative to component types., Thus, qualified component type names act as
for component implemenation names.;~Packages can be organized fierarchically by
bd package names. These package names represent absolute paths frgm the root of the

package hierarchy.

Packages have & public and a private section. 'Declarations in the public section are v|sible outside the

package, i.e., n
specifications. D
the private part

4.3 Compon

A component ty|
contains declara
component are
accessible, req
entrypoints to th

gorts, port groups, data components contained in the component that are

bmes declared in the public part can be referenced by declarationg in other AADL
bclarations in the private part are visible only within the package, i.e., ndmes declared in
Can only be referenced by declarations within the package.

ent Types

be specifies ‘the external interface of a component that its implementations satisfy. It
ions that-represent features of a component and property associations. Features of a
made externally
bt are execution
f the data values

iredfaccess to externally prowded components and subprograms th

that flow into and out of subprograms The ports and subprograms of a component can be connected to
compatible ports or subprograms of other components through connections to represent control and data
interaction between those components. Required access to an external subcomponent, such as data or
bus, is resolved when subcomponents of this component type are declared.

Component types can declare flow specifications, i.e., logical flows of information from its incoming ports
to its outgoing ports that are realized by their implementations.

Component types can be declared in terms of other component types, i.e., a component type can extend
another component type — inheriting its declarations and property associations. If a component type
extends another component type, then features, flows, and property associations can be added to those
already inherited. A component type extending another component type can also refine the declaration of

-32-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

inherited feature and flow declarations by more completely specifying partially declared component
classifiers and by associating new values with properties.

Component type extensions form an extension hierarchy, i.e., a component type that extends another
component type can also be extended. We use AADL graphical notation (see Annex A) to illustrate the
extension hierarchy in Figure 2. For example, component type GPS extends component type Position
System inheriting ports declared in Position System. It may add a port, refine the data type classifier of a
port incompletely declared in Position System, and overwrite the value of one or more properties.
Component types being extended are referred to as ancestors, while component types extending a
component type are referred to as descendents.

Liescendant
Ancestor L =5 o T =1
rostion |— ors K | L | comporec)type
QEMhon
System CI_\ <[6FS Embedded 4 Bt cdmponent type
M=

Component type
of the type that g

component_ ty]

Figure 2 Component Type Extension Hierarchy

s may also be extended using an annex_subclause to specify addition
re not defined in the core of the AADL (see Section 4.6)

Syntax

be

bl characteristics

component_g¢ategory defining component_type_identifier
[features| ({ feature }° | none\statement)]
[flows (flow_spec }°* | none_statement)]
[properties ({ componemtitype property_association }° | none_sltatement)]
{ annex_subclause }"
end definihg componént_type_identifier ;
component_type_exXtension =
component_tategory defining component type identifier
extends unique_component_type_identifier
[features ({ feature | feature_refinement }* | none_statement)]
[flows ({ flow_spec | flow_spec_refinement }°* | none_statement)]
[properties ({ component_type property_association }° | none_statement)]

{

end defining component_type_identifier

component_ca

annex_subclause }~

7

tegory

software_category

-33-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

| execution_platform_category

| composite_category

software_category data | subprogram | thread | thread group | process

execution_platform category memory | processor | bus | device

composite_category system

hent_type_identifier

]

unigue_compo

[packag¢ name component_type_identifier

NOTES:

The above gramm
of the component

ar rules characterize the common syntax for all component categories. The sec
tategories will specify further restrictions on the syntax.

ions defining each

The features, floys, and properties subclauses of the compaonent type are optional, or requirg
subclause declargtion. The latter is provided to accommodate AADL modeling guidelines tt]
documentation of gmpty subclauses. An empty subclause degclaration consists of the reserved wor
and a none statement (none ;).

an explicit empty
at require explicit
d of the subclause

The annex_subclajuse of the component type is optional.

Naming Rules

The defining ide
the package na

ntifier for a component type must be unique within the anonymous nam
espace of the package within which it is declared.

espace or within

Each component type has/an interface namespace for defining identifiers of features and flow
specifications. That is, defining feature and defining flow specification identifiers must pe unique in the
interface namespace.

The component fype ‘identifier of the ancestor in a component type extension, i.e., that appears after the
reserved word extends, must be defined in the specified package namespace. If no package name is
specified, then the identifier must be defined in the namespace of the package the extension is declared
in, or in the anonymous namespace if the extension is declared in the AADL specification direcily.

When a component type extends another component type, a component type interface namespace
includes all the identifiers in the interface namespaces of its ancestors.

A component type that extends another component type does not include the identifiers of the
implementations of its ancestors.

The defining identifier of a feature must be unique in the interface namespace of the component type.

The refinement identifier of a feature refinement refers to the closest refinement or the defining
declaration of the feature going up the component type ancestor hierarchy.

-34-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Legality Rules

The defining identifier following the reserved word end must be identical to the defining identifier that
appears after the component category reserved word.

The features, flows, and properties subclauses are optional. If a subclause is present but empty, then
the reserved word none followed by a semi-colon must be present.

A component type declaration that does not extend another component type must not contain feature

refinement decla

The category o

rations.

the component type being extended must match the cateqory

f the extending

component type,

A component ty|
the features of 4
existing or pote
properties decla
these externally
component interd

The component
categories); prodg
category). The s

Features of a co

Semantics

be represents the interface specification of a component, i‘e.,"the com
component, and property values. A component implementation denot
ntial, that is compliant with the category, features and required sub
red for components of that type. Component implemeéntations are ex
visible characteristics of a component. The component type provides 4§
ace that users of the component can depend on.

categories are: data, subprogram,

thread, thread group, and pr

emantics of each category will be deseribed in later sections.

mponent are interaction points with other components, i.e., ports and pg

subprograms,

subcomponent
interaction points
are not contain
multiple compon|

ports.

A component t

ACCEesSs.

Eubprograms and parametérs; required subcomponent access;
Ports, port grolps and subprograms specify both incomin
. Required subcomponent access declarations represent references to
d in the current component but must be accessed by the component
nts they become. 'shared components. Ports, port groups, subprograr

bonent category,
ES a component,
fomponents and
pected to satisfy

contract for the

pcess (software

essor, bus, memory, and device (execution platform categories); system (compositional

rt groups; server
and provided
g and outgoing
components that
If accessed by
hs, provided and

nent, terminates
e of its outgoing

ith no component

classifier references or just the component type name for a component type with more than one
component implementation. The component implementation may not exist yet or one of several
implementations may have not been selected yet. The use of incomplete declarations is particularly
useful during early design stages where details may not be known or decided.

A component type can be declared as an extension of another component type resulting in a component
type extension hierarchy, as illustrated in Figure 2. A component type extension can contain refinenment
declarations permit incomplete feature declarations to be completed and new property values to be
associated with features and flow specification declared in a component type being extended. In addition,
a type extension can add feature declarations, flow specifications, and property associations. This
supports evolutionary development and modeling of system families by declaring partially complete
component types that get refined in extensions.

-35-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Properties are predefined for each of the component categories and will be described in the appropriate
sections. See Section 10.3 regarding rules for determining property values.

Examples

system File_System

features
-- access to a data component
root: requires data access FileSystem::Directory.hashed;

end File_System;

process Appllication
features
-- a data|out port
result: out data port App::result_type;
home: requires data access FileSystem::Directoxy.hashed;

end Application;

4.4 Compongent Implementations

A component im
modes. Every cd
have zero or mo

A component im
refinements, co
feature refineme
Flow sequences
flows to be anal
alternate configy
values.

A component im

blementation contains subcomponents and their connections, properties
mponent implementation is.associated with a component type. A com
e component implementations declared.

plementation consists_0f a collection of zero or more subcomponent an
nection and connection refinements, subprogram call sequences,

nts, flow sequences, and mode declarations; and zero or more prope
represent implementations of flow specifications in the component typ
zed. Modés-represent alternative operational modes that may manife
rations ef.subcomponents, connections, call sequences, flow sequenc

and component
bonent type may

d subcomponent
component type
rty associations.
e, or end-to-end
5t themselves as
s, and property

bletentation can be declared as an extension of another component im

plementation. In

that case, the component implementation inherits the declarations of its ancestors as well as its
component type. A component implementation extension can refine inherited declarations, and add
subcomponents, connections, subprogram call sequences, flow sequences, mode declarations, and
property associations.

Component implementations build on the component type extension hierarchy in two ways. First, a
component implementation is a realization of a component type (shown as dashed arrows in Figure 3).
As such it inherits features and property associations of its component type and any component type
ancestor. Second, a component implementation declared as extension inherits subcomponents,
connections, subprogram call sequences, flow sequences, modes, property associations, and annex
subclauses from the component implementation being extended (shown as solid arrows in Figure 3). A
component implementation can extend a component implementation that in turn extends another
component implementation, e.g., in Figure 3 GPS.Handheld extends GPS.Basic and is extended by
GPS_Secure.Handheld. Component implementations higher in the extension hierarchy are called

-36 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

ancestors and those lower in the hierarchy are called descendents. A component implementation can
extend another component implementation of its own component type, e.g., GPS.Handheld extends
GPS.Basic, or it can extend the component implementation of one of its ancestor component types, e.g.,

GPS_Secure.Handheld extends

GPS.Handheld, which is an implementation of the ancestor component

type GPS. The component type and implementation extension hierarchy is illustrated in Figure 3.

GPE_Zecure GRS (-omponent type
GPS |p—" | - : .
I GPS Bagic Component implementation
7R N
s \ A % Extrends component type
Vi -, AN or implementation
s #
Elegssié i \ GPS Secure. G- Realizes compdnent type
GRS, Handheld
Handheld
Descendent
Ancestor

A component i

component_implementation

component| category implementation

defining ¢omponent_implementatidr.name

[refines|type ({ feature_re&finement }° | none_statement)]
[subcomppnents ({ subcomponent }°* | none_statement)]

[calls (| { subprogram_call_sequence }* | none_statement)]
[connectjons ({ cofinection }* | none_statement)]

[flows (|{ flow_dmplementation |

[modes (| {.mode }* {

F’iIure 3 Extension Hierarchy of Component Types and{implementations

end—to_end_flow_spec }°* | none_statement)]

plementation may also be extended using an annex_subclause to specify additional
characteristics of the type that are not defined in the core of the AADL (see Section 4.6).

Syntax

mode_transition }” | none_statement)]

[propertYtes—t—{property—assoctiationr containedproperty_—association }*

| none_statement)]

{ annex_subclause }°

end defining component_implementation_name ;

component_implementation_name ::=

component_type_identifier . component_implementation_identifier

component_implementation_extension ::=

component_category implementation

-37-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

defining component_implementation_name
extends unigque_component_implementation_name
[refines type
({ feature_refinement }°* | none_statement)]
[subcomponents
({ subcomponent | subcomponent_refinement }°* | none_statement)]
[calls ({ subprogram_call_sequence }* | none_statement)]

[connections

({ ¢onnection | connection_refinement }°* | none_statemént) |
[flows (|{ flow_implementation | flow_implementation_refinement |
end_to_end_flow_spec | end_to_end_ flow specpreéfinement }°
| none_statement)]
[modes (|{ mode | mode_refinement | mode_transitdon }* | none_gtatement)]
[properties ({ property association }* | none_‘statement)]
{ annex_stibclause }*

end deflining component_implementation_name ;

unique_compohent_implementation_name ::=

[package|name ::] component_implementation_name

NOTES:

The above grammgr rules characterize the common syntax for all component categories. The secfions defining each
of the component ¢ategories will specify further restrictions on the syntax.

component implementation“are optional or if used and empty, require an explicit empty declarafion. The latter is
provided to acconpmodate AADL modeling guidelines that require explicit documentation of emgdty subclauses. An
empty subclause declaration consists of the reserved word of the subclause and a none statement |(none ;).

The refines typﬂ; subcomponents, connections, calls, flows, modes, and properties gubclauses of the

The annex_subclause of the component implementation is optional.
Naming Rules

A component implementation name consists of a component type identifier and a component
implementation identifier separated by a dot (“”). The first identifier of the defining component
implementation name must name a component type that is declared in the same package or anonymous
namespace as the component implementation.

The defining name of the component implementation must be unique within the anonymous namespace
or within the package namespace of the package within which it is declared.

Every component implementation defines a local namespace for all defining identifiers of subcomponents,
subprogram calls, connections, flows, and modes declared within the component implementation. The

-38 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

defining identifier of a subcomponent, subprogram call, connection, flow, or mode must be unique within
this namespace. For example, a subcomponent and a mode cannot have the same defining identifier
within the same component implementation.

This local namespace inherits the interface namespace of the associated component type, i.e., defining
identifiers must be unique within the local namespace and also within the interface namespace.

Refinement identifiers of features must exist in the interface namespace of the associated component
type or one of the component type’s ancestors. Refinement identifiers of subcomponent and connection

refinements must exist in the local namespace of an ancestor component implementation.

In a component

implementation _extension, the component type identifier of

the component

implementation

an ancestor of the component type of the extension. The component implementation

may exist in an
package name.

When a compon
the extension is

ieing extended, which appears after the reserved word extends, mustb

ther package. In this case the component implementation nate’is ¢

ent implementation extends another component implementation, the log
a superset of the local namespace of the ancestor. ¢(That is, the local

component impl¢mentation inherits all the identifiers in the local namespaces of its ang

the identifiers of

Within the sco
subprogram call
the local names
subcomponents

The pair of ident
of identifiers follg

their respective component type interface namespaces).

pe of the component implementation,. subcomponent declaratior
sequences, mode transitions, and property‘associations can refer direct

and features declared in the associatedcomponent type.
Legality Rules

fiers separated by a dot (“("),following the reserved word end must be id
wing the reserved word implementation.

b the same as or
being extended
ualified with the

al namespace of
namespace of a
estors (including

s, connections,
y to identifiers in

bace, i.e., to declared subcomponents,;eonnections, and modes, as w¢ll as to required

pntical to the pair

The refines type, subcomponents, connections, calls, flows, modes, and properties subclauses are

optional. If they
associations is e

The category of

are present and'the set of feature or required subcomponent declara
mpty, none followed by a semi-colon must be present in that subclause.

he component implementation must match the category of the compone

the component implementation is declared.

ions or property

nt type for which

If the componen
match.

implementation extends anather component implementation _the cate

ory of both must

The refines type subclause must only contain refinement declarations of features in the component type
and those refinements are limited to property associations. Specifically, the refines type subclause of a
component implementation may not alter the component classifiers of inherited features.

Semantics

A component implementation represents the internal structure of a component through subcomponent
declarations. Interaction between subcomponents is expressed by the connections, flows, and
subprogram call sequences. Mode declarations represent alternative runtime configurations (internal
structure) and alternative execution behavior (interaction between subcomponents).. A component
implementation also has property values to express its non-functional attributes such as safety level or
execution time which can also vary by mode.

-39 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Each component implementation is associated with a component type and provides a realization of its
features (interface). A component type can have multiple implementations.

The physical system being modeled by component types and component implementations may contain
subcomponents, some of which may contain subcomponents themselves. The subcomponent
containment hierarchy reflects the physical system structure.

A component implementation that is an extension of another inherits all subcomponents, connections,
subprogram call sequences, flow sequences (flow implementations and end-to-end flows), modes,
property associations, and annex subclauses from its ancestors as well as features, property
associations, and annex subclauses from its associated component type (and that component type’s
ancestors).

ared in ancestor
g new property
ps of its ancestor
htation extension

A component implementation extension can also refine subcomponents previously ‘dec
component implementations by completing component classifiers, and by assoeiatin
values. A compgpnent implementation extension can refine connections, flows,-and mod
component implementations by associating new property values. A componentimpleme

~

D

can refine feat

associating new

res of its associated component type (and that component type’
property values to them.

A component implementation extension can also add subcomponents, connections,

sequences, flow
capability suppd
complete compo

A descendent cq
in its local namg
ancestors. In of
declared and i
sequences, and

The refines typ
features of its
example given i
source text varia

A

[«

Properties are p
sections. See S¢

sequences, modes, property associations, and annex subclauses.
rts evolutionary development and modeling<of system families by d
hent implementations that get refined in extensions.

mponent implementation is said to contain all subcomponents whose i
space, i.e., subcomponents declared in the component implementatig

ancestors) by

subprogram call
This extension
bclaring partially

Hentifiers appear
n and any of its

her words, an instance of a component implementation extension contains instances of

nherited subcomponents, feaiures, connections, subprogram call §
modes.

e subclause of a component implementation can refine the property
ssociated component type and of that component’s ancestor compo
n the section below illustrates the use of refines type to provide map
ble names indifferent component implementations.

equences, flow

associations of
nent types. The
bings of ports to

redefined\for each of the component categories and will be described in the appropriate

ction<10:3 regarding rules for determining property values.

NOTES:

Component implementation declarations can only refer to component types residing in the same package
namespace. In order to add an implementation to a component type declared in another package, the component
type can be created in the current namespace (package) by referencing the original package in a type extension in
the current namespace. In the following example, LM::GPS is a reference to the original type defined in the package
LM.

system GPS extends LM::GPS end GPS;
Processing Requirements and Permissions
A component implementation denotes a set of physical system components, existing or potential, that are

compliant with the component implementation declaration as well as the associated component type.
That is, the physical components denoted by a component implementation declaration are always

-40 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

compliant with the functional interface specified by the associated component type declaration. Physical
components denoted by different implementations for the same component type differ in additional details
such as internal structure or behaviors; these differences may be specified using properties.

In general, two physical components that comply with the same component type and component
implementation are not necessarily substitutable for each other in a physical system. This is because an
AADL specification may be legal but not specify all of the characteristics that are required to insure total
correctness of a final assembled system. For example, two different versions of a piece of source text
might both comply with the same AADL specification, yet one of them may contain a programming defect
that results in unacceptable runtime behavior. Compliance with this standard alone is not sufficient to
guarantee overall correctness of a physical system.

Examples

thread DriverModeLogic
features
BreakPedalPressed : in data port Bool_Type;
ClutchPed@lPressed : in data port Bool_Type;
Activate in data port Bool_Type;
Cancel : in data port Bool_Type;
OnNotOf £ in data port Bool_Type;
CruiseActjve : out data port Bool_ Typées

end DriverMofleLogic;

-- Two implementations whose solrte texts use different variable names for

-- their crulse active port

thread implementation DriwverModeLogic.Simulink

refines type
CruiseActjve: refined to out data port Bool_ Type

{ Source_Name => “CruiseControlActive”; };

properties

Dispatch_Protocol=>Periodic;
Period=> 10 ms;

end DriverModeLogic.Simulink;

thread implementation DriverModeLogic.C
refines type
CruiseActive: refined to out data port Bool_Type
{ Source_Name => “CCActive”; };

properties

-41 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Dispatch_Protocol=>Periodic;
Period=> 10 ms;

end DriverModeLogic.C;

4.5 Subcomponents

A subcomponent represents a component contained within another component, i.e., declared within a

component implementation. Subcomponents contained in a component impleme
instantiations of component implementations that contain subcomponents themselves.

ntation may be
This results in a

component con
instance. Figurg 4 provides an illustration of a containment hierarchy using the graphie
(see Annex A). In this example, Sys1 represents a system. The implementatiory 6Pthe
subcomponents hamed C3 and C4. Component C3, a subcomponent in Sys1’sdmplems
subcomponents named C1 and C2. Component C4, another subcomponent in Sys1’s

contains a seco
those named C2
namespace of th

d set of subcomponents named C1 and C2. The two,subcomponent
do not violate the uniqgue name requirement. They areunique with res
eir containing component’s local namespace.

Syl SubCOmg

- Ccontains

3

1 z2 1

A subcomponen
of the subcompo

A subcomponen
component implg

Figure-4:.Component Containment Hierarchy

declaration mayiresolve required subcomponent access declared in the
nent. For detailsson required subcomponent access see Section 8.4.

can be. declared to apply to specific modes (rather than all modes) d
mentation.

Subcomponents

éan' be refined as part of component implementation extensions. R

iInment hierarchy that ultimately describes the whole physical systgm as a system

| AADL notation
system contains
ntation, contains
implementation,
t named C1 and
pect to the local

nent

component type

efined within the

bfinement allows

classifier references 10 be completed, and subcomponent property values 1o be associated. The resulting

refined subcomp

subcomponent

defining

component_category

[{{

[

in_modes]

onents can be refined themselves.

Syntax

subcomponent_identifier

[

subcomponent_property_association

component_classifier_reference]

| contained_property_association }* }]

r

-42 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subcomponent_refinement

defining subcomponent_identifier refined to

[

{ { subcomponent_property_association

component_category component_classifier_reference]

[

| contained_property_association }* }]

.
r

[

in_modes]

component_classifier_reference

inigque_component_type_name [component_implementatign_name]

NOTES:

The above grammar rules characterize the common syntax for subcompenent of all compone

sections defining €

The defining ide
unigue within the

The defining ide
the local namesy

The component

lach of the component categories will specify further resttictions on the syntax.

Naming Rules,

local namespace of the component_ implementation that contains the su

ntifier of a subcomponent refinement must exist as a defining subcompd
ace of an ancestor componentimplementation.

type identifier or the ‘component implementation name of a com

ht categories. The

ntifier of a subcomponent declaration placed in a component implemgntation must be

bcomponent.

nent identifier in

pbonent classifier

reference must gxist in the specified (package or anonymous) namespace.
NOTES:
The sample_Manager in the-example section below illustrates each kind of resolution.

Legality Rules

The category of the subcomponent declaration must be identical to the category it
component classifier reference.

s corresponding

The component type named in the component classifier reference of a subcomponent refinement must be
the component type of the subcomponent being refined if the subcomponent being refined has a
component type declared. The component implementation named in the component classifier reference
of a subcomponent refinement must be the component implementation of the subcomponent being
refined if the subcomponent being refined has a component type declared.

If the subcomponent declaration contains an in_modes statement and any of its property associations
also contains an in_modes statement, then the modes named in the property association must be a
subset of those named in the subcomponent declaration. For more detail on the semantics of in_modes
statements see Section 11.1.

Semantics

-43 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Subcomponents declared in a component implementation are considered to be contained in the

component implementation. Contained subcomponents are instantiated when the conta
implementation is instantiated. Thus, the component containment hierarchy describes
structure of the physical system.

A component implementation can contain incomplete subcomponent declarations, i.e.

ining component
the hierarchical

, Subcomponent

declarations with no component classifier references or the component classifier reference only consists

of a component type name for a component type with more than one component implem
particularly useful during early design stages where details may not be known or
incomplete subcomponent declarations can be refined in component implementation exte

entation. This is
decided. Such
nsions.

ive.

The optional in_modes subclause specifies the modes in which the subcomponent is ac
A subcomponent can have property associations for its own properties, or a\.¢o
association for [the properties of its subcomponents and their subcomponents, as
subcomponents’| features, modes, subprogram call sequences, connections;.and flo
10.3). Subcompgnent refinements may declare property associations — that*override theg
declared in the subcomponent being refined.

NOTES:

The example belo
implementation m

W illustrates the use of component type only as data“component classifier. T
bthods to perform analysis and to generate a physical system implementatid
specification. In case of process components, the process component classifier reference must
implementation if the implementation method must process thescomplete system instance, e.g., ps
analysis. In other words, some implementation methods :aihd component categories require co
references to component implementations, while for othersthe component type reference is sufficig

Examples

The example illustrates modeling of souree text data types as data component ty
implementation gletails. It illustrates the use of package to group data component typq
illustrates both component classifier references to component types and to component
It illustrates the yse of ports as wéll as required and provided data access. In that contex
ways of resolving required access:

package Sampling
public
data Samplé

htained property
well as those
vs (see Section
property values

his is sufficient for
n from the AADL
refer to a process
brforms scheduling
mponent classifier
nt.

bes without any
declarations. It
mplementations.
t it illustrates the

properties
Source_Data_Size => 16 B;

end Sample;

data Sample_Set
properties
Source_Data_Size => 1 MB;

end Sample_Set;

-44 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

data Dynamic_Sample_Set extends Sample_Set

end Dynamic_Sample_Set;

end Sampling;

thread Init_Samples

features
OrigSet
SampleSet

requires data access Sampling::Sample_Set;

requires data access Sampling::Sample_Set;

end Init_Samples;

thread Colle¢t_Samples

features

Input_Sample : in event data port Sampling::Samplé&:}

SampleSet

end Collect_Pamples;

thread implementation Collect_Samples.Bateh Update

refines type

Input_Sample: refined to

in

end Collect_Pamples.Batch_Update;

thread Distribute_Samples

features

SampleSet

UpdatedSamplés”: out event data port Sampling::Sample;

requires data access Sampling::Sample_Set;

event data port Sampling::Sample {Source_Name => "Ing

requires data access Sampling::Sample_Set;

end Distribute—Samptes

process Sample_Manager

features

Input_Sample: in event data port Sampling::Sample;

External_Samples: requires data access Sampling::Sample_Set;

Result_Sample: out event data port Sampling::Sample;

end Sample_Manager;

process implementation Sample_Manager.Slow_Update

ample”;

Y

-45-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subcomponents

Samples:

Init_Samples

data Sampling::Sample_Set;

thread Init_Samples;

-- the required access is resolved to a subcomponent declaration

Collect_Samples:

Distribute:

connections

thread Collect_Samples.Batch_Update;

thread Distribute_Samples;

data accegs Samples -> Init_Samples.SampleSet;

data accegs External_Samples -> Init_Samples.OrigSet;
data accegs Samples
event data port Input_Sample -> Collect_Samples.Input_Sample;

data accegs Samples -> Distribute.SampleSet;

event dat

end Sample_M

4.6 AnnexS

Annex subclaus
types and compq

Annex libraries
Those reusable

A major use of
specific notation

The AADL stand
is compliant wit
Individual projec|
such annexes re

-> Collect_Samples.SampleSet;

port Distribute.UpdatedSamples -> Result_Sample;

bnager .Slow_Update;

lbclauses and Annex Libraries

bs contain declarations expressedin a sublanguage that can be addg
nent implementations throughannexes. Examples of annex subclauses

d to component
are assertions.

hre reusable declarationst\expressed in a sublanguage that are decla
leclarations can be referenced by annex subclauses.

ed in packages.

these annex declarations is to accommodate new analysis methods through analysis
5 or sublanguages:

ard consists of a core language and a set of approved annexes. An AADL specification
h the standard if it restricts itself to the core language and the approved annexes.
ts can(introduce additional annexes to support project-specific analysig needs. Use of

AADL tools are F
Permissions).

Examples of ann

annex_subclause
annex annex_identifier

annex_

**}

7

sults in AADL models that are not fully comphant with the standard. Standard compliant
ey : fequirements and

ex libraries are constraint functions that can be referenced in assertions.

Syntax

{**

specific_language_constructs

- 46 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

annex_1library ::
annex annex_identifier

annex_

**}

7

{**

specific_reusable_constructs

Naming Rules

The annex identifier must be the name of an approved annex or a project-specific identifier different from
the approved annex identifiers.

Legality Rules

Annex subclausd

A component type or component implementation declaration may contain at mast one

for each annex.

Annex libraries ¢

A package declafration may contain at most one annex library declaration for each annex|

An annex subclg
analysis method
annex subclause
in predicate logi
subcomponents,

An annex librany
place multiple rg
reusable annex
Object Constrain

Annex specific 1§
the annex subclg

s can only be declared in component types and component impleménta

an only be declared in packages.

Semantics

use provides additional specification information about a component to
5. Annex subclauses apply to companent types and component implen
s can introduce analysis specific netations such as constraints and assg
c or behavioral descriptions expréssed in temporal logic. Such nota

connections, modes, and transitions as well as features and subcompor

provides reusable specifications expressed in an annex specific not
usable annex specific.constructs inside an annex library declaration.

t Language (OCL).notation.
Processing Requirements and Permissions

nguages can use any vocabulary word except for the symbol **} repres
use\ofr specification.

ions.

hnnex subclause

be interpreted by
entations. Such
rtions expressed
ion can refer to
ent access.

ption. Users can
An example of a

specification is a.predicate function expressed in a constraint language such as the

bnting the end of

Processing methods compliant with the core AADL standard must accept AADL specifications with
approved and project-specific annex subclauses and specifications, but are not required to process the
content of annex subclauses and annex library declarations. An AADL analysis tool must provide the
option to report the use of project-specific annexes. Processing methods compliant with a given annex
must process specifications as defined in that annex.

Annex-specific sublanguages may choose not to support inheritance of sublanguage declarations
contained in annex libraries of ancestor component type or component implementation declarations by

their extensions.

-47 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Examples

thread Collect_Samples
features
Input_Sample : in data port Sampling::Sample;
Output_Average : out data port Sampling::Sample;
annex OCL {*¥*
pre: 0 < Input_Sample < maxValue;

post: 0 < Output Sample < maxValue;

**};

end Collect_Pamples;

-48 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

5 Software Components

This section defines the following categories of software components: data, subprogram, thread, thread
group, and process.

Software components may have associated source text specified using property associations. Software
source text can be processed by source text tools to obtain a binary executable image consisting of code
and data to be loaded onto a memory component and executed by a processor component. Source text
may be written in a traditional programming language, a very-high-level or domain-specific language, or
may be an intermediate product of processing such representations, e.g., an object file.

Data components represent data types and static data in source text. Data componehts are sharable
between threadg within the same thread group or process, and across processes and-sygtems.

The subprogram| component models callable source text that is executed sequentially. $ubprograms are
callable from within threads and subprograms.

Threads represgnt sequential sequences of instructions in loaded birany images produced from source
text. Threads npodel schedulable units of control that can executéxconcurrently. Thrdads can interact
with each other through exchanges of control and data as specified by port connections, through server
subprogram call$, and through shared data components.

A thread group is a compositional component that permits organization of threads within processes into
groups with releyant property associations.

A process repregents a virtual address space. Access protection of the virtual address space is enforced
at runtime if spgcified by the property Runtime_Protection. The source text agsociated with a
process forms g complete program as defined in the applicable programming langugge standard. A
complete procesp specification must contain at least one thread declaration. Processes may share a data
component as gpecified by the required subcomponent resolved to an actual sulcomponent and
accessed through port connections.

5.1 Data

A data componeht type represents a data type in source text. The internal structure of ajsource text data
type, e.g., the |instance~variables of a class or the fields of a record, is reprgsented by data
subcomponents |in a.data component implementation. Subprogram features of a data|component type
can model the doneept of methods on a class or operations on an abstract data typel If subprogram
features are dectared;thedata componentmay un:y be—accessed ﬂlluuyh the ou'uplug rams. A source
text data type can be modeled by a data component type declaration with relevant properties without
providing internal details in a data component implementation.

A data component classifier, i.e., a data component type name or a data component type and

implementation name pair (separated by a dot “.”), is used as data type indicator in port declarations,
subprogram parameter declarations, and data subcomponent declarations.

A data subcomponent represents static data in the source text. Components can have shared access to
data subcomponents. Only those components that explicitly declare required data access can access
such sharable data subcomponents according to a specified concurrency control protocol property.
Concurrency control is assured either through the subprogram features of the data component type or by
the component requiring access. Data subcomponents can be shared within the same process and, if
supported by the runtime system, across processes.

-49 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

Support for shared data is not intended to be a substitute for data flow communication through ports. It is provided to
support modeling of systems whose application logic requires them to manipulate data concurrently in a non-
deterministic order that cannot be represented as data flow, such as database access. It is also provided for
modeling source text that does not use port-based communication.

Legality Rules
Category Type Implementation
Features: Subcomponents:
'Y Quhlnrngmm 'Y data
e provides data access | Subprogram calls: no
Data Flow specifications: no Connections: access
Properties: yes Flows: no
Modes: yes
Properties: yes

A data type declaration can contain subprogram declarations, providés data access deglarations as well
as property assogiations.

A data type deCIIration must not contain a flow specification.

A data implementation can contain data subcomponenis; a modes subclause, access ¢onnections, and
data property asgociations.

A data implemerjtation must not contain a flow implementation or an end-to-end flow spegification.

Each requires data access reference may ‘have its own Required_Access propety value. This
property value must not conflict with the.Provided_Access property value associatgd with the data
component or the corresponding provides access declaration.

The data classifjer references «of.;two data ports, event data ports, data access, or parameters to be
identical. When [a data type/has'zero or one implementation, then the referenced data tyjpes must match.
When a data fype hasmore than one implementation, both the data type and|the appropriate
implementation must be-present in the data classifier reference of a data port, even{ data port, data
access, or parameter declaration.

Source_Data_Size: Size

Type_Source_Name: aadlstring

Source_Name: aadlstring

Source_Text: inherit list of aadlstring

-- Data sharing properties

Concurrency_Control_Protocol: Supported_Concurrency_ Control_Protocols =>

NoneSpecified

-50-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The value of the Type_Source_Name property identifies the name of the data type declaration in the
source text. The value of the Source_Name property identifies the name of the static data variable in the
source text.

Semantics

The data component type represents a data type in the source text that defines a representation and
interpretation for instances of data in the source text. This includes data transferred through data and
event data ports, and parameter values transferred to subprograms. This data type (class) may have
associated access functions (called methods in an Object-Oriented context) that are represented by
subprogram declarations in the features subclause of the data type declaration. In this case, the data

may be accesse

through the subprograms

A data compong
contain data sub
and instance var

A data compone

types to be modgled without having to represent implementation details:

A data compongnt type declaration can provide access to its data subcomponents. T

components to
subcomponent f
as direct access

A data compon
component type
source language]

Data component
modeling of subg

A data subcomg
sharable betwesd
represents a sep

When declaring
subcomponent d
even generate a

nt implementation represents the internal structure of a data compon
components. This is used to model source language concepts stch’as
ables in a class.

nt type can have zero data component implementations. This allows

directly access specific parts of the data*.eomponent representg
br which access is provided. This can be usedto model source languag
to fields of a record or public access to instance variables in a class.

and its implementations. This can be used to model references to g

lasses and type inheritance in source text.

onent represents-a_data instance, i.e., static data in the source text t
n threads and, persists across thread dispatches. Each declared dat
arate instancg:of source text data.

data subeomponents, it is sufficient for the component classifier re

systém instance and perform memory usage analysis if a Source_Dat

ent type. It can
fields in a record

source text data

his allows other
d by the data
e concepts such

ent type declaration can require access to data components extefnal to the data

ther data in the

types can be extended through component type extension declaratiofs. This permits

hat is potentially
b subcomponent

ference of data

eclarations to only refer to the data component type. An implementation method can

h_Size property

value is specified

in‘the data component type

Static data is sharable between threads. This is expressed by requires data access declarations in the
component type declarations of subprograms, threads, thread groups, processes, and systems. The
access is resolved to data subcomponents or provides data access declarations. Each required
reference to shared data may have its own Required_Access property value. Its value must be
consistent with the value of the Provided_Access property.

Concurrent access to shared data is coordinated according to the concurrency control protocol specified
by the Concurrency_Control_Protocol property value associated with the data component. A
thread is considered to be in a critical region when it is accessing a shared data component. When a
thread enters a critical region a Get_Resource operation is performed on the shared data component.
Upon exit from a critical region a Release_Resource operation is performed. If multiple data
components with concurrency control protocols are accessed by a thread, the critical regions may be

-51-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

nested, i.e., the Get_Resource and Release_Resource operations are pair-wise nested for each data
component. Furthermore, deadlock avoidance among threads accessing the same set of shared data
components is assured by proper nesting of the critical regions across all of the threads.

Data component classifier references are also used to specify the data type for data and event data ports
as well as subprogram parameters. When ports are connected or when required data access and
subprogram parameters are resolved, the data component classifier references representing the data
types must be compatible. This means that the data type of an out port must be compatible with the data
type of an in port, the data type of a provided data access declaration or a declared data component must
be compatible with the data type of a required data component, and the data type of an actual parameter

must be compatible with that of the formal parameter of a subprogram. Data component classifier

references are
types are comp

Data implementd
data component

NOTES:

The property type
data types.
package and used

If any source tex
declaration mus
visibility rules o
determines the

name for specifi
mapping can als

The applicable s
or type modifier
source type con
referenced type

A method of imp
the actual value

(azltible according to source language rules.

tion property associations allow mode-specific property values to-be as

aadlboolean, aadlstring, aadlinteger, and aadlreal cannot be used as predd

Instead data component types with the names Boolean, stting, integer, and real ca

throughout AADL specifications.
Processing Requirements and Permissions

t is associated with a data componentdype, then a corresponding sour
be visible in the outermost scope of that source text, as defined b
the applicable source language-'standard. The name of the data

source name of the data type: Supported mappings of the identifier

C source languages are defined in the source language annex of this

b be explicitly specified through the Type_Source_Name property.

ource language standard may allow a data type to be declared using a
hat references,othér source text data types. A source text data type n3
structor may,sbut is not required to, be modeled as a data compong
eatures explicitly named in a corresponding data component implementd

peing-assigned. If a method of implementation employs a runtime check

source text data

sociated with the

clared component
N be declared in a

ce text data type
the scope and
component type
0 a source type
standard. Such

type constructor
me defined by a
nt type with the
ition declaration.

lementation may disallow assignments that might result in a runtime erfor depending on

to determine if a

specific value m

the source of the data assignment.

hy-be legally assigned, then any runtime fault is associated with the thrg

ad that contains

If two static data declarations refer to the same source text data, then that data must be replicated in
If this replication occurs within the same virtual address space, a method for resolving
name conflicts must be in place. Alternatively the processing method may require that each source text
data be represented by only one data component declaration per process address space.

binary images.

The concurrency control protocol can be implemented through a number of concurrency control
mechanisms such as mutex, lock, semaphore, or priority ceiling protocol. Appropriate concurrency control

state is associated with the shared data component to maintain concurrency control.
Get_Resource

implementation

must provide appropriate implementations of the

Release_Resource operations.

The protocol
and

-52-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A method of implementation may choose to generate the Get_Resource and Release_Resource calls
as part of the AADL runtime system generation, or it may choose to require the application programmer to
place those calls into the application code. In the latter case, implementation methods may validate the
sequencing of those calls to assure compliance with the AADL specification.

data Person

end Person;

Examples

data Personnfr_recorda

-- Methods are not required, but when provided act as access methd

features

-- a subprogram feature with reference to a

-- subpro@ram type for signature

update_ad@lress: subprogram update_address;

end Personnel_

record;

data implemeptation Personnel_record.others

subcomponentg

-- here w¢

declare the internal stxucture of the data type

-- One fig¢ld is defined in terms’of another type;

-- the type name is sufficient],

it defaults to others.

Name : data basic::string;

Home_addréss

end Personnel

data seij:aadl::relief::Address;

record .others;

subprogram updateladdress

features

person: in out parameter Personnel_record;

street :in parameter basic::string;

city: in parameter basic::string;

end update_address;

package basic

public

-- string as type

data string

ds

-53-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

end string;

-- int as type
data int
properties
Source_Data_Size => 64 bits;
end int;

end basic;

-- use of a ¢fata type as port type.
thread SEI_Pé¢rsonnel_addition
features
new_persoh: in event data port Personnel_record;
SEI_persohnel: requires data access Personnel_database.oracle;
properties
Dispatch_Protocol => aperiodic;

end SEI_Pers¢pnnel_addition;

package sei:faadl::relief

public

14

data Address
features
-- a sybprogram featlre without parameter detail
getStreet : subprogram;
getCity : subprogram;

end Addres$s;

end sei::aadbsreties

-- The implementation is shown as a private declaration
-- The public and the private part of a package are separate AADL spec’s
package sei::aadl::relief
private
data implementation Address.others
subcomponents
street : data basic::string;

streetnumber: data basic::int;

-54-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

city: data basic::string;

zipcode:

data basic::int;

end Address.others;

end sei::aadl::relief;

5.2 Subprog

rams and Subprogram Calls

A subprogram component represents an execution entrypoint in source text. A subprogram may not have
any internal state (static data). All parameters and required access to external data must be explicitly

declared as part
must be specifie

Subprograms ca
local to the virtua
other virtual ad
sequence is dec

subprogram_c
[
{ { subp

defini

subprogram_c
defining

[{ ¢
called_subpr
subp

| da

NOTES:

of the Qllhprngmm ’rylnp declaration
] as part of its type declaration.

In_addition, any. events raised with

n be called from threads and from other subprograms. These calls are
| address space of the thread. Subprograms can also be calledremotel
ress spaces through server subprograms (see Section:8.3). A

ared in a subprogram or thread implementation and may’ be-mode-speci

Syntax

hl1_ sequence

]

]

g _call_ sequence_identifier

rogram_call }* } [in_modes ;)

h1l1

| call_identifier subprogram called_subprogram

]

subcomponent_call.property_association }* }

.
4

bgram
ogram_classifier_reference

Fa_unique type_reference data_subprogram_identifier

in a subprogram

sequential calls
y from threads in
subprogram call
iC.

Subprogram type and implementation declarations follow the syntax rules for component types and implementations.
Subprograms are not instantiated as subcomponents. Instead subprogram calls represent their instantiation (use)
with a specific set of parameter values. The syntax for specifying call sequences is shown here.

Naming Rules

The defining identifier of a subprogram call sequence declaration, if present in a component
implementation, must be unique within the local namespace of the component implementation that
contains the subprogram call.

The defining identifier of a subprogram call declaration must be unique within the local namespace of the
component implementation that contains the subprogram call.

-55-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

If the called subprogram name is a subprogram classifier reference, its component type identifier or
component implementation name must exist in the specified (package or anonymous) namespace.

If the called subprogram name is a subprogram feature reference in a data component, the data
component type identifier must refer to a data component type, or it must refer to a requires data access
declaration in the component type of the component containing the subprogram call declaration.

Legality Rules

Category Type Implementation
Features:

s—outeventport

Subcomponents:
e None

: og;evgr;t data port Subprogram calls: yes
subpyogram port group Connections: yes

e requires data access Flows: yes

e parameter Modes: yes

Flow specifications: yes

Properties: yes
Properties: yes perties: X

A subprogram type declaration can contain parameter, out eventport, out event data port, and port group
declarations as |well as required data access declarations.;lt can also contain a flow specification
subclause as wejl as property associations.

A subprogram implementation can contain a connectiohs subclause, a subprogram calls subclause, a
flows subclause,|a modes subclause and subprogram property associations.

A subprogram implementation must not contain'a’subcomponent subclause.

Only one subprogram call sequence can apply to a given mode. In other words, a mode identifier can be
specified in the in_modes subclause.of:at most one subprogram call sequence.

Standard Properties

-- Propertieg related/to source text
Source_Name: | aadlstxing

Source_Text:| inherit list of aadlstring

Source_Languages—Supported—Source—langudages

-—- Properties specifying memory requirements of subprograms
Source_Code_Size: Size
Source_Data_Size: Size
Source_Stack_Size: Size
Source_Heap_Size: Size
Allowed_Memory_ Binding Class:
inherit list of classifier (memory, system, processor)
Allowed_Memory_ Binding: inherit list of reference (memory, system, processor)

-- execution related properties

-56 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Compute_Execution_Time:

Compute_Deadline:

Time_Range

Time

-- remote subprogram call related properties

Actual_Subprogram_ Call:
Allowed_Subprogram_Call:

reference (server subprogram)

list of reference (server subprogram)

Actual_Subprogram Call_Binding: reference (bus, processor, memory)
Allowed_Subprogram Call_Binding:
inherit list of reference (bus, processor, device)

Queue_Proces

A subprogram ¢
A subprogram f
application sour
Section 84). T
parameters retu
subprogram thrg
the subprogram

A subprogram
modeling. It spe|

If required data 4§
in a critical regio|
control see Secti

Subprogram sou
event data thro
documented by
subprogram.

Subprogram imy
parameter value

Eing Protocol: Supported_Queue_Processing_Protocols (&3

Semantics

bmponent represents sequentially executable source text that is called
ype declaration specifies all interactions of the subprogram with ot
e text. Subprogram parameters are specified as features of a subpr
nis includes in and in out parameters passed intd«a subprogram and
fned from a subprogram on a call In addition,\events being raised
ugh its out event port and out event data port, and required access
are specified as part of the features subclause“of a subprogram type dec|

mplementation represents implementation details that are relevant
cifies calls to other subprograms and.the mode in which the call sequend

ccess is declared for a subprogram type, access to the data subcompor
h to assure concurrency control for calls from different threads (for morg
ons 5.1 and 5.3).

rce text can contain-Raise_Event service calls to cause the transmissi

igh its out event ports. The fact that events may emit from a su
the declaration_of out event ports and out event data ports as

lementations and thread implementations can contain subprogram c

FIFO

with parameters.
ner parts of the
bgram type (see
out and in out
from within the
to static data by
aration.

to architecture
e occurs.

ent is performed
on concurrency

pon of events and
pprogram call is
features of the

lls. The flow of

5 between subprogram calls as well as to and from ports of enclosing threads is specified

through paramet

ereconnection declarations (see Section 9.1.2).

A thread or subprogram can contain multiple calls to the same subprogram - with the same parameters or
with different parameters.

Ordering of subprogram calls is by default determined by the order of the subprogram call declarations.
Annex-specific notations can be introduced to allow for other call order specifications, such as conditional
calls and iterations.

Declaration of subprogram calls in thread and subprogram implementations implies that an instance of
the subprogram executable binaries exists in the load image of the process that contains the thread
performing the subprogram calls. For subprograms, whose source text implementation is reentrant, it is
assumed that a single instance of the subprogram binaries exist in the process virtual address space. In
the case of remote subprogram calls a proxy may be loaded for the calling thread and the actual
subprogram is part of the load image of the process with the thread servicing the remote subprogram call.

-57-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Subprogram cal

Is can be calls to server subprograms provided in other threads.

Such calls model

synchronous remote subprogram calls. An Allowed_Subprogram_Call property, if present, identifies
the server subprogram(s) that are allowed to be used in a call binding. An Actual_Call_Binding
property records the actual binding to a server subprogram. Constraints on the buses and processors
over which such calls can be routed can be specified with the A11owed_Subprogram_Call_Bindings

property.

Subprogram call sequences can be declared to apply to specific modes. In this case a call sequence is

only executed if

one of the specified modes is the current mode.

Modeling of subprograms is not required and the level of detail is not prescribed by the standard. Instead

it is determined

v the level of detail necessary for nerformina architecture analyses
J J Ll ~J J

The subprogram

orders can be m

data Matrix

end Matrix;

subprogram M
features

A: in par
B: in par
result:

end Matrix_d

subprogram I
features
A: in par
result:

end Interpre

O7

Processing Requirements and Permissions

call order defines a default execution order for the subprogram call
bdeled in an annex subclause introduced for that purpose.

Examples

bhtrix delta

[:eter matrix;
eter matrix;
ht parameter matrix;

plta;

hterpretf\result

rmeter matrix;

Alternate call

p.

out parameter weather forecast;

t_result;

data weather_ DB

features
getCurren

getFuture

t: subprogram getCurrent;

: subprogram getFuture;

end weather_ DB;

-58 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subprogram getCurrent
features
result: out parameter Matrix;

end getCurrent;

subprogram getFuture
-- a subprogram whose source text contains a raise_event service call

-- the subprogram also has access to shared data

features
date: in parameter date;
result: oWt parameter Matrix;
bad_date:| out event port;
wdb: requjires data access weather_ DB;

end getFuture;

thread Predi¢t Weather
features
target_date: in event data port date;
prediction: out event data port weather forecast;
past_datef out event port;
weather_database: requires. data access weather_ DB;
end Predict_Weather;
thread implementation/Predict_Weather.others
calls {

-- subpro@gram~call on a data component subprogram feature

;_ : ;_ k] 3 T o T I s g PR~ R I
-- out paremeter—rs—hot—resorved—Put—writ—Pbe—Tderntrirec—oy—user of value

current: subprogram weather_DB.getCurrent;

-- subprogram call on a data component subprogram feature with port wvalue
-- as additional parameter. Event i1is mapped to thread event

future: subprogram weather_DB.getFuture;

-- in parameter actuals are out parameter values of previous calls
-- they are identified by the call name and the out parameter name

diff: subprogram Matrix_delta;

-59-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- call with out parameter value resolved to be passed on through a port

interpret:

Y
connections

parameter

subprogram Interpret_result;

target_date -> future.date;

event port future.bad_date -> past_date;

parameter

current.result -> diff.Aa;

parameter
parameter

parameter

data access weather_database -> future.wdb;

end Predict_]

5.3 Threads

A thread repres¢g
from source text
A thread always
the virtual addre

Systems modelg
particular mode
inactive state as
execution. Thre
at event ports, €
execution of a th
event out port if i

If the thread exe
is not handled in

future.result -> diff.B;
diff.result -> interpret.A;

interpret.result -> prediction;

Neather.others;

image produced
cheduling states.
hages making up
dress space.

nts a sequential flow of control that executes instructions within a binary,

A thread models a schedulable unit:that transitions between various s
executes within the virtual address-space of a process, i.e., the binary in
bS space must be loaded before any thread can execute in that virtual ad

d in AADL can have operational modes (see Section 11). A thread can be active in a
hnd inactive in another mode. As a result a thread may transition between an active and
part of a mode switch. Only active threads can be dispatched arld scheduled for
hds can be dispatched periodically or as the result of explicitly modeled ¢vents that arrive
vent data ports, er’at a predeclared in event port called Dispatch. Jompletion of the
read dispatchwill result in an event being delivered through the prededlared Complete
L is conneeted.

cutionresults in a fault that is detected, the source text may handle the ¢rror. If the error

the\source text, the thread is requested to recover and prepare for the jnext dispatch. If
. . ! ~d A

ence propaga an eyent through the

-60 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Legality Rules
Category Type Implementation

Features: Sub fs:

e server subprogram u c.:omg;);en S:

: pg:tt rou Subprogram calls: yes

thread port group Connections: yes

e provides data access Flows: yes

e requires data access Modeé' yes
Flow specifications: yes PropeﬁieS' yes
Properties: yes ’

A thread type de
and provides d
associations.

Claration can contain port, port group, server subprogram declarations ag
ata access declarations. It can also contain a flow specification

A thread compoment implementation can contain data declarations, a galls subclause, a

a modes subclal

A thread or any

se, and thread property associations.

of its features may not contain an explicit ‘Di)spatch in event or

declaration, nor & Complete or Error out event or event data’port declaration.

The Compute_H
thread has beer
defined, then the

The Period prdg
sporadic.

-- Propertie
Source_Text:
Source_Langu

-- Propertie

ntrypoint property must have a value-that indicates the source code t
dispatched. Other entrypoint properties are optional, i.e., if a prop
entrypoint is not called.

perty must have a value if:the Dispatch_Protocol property value

Standard Properties

b

related te sOurce text
inherit Iist of aadlstring
hge: Supported_Source_Languages

b

spefifying memory requirements of threads

L

well as requires
s and property

flows subclause,

event data port

b execute after a
prty value is not

is periodic or

Source_Code_

170 Sizgo

Source_Data_Size:
Source_Stack_

Source_Heap_Size:

Size
Size: Size

Size

-—- Properties specifying thread dispatch properties

Dispatch_Protocol:

Period:

Supported_Dispatch_Protocols

inherit Time

-- the default value of the deadline is that of the period

Deadline:

Time => inherit value(Period)

-- Properties specifying execution entrypoints and timing constraints

-61 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Initialize_ Execution_Time:
Initialize_Deadline:
Initialize_Entrypoint:
Compute_Execution_Time:
Compute_Deadline:
Compute_Entrypoint:
Activate_Execution_Time:

Activate_Deadline:

Activate_Ent
Deactivate_E
Deactivate_D
Deactivate_E
Recover_Exec
Recover_Dead
Recover_Entr
Finalize_ Exe
Finalize_Dea
Finalize_Ent
-- Propertie

Allowed_Proc

Time_Range

Time

aadlstring
Time_Range

Time

aadlstring

Time_Range

Time

ryvpoint: aadlstring

kecution_Time: Time_Range
badline: Time
htrypoint: aadlstring
hition_Time: Time_Range
| ine: Time
point: aadlstring
fution_Time: Time_Range
lline: Time
rvpoint: aadlstring

bssor_Binding_Class;:

5 specifying constraintg_ for processor and memory binding

inherit list of classifiern (processor, system)
Allowed_Procg¢ssor_Binding:(inherit list of reference (processor, gystem)
Allowed_Memotry Binding €lass:

inherit list of cléassifier (memory, system, processor)
Allowed_Memoyry Binding: inherit list of reference (memory, system, processor)
Not_Collocated:\list of reference (data, thread, process, system, |[connections)
Allowed_Conneettor—Btadirg—Ctass—

inherit list of classifier(processor, bus, device)
Allowed_Connection_Binding: inherit list of reference (bus, processor, device)
Actual_Connection_Binding: inherit reference (bus, processor, device)
-- Binding value filled in by binding tool
Actual_Processor_Binding: inherit reference (processor)
Actual_Memory_Binding: inherit reference (memory)

-- property indicating whether the thread affects the hyperperiod
-- for mode switching

Synchronized_Component: inherit aadlboolean => true

-62 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- property specifying the action for executing thread at actual mode switch

Active_Thread_Handling_ Protocol:

inherit Supported_Active_Thread_Handling Protocols

=> value(Default_ Active_ Thread Handling Protocol)

Active_Thread_Queue_Handling_ Protocol:

inherit enumeration

Thread semanti
execution, and
have been load

(flush, hold) => flush

Semantics

ult handling. Thread execution semantics apply once the appropria
into the respective virtual address space (see Section 5.5).

scheduling and
binary images

Threads may be|part of modes of containing components. In that case a thread s active, i.e., eligible for

dispatch and sc

Threads can co
property values

Every thread has
the destination i
thread. If the Dil
ports or event d
dispatch. When {
dispatched.

Periodic threads
through an even
the clock accord

Every thread ha
as the source i
execution of a th

Every thread has
as the source in
unrecoverable e

eduling, only if the thread is part of the current mode.

tain mode subclauses that define thread-internal operational modes. T
at are different for different thread-internal modes.

a predeclared in event port named Dispatch.f this port is connecte
h a connection declaration, then the arrivallof an event results in thq
spatch port is connected, then the arrival-of an event on an explicitl
hta ports will result in the queuing of the event or event data without
he Dispatch port is connected, only\events arriving at this port will cau

ignore any events arriving through explicitly declared event or event dat
connection to the Dispa'tch port. Periodic thread dispatches are sole
ng to the time interval specified through the Period property value.

5 a predeclared outevent port named Complete. If this port is conne
N a connection\declaration, then an event is raised implicitly on thi
read dispatch-completes.

a predeclared out event data port named Error. If this port is connej

hreads can have

d, i.e., named as
dispatch of the
declared event

tausing a thread

5e a thread to be

a connections or
y determined by

Cted, i.e., named
5 port when the

cted, i.e., named
t when a thread

a connection declaration, then an event is raised implicitly on this po

data for fault har

errors as event

roris detected. This supports the propagation of thread unrecoverabl
m_m—l'h—l_l_v_l_rh_t_rm_ngmg y a thread. The source text implementing the fault handing thread may map the

error represented by event data into an event that can trigger a mode switch through a Raise_Event call
in its source text.

-63 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

Mode transitions can only refer to event ports as their trigger. This means that Error ports cannot be directly
connected to mode transitions. Instead, they have to be connected to a thread whose source text interprets the data
portion to identify the error type and then raise an appropriate event through an out event port that triggers the
appropriate mode transition. Such a thread typically plays the role of a system health monitor that makes system
reconfiguration decisions based on the nature and frequency of detected faults.

Thread States and Actions

A thread executes a code sequence in the associated source text when dispatched and scheduled to
execute. This code sequence is part of a binary image accessible in the virtual address space of the
containing procefs. It 1S assumed that the process Is bound 10 the memory that contains Jthe binary image
(see Section 5.5).

n are described
described in the

A thread goes through several states. Thread state transitions under normalcoperatic

here and illustrg
Execution Fauli

The initial state
enclosing proces
sequence in the
dispatch state if
state. When a th

When a mode s
the mode by trg
during the modg
Synchronized]
actual mode swi
aperiodic or a sf
handled accordi
the old mode a
dispatch state af

When in the sus
execution of a cq
When a dispatc
available to the t

ted in Figure 5. Thread state transitions under fault conditions are
Handling section below.

is thread halted. When the loading of the virtual-address space as
s completes (see Section 5.5), a thread is initialized'by performing an i
source text. Once initialization is completed the)thread enters the sus
the thread is part of the initial mode, otherwise it enters the suspende
read is in the suspended awaiting mode state'it cannot be dispatched fo

vitch is initiated, a thread that is part eftthe old mode and not part of thg
nsitioning to the suspended awaijting mode state after performing thr
b change in progress system state (see Figure 18). If the thread is
| Component property is true,then its period is taken into consideration
ch time (see Sections 11 @nd* 12.3 for detailed timing semantics of a m
oradic thread is executinga dispatch when the mode switch is initiated
g to the Active_Thxread Handling_Protocol property. A thread t
d part of the new. mode enters the mode by transitioning to the sus
er performing thread activation.

bended awaiting dispatch state, a thread is awaiting a dispatch request f
mpute_source text code sequence as specified by the Compute_Entry
h request is received for a thread, data, event information, and eve
hread-through its port variables (see Sections 8.1 and 9.1.1). The threa

declared by the

hitialization code
lpended awaiting
0 awaiting mode

r execution.

new mode exits
ead deactivation
periodic and its
to determine the
pde switch). If an
, its execution is
hat is not part of
pended awaiting

br performing the
point property.
Nt data is made
d is then handed

to the scheduler

to-perform the computation. Upon successful completion of the compu

ation, the thread

returns to the suspended awaiting dispatch state. If a dispatch request is received for a thread while the
thread is in the compute state, this dispatch request is handled according to the specified
overflow_Handling_Protocol for the event or event data port of the thread.

A thread may enter the thread halted state, i.e., will not be available for future dispatches and will not be
included in future mode switches. If re-initialization is requested for a thread in the thread halted state
(see Section 5.5), then its virtual address space is reloaded, the processor to which the thread is bound is
restarted, or the system instance is restarted.

A thread may be requested to enter its thread halted state through a stop request after completing the
execution of a dispatch or while not part of the active mode. In this case, the thread may execute a
finalize entrypoint before entering the thread halted state. A thread may also enter the thread halted state
immediately through an abort request.

-64 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Figure 5 presents the top-level hybrid automaton (using the notation defined in Section 1.6) to describe
the dynamic semantics of a thread. Two succeeding figures elaborate on the Performing substate
(Figure 6 and Figure 7). The bold faced edge labels in Figure 5 indicate that the transitions marked by
the label are coordinated across multiple hybrid automata. The scope of the labels is indicated in
parentheses, i.e., interaction with the process hybrid automaton (Figure 8) and with system wide mode
switching (see Section 12.1). The hybrid automata contain assertions. In a time-partitioned system these
assertions will be satisfied. In other systems they will be treated as anomalous behavior.

For each of the states representing a performing thread action such as initialize, compute, recover,
activate, deactivate, and finalize, an execution entrypoint to a code sequence in the source text can be
specified. Each entrypoint may refer to a different source text code sequence which contains the
entrypoint, or all i ' i equence. In the
latter case, the[source text code sequence can determine the context of the exegution through a
Dispatch_Stafus runtime service call (see Runtime Support). The execution.semantics for these
entrypoints is degcribed in the Thread Scheduling and Execution section that follows.

An initialize entyypoint is executed once during system initialization and:allows thrgads to perform
application specific initialization, such as insuring the correct initial value ©f its out and infout ports.

The activate anq deactivate entrypoints are executed during mode‘tfansitions and alloy threads to take
user-specified afrtions to save and restore application state for\continued execution between mode
switches.These ¢ntrypoints may be used to reinitialize application-state due to a mode trgnsition. Activate
entrypoints can plso ensure that out and in out ports contain correct values for operption in the new
mode.

The compute entrypoint represents the code sequenge to be executed on every thread dispatch. Each
server subprogram represents a separate compute_entrypoint of the thread. Server subgrogram calls are
thread dispatchgs to the respective entrypoint:/Event ports and event data ports can have port specific
compute entrypdints to be executed when the corresponding event or event data dispatches a thread.

A recover entrypoint is executed when.a fault in the execution of a thread requires regovery activity to
continue execution. This entrypoini-allows the thread to perform fault recovery actions (for a detailed
description see the Execution Faualt-Handling section below).

A finalize entrypoint is exeecuted when a thread is asked to terminate as part of a process unload or
process stop.

If no value is specified/for any of the entrypoints, execution is considered as immediately completed
without consumgtion ‘of execution time.

-65 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

thread abont

thread exit{iMode)

dispatch mitizization
te— 0

thread unrecoverabla

threzd enter{Mode)
thread)
halted Ralze arror eveht
F 3
loaded{process)

-3 ; ; R T P |
* BFTOTITIrTg e ad Thianzaion BT 3 7 Ak »
H Y azzert = Infialize_Deadline =
+Recover_Deadline
cqmplete initialization tirdad uprecovekable
- assErt th |I'|I‘tlga:l-|IE_DEEd|'l::: initial mode afror detacted
+hecover_beadine = Hyper(Mode) assert ¢5(ComputeidctivateDeactivate)_Deadine
Sinitial mode +Regover_Deadline
h 4 cpmplete desgtivation
agsert ¢ = Deadlivate_Deadline
E U.tS.F'E”d Edd +Recover *Deadline
awaiting m_.u_._i/-
stop(process)
stopiprocessor) thread enter(Mode)
abort{pro cess) stupi:s]:s’[f_ergl’]} tdl snpatch actigtion
:Egm‘ "c:r?l? r performing thread \l >
5 v " cheactivation
“ p— performing-thread
7 eligming actiiation 4
thread *
finalize - >
-) complete activation

azzert #= Finalizg_|

stop (pro cess)
stop{processor)

stopisystem)

suspended
awraiting dispatch
Wait For Dispatch

azzert t= Activale_Deadline
+Recover_Dead|ine

{ exit(Mode)

¢ Enabledit)

dizpatch comput ation

te— 0

complete computation
azsert = Compute_Deadine
+Recover_Deadline

i

abhort{p

abort{processor)

rocess)

performing thread computation

1
I

ahort{system)

Figure 5 Thread States and Actions

- 66 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Thread Dispatching

The Dispatch_Protocol property of a thread determines the characteristics of dispatch requests to the
thread. This is modeled in the hybrid automaton in Figure 5 by the Enabled(t) function and the
Wait_For_Dispatch invariant. The Enabled function determines when a transition to performing
thread computation will occur. The Wait_For_Dispatch invariant captures the condition under which
the Enabled function is evaluated. The consequence of a dispatch is the execution of the entrypoint
source text code sequence at its current execution position. This position is set to the first step in the
code sequence and reset upon completion (see Thread Scheduling and Execution below).

For a thread whose dispatch protocol is periodic, a dispatch request is issued at time intervals of the
specified Periopproperty vatue: o am| For_Dispatch
invariantis t < |Period. The dispatch occurs at t

S abted{u O =PCY e W

Period.

For a thread whose dispatch protocol is sporadic, a dispatch request is the result of g
data arriving at gn event or event data port of the thread, or a remote subpragram call ar
subprogram feature of the thread. The time interval between successive dispatch reque
less than the associated Period property value. The Overflow_Hand@ling_Protoq
event ports spdcifies the action to take when events arrive toa frequently, i.e., th
successive events is less than what is specified in the associated\Period property. T
either ignored, queued until the end of the period (and then dispatched), or are treated
Enabled functignis t =2 Period. The Wait_For_Dispaté&h invariantis true. The
occurs when thel guard on the dispatch transition is true and*a dispatch request arrives
event at an event port with an empty queue, or an event.is-already queued when the gua
or a remote subpgrogram call arrives when the guard is\true.

For a thread whqgse dispatch protocol is aperiodic, a dispatch request is the result of 3
data arriving at gn event or event data port of.the thread, or a remote subprogram call ar
subprogram featpre of the thread. There i§ no constraint on the inter-arrival time of ever
remote subprogram calls. The Enabledfunction is true. The Wait_For_Dispatchi
The dispatch acfually occurs immediately when a dispatch request arrives in the form ¢
event port with gn empty queue, oriif’an event is already queued when a dispatch exed
or a remote subpgrogram call arrives.

If several event$ or event~data occur logically simultaneously and are routed to the

n event or event
riving at a server
sts will never be
ol property for
e time between
hese events are
as an error. The
dispatch actually
n the form of an
rd becomes true,

n event or event
riving at a server
ts, event data or
nvariant is true.
f an event at an
ution completes,

same port of an

aperiodic or $poradic thread, the order of arrival for the purpose of event handli

g according the

above rules is implementation-dependent. If several events or event data occur logically simultaneously
and are routed {octhe diffe
handling is determifie

Oy orgc K oCratcav

For a thread whose dispatch protocol is background, the thread is dispatched immediately upon
completion of its initialization entrypoint execution. The Enabled function is true. The
Wait_For_Dispatch invariant is t 0. The dispatch occurs immediately. Note that background
threads do not have their current execution position reset on a mode switch. In other words, the
background thread will resume execution from where it was previously suspended due to a mode switch.
A background thread is scheduled to execute such that all other threads’ timing requirements are met. If
more than one background thread is dispatched, the processor’'s scheduling protocol determines how
such background threads are scheduled. For example, a FIFO protocol for background threads means
that one background thread at a time is executed, while fair share means that all background threads will
make progress in their execution.

-67-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Thread Scheduling and Execution

When a thread action is computation, the execution of the thread’s entrypoint source text code sequence
is managed by a scheduler. This scheduler coordinates all thread executions on one processor as well
as concurrent access to shared resources. While performing the execution of an entrypoint the thread
can execute nominally or execute recovery (see Figure 7). While executing an entrypoint a thread can be
in one of five substates: ready, running, awaiting resource, awaiting return, and awaiting resume (see
Figure 6).

A thread initially enters the ready state. A scheduler selects one thread from the set of threads in the
ready state to run on one processor according to a specified scheduling protocol. It ensures that only one
thread is in the running state on a particular processor. |f no thread is in the ready state, the processor is
idle until a thregd enters the ready state. A thread will remain in the running state-until it completes
execution of the|dispatch, until a thread entering the ready state preempts it if the'spefified scheduling
protocol prescribes preemption, until it blocks on a shared resource, or until an etror ocqurs. In the case
of completion, the thread transitions to the suspended awaiting dispatch state; feady td service another
dispatch reques]. In the case of preemption, the thread returns to the ready state.| In the case of
resource blocking, it transitions to the awaiting resource state.

Such access is
Fce operation is
ase_Resource
pciated with the

Resource block
performed in a
performed on th
operation is pe

ng can occur when two threads attempt to access” shared data.

Critical region. When a thread enters a critical region a Get_Resou

e shared data component. Upon exit from a.Critical region a Relsg
rmed. A Concurrency_Control_Pretdcol property value ass

shared data co
Section 5.1).

A running threagq
critical region. S
specified concu
semaphore or n
blocking mechar
the awaiting resq
when another th
trying to gain a
coordination prot

The time a thres
critical region, in

(o}
Lponent determines the particular concurrency control mechanism f{

may require access to sharedrésources such as shared data compq
uch access is coordinated through a concurrency control mechanism th
rency control protocol. These mechanisms may be blocking such
bn-blocking such as non-préemption through priority ceiling protocol.
ism, a thread entering.a critical region (via Get_Resource) may be b
purce state. The thread transitions out of the awaiting resource state int
read exits the critical region (via Release_Resource).
ccess to the _same resource; such access is mediated by the speci
ocol (see Séction 5.1).

d resides*in a critical region, i.e., the time it may block other threads f
worstiease is the duration of executing one thread dispatch. This time

by specifying a

b be used (see

nents through a
t implements the
s the use of a
In the case of a
ocked and enter
b the ready state

Multiple threads may block

ied concurrency

fom entering the
may be reduced

calbhsequence within a thread and indicating the subprogram(s) that r

Pquire access to

shared data, i.e.,

have to execute M a critical Tegion.

When a thread completes execution it is assumed that all critical regions have been exited, i.e., access
control to shared data has been released. Otherwise, the execution of the thread is considered
erroneous.

Subprogram calls to server subprograms are synchronous. A thread in the running state enters the
awaiting return state when performing a call to a subprogram whose service is performed by a server
subprogram in another thread. The service request for the execution of the subprogram is transferred to
the server subprogram request queue of a thread as specified by the Actual_Subprogram_Call
property that specifies the binding of the subprogram call to a server subprogram feature in another
thread. When the thread executing the corresponding server subprogram completes and the result is
available to the caller, the thread with the calling subprogram transitions to the ready state.

-68 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A background thread may be temporarily suspended by a mode switch in which the thread is not part of
the new mode, as indicated by the exit(Mode) in Figure 6. In this case, the thread transitions to the
awaiting resume state. If the thread was in a critical region, it will be suspended once it exits the critical
region. A background thread resumes execution when it becomes part of the current mode again in a
later mode switch. It then transitions from the awaiting resume state into the ready state. A background
thread must be allowed to exit any critical region before it can be suspended as result of a mode switch.

Dispatch ¢
l Executing
SR I —— complete
..rﬂ""_'_'_._ . i
(ready REEETQ i —»
| fe=0 preempt ¢ 2 Max(Execution_Time) ¢ %= Mn(Exedution_Time)
“aasert fezources released
umpblockl on
rdle aseR esource background
‘alﬁr{ﬁgcess} block exit{Mode)
abort{processof) qetf esouroh badhground
abort{syste N - enteriMode)
Auwaiting
resource return Server Brror
Ge=0 subprogkarm call @erver Aaeaiting detected
sUbprogram resume
i doe=0
Aaraiting

return
Fo=0

orpall outgoing edges:
azzett t= Deadine

Eigure 6 Thread Scheduling and Execution States

Execution of any of thése entrypoints is characterized by actual execution time (¢) and|by elapsed time
(f). Actual execytionttime is the time accumulating while a thread actually runs on a propessor. Elapsed
time is the time aecumulating-as—reat-time-sinee-the-arrival-of-the-dispateh+equest—Aeetimulation of time
for ¢ and t is indicated by their first derivatives 6c and 6t A derivative value of 1 indicates time
accumulation and a value of 0 no accumulation. Figure 6 shows the derivative values for each of the
scheduling states. A thread accumulates actual execution time only while it is in the running state. The
processor time, if any, required to switch a thread between the running state and any of the other states,
which is specified in the Thread_Swap_Execution_Time property of the processor, is not accounted
for in the Compute_Execution_Time property, but must be accounted for by an analysis tool.

The execution time and elapsed time for each of the entrypoints are constrained by the entrypoint-specific
<entrypoint>_Execution_Time and entrypoint-specific <entrypoint>_Deadline properties
specified for the thread. If no entrypoint specific execution time or deadline is specified, those of the
containing thread apply. There are three timing constraints:

Actual execution time, ¢, will not exceed the maximum entrypoint-specific execution time.

-69 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Upon execution completion the actual execution time, ¢, will have reached at least the minimum
entrypoint-specific execution time.

Elapsed time, ¢, will not exceed the entrypoint-specific deadline.

Execution of a thread is considered anomalous when the timing constraints are violated. Each timing
constraint may be enforced and reported as an error at the time, or it may be detected after the violation
has occurred and reported at that time. An implementation must document its handling of timing
constraints.

Execution Fault Handling

A fault is defined to be an anomalous undesired change in thread execution behavior, possibly resulting
from an anomalous undesired change in data being accessed by that thread or fro’rw violation of a
compute time of deadline constraint. An error is a fault that is detected during ‘Opefation and is not
handled as part ¢f normal execution by that thread.

Detectable errors may be classified as thread recoverable errors, or thread‘unrecoveraljle errors. In the
case of a thread recoverable error, the thread can recover and continug with the next fispatch. Thread
unrecoverable drrors can be communicated as events and handled\as thread dispptches or mode
changes. Alterpatively, these errors may be reported as event data” and communicpted to an error
handling thread for further analysis and recovery actions.

For thread recoerable errors, the thread affected by the erroriis given a chance to recpver through the
invocation of th¢ thread’s recover entrypoint. The recover entrypoint source text sgquence has the
opportunity to ugdate the thread’s application state. Uponcompletion of the recover entrypoint execution,
the performancg of the thread’s dispatch is considered complete. In the case of pgerforming thread
computation, thig means that the thread transitions-to the suspended await dispatch state (see Figure 5),
ready to perform additional dispatches. Concurrency control on any shared resources must be released.
This thread-level fault handling behavior is illustrated in Figure 7.

In the presence |of a thread recoverable‘error, the maximum interval of time between the dispatch of a
thread and its r¢turning to the suspensed awaiting dispatch state is the sum of the thread’s compute
deadline and its|recover deadline..\The maximum execution time consumed is the sun] of the compute
execution time ahd the recover gxecution time. In the case when an error is encountered|during recovery,
the same numbers apply.

A thread unrecdverable ‘error causes the execution of a thread to be terminated prematurely without
undergoing recqvery<, The thread unrecoverable error is reported as an error event through the
predeclared Errlox event data port, if that port is connected. If this implicit error port is not connected,
the error is not pt i i rough their own
observations. In the case of a thread unrecoverable error, the maximum interval between the dispatch of
the thread and its returning to the suspensed awaiting dispatch state is the compute deadline, and the
maximum execution time consumed is the compute execution time.

For errors detected by the runtime system, error details are recorded in the data portion of the event as
specified by the implementation. For errors detected by the source text, the application can choose its
encoding of error detail and can raise an event in the source text. If the propagated error will be used to
directly dispatch another thread or trigger a mode change, only an event needs to be raised. If the
recovery action requires interpretation external to the raising thread, then an event with data must be
raised. The receiving thread that is triggered by the event with data can interpret the error data portion
and raise events that trigger the intended mode transition.

-70-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

l Dizpatch action

performing
thread
ff executing nominally | unrecoverable
— Gez[01] ar fatal

\

¢ = Maxi gction_Execution_Time) j error detected

————

/;;I\\ ort{process)
Fesources

ort{processor)
ort{system)

thread

unrecovelzbla

or fatal
efpordetected

|
completel nominally
%E rl ki n_Tivn Wl
asserlt = Deadling

- !
o2 Min(tnread recoverable

error detected,

dispatch recovery
¢ 0

L J

\

J
complete recowveri

7 o2 MiniRecover_Time)

assert ﬁS actiorDeadline+Recover_Deadline
complete

.

Figure 7 Performing Fhread Execution with Recovery

executing recavery
des[01]
C = Max(Recover_Time)

Sy

T T e T T T T T e T L T L T PR T L T T i

A fault may be detected by the source text runtime system or by the application itself. Dg¢tection of a fault
in the source text runtime system canresult in an exception that is caught and handled within the source
text. The source text exception handler may propagate the error to an external handler by raising an
event or an event with data.

For errors encou

A timing fault du
be a thread recq

htered by the Source text runtime system, the error class is defined by th

ing initialize, compute, activation, and deactivation entrypoint executions
verable error. A timing fault during recover entrypoint execution is co

e developer.

is considered to
hsidered to be a

thread unrecovetable error.

If any error is encountered while a thread is executing a recover entrypoint, it is treated as a thread
unrecoverable error, as predefined for the runtime system. In other words, an error during recovery must
not cause the thread to recursively re-enter the executing recovery state.

If a fault is encountered by the application source text itself, it may explicitly raise an error through a
Raise_Error service call on the Error port with the error class as parameter. This service call may
be performed in the source text of any entrypoint. In the case of recovery entrypoints, the error class
must be thread unrecoverable.

Faults may also occur in the execution platform. They may be detected by the execution platform
components themselves and reported through an event or event data port, as defined by the execution
platform component. They may go undetected until an application component such as a health

-71 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

monitoring thread detects missing health pulse events, or a periodic thread detects missing input. Once
detected, such errors can be handled locally or reported as event data.

System Synchronization Requirements

An application system may consist of multiple threads. Each thread has its own hybrid automaton state
with its own ¢ and t variables. This results in a set of concurrent hybrid automata. In the concurrent
hybrid automata model for the complete system, ST is a single real-valued variable shared by all threads
that is never reset and whose rate is 1 in all states. ST is called the global real time.

Two periodic threads are said to be synchronized if, whenever they are both active in the current system
mode of operation, they are logically dispatched simultaneously at every global real time ST that is a
nonnegative intggral multiple of the least common multiple of their periods, i.e., theirhyperperiod. Two

threads are logidally dispatched simultaneously if the order in which all exchanges of'co
that dispatch evgnt are identical to the order that would occur if those dispatches Wwere e
simultaneously in true and perfect real time. If all periodic threads contained in-an applic
synchronized, thien that application system is said to be synchronized. Inthis version
system instance$ are synchronized. By default, all application system instances are synd

ntrol and data at
actly dispatched
ation system are
of the standard,
hronized, i.e., all

periodic threads [contained in an application system must be synchronized:

Runtime Suppoyt

The following paragraphs define standard runtime services.that are to be provided.
program interface for these services is defined in the applicable source language annex
They are callablg from within the source text.

The application
of this standard.

runtime service shall be provided-that allows a thread to explicitly raise an event if the
has the named port specified as out event port or an out event data port.

A Raise_Event
executing thread

A Raise_Erro raise a thread

recoverable or th

- runtime service shall be jprovided that allows a thread to explicitly
read unrecoverable error as specified by a runtime parameter.

If a local subprogram calls Rai¥se/Event, the event is routed according to the dvent connection
declaration asspciated with the~"subprogram call’'s event port. If a server syibprogram calls
Raise_Event, [the event js) transferred to the subprogram call and routed accordihg to the event
connection declgration associated with the subprogram call’s event port.

Subprograms have event ports but do not have an error port. If a Raise_Error is callg
the error port of the enclosing thread. If a Raise_ Error is called by a server subprog
passed to the er i

d, it is passed to
ram, the error is

Processing Requirements and Permissions

Multiple models of implementation are permitted for the dispatching of threads. One such model is that a
runtime executive contains the logic reflected in Figure 5 and calls on the different entrypoints associated
with a thread. This model naturally supports source text in a higher level domain language.

An alternative model is that the code in the source text includes a code pattern that reflects the logic of
Figure 5 through explicitly programmed calls to the standard Await_Dispatch runtime service,
including a repeated call (while loop) to reflect repeated dispatch of the compute entrypoint code
sequence.

-72 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Multiple models of implementation are permitted for the implementation of thread entrypoints. One such
model is that each entrypoint is a possibly separate function in the source text that is called by the runtime
executive. In this case, the logic to determine the context of an error is included in the runtime system.

A second model of implementation is that a single function in the source text is called for all entrypoints.
This function then invokes an implementer-provided Dispatch_Status runtime service call to identify
the context of the call and to branch to the appropriate code sequence. This alternative is typically used
in conjunction with the source text implementation of the dispatch loop for the compute entrypoint
execution.

A method of implementing a system is permitted to choose how executing threads will be scheduled. A
method of impl ion j ' i i at the resulting
schedule satisfiels the period and deadline properties. That is, a method of implementing|a system should
schedule all threpds so that the specified timing constraints are always satisfied.

s not imply that
.

The use of the fterm “preempt” to name a scheduling state transition in Figure 6 doe
preemptive schefduling disciplines must be used; non-preemptive disciplines are permitte

ble context swap
actual execution
must be included
hed to individual

Execution times [associated with transitions between thread scheduling states, for exam
times (specified |as properties of the hosting processor), are not billed to the thread’s
time, i.e., are nof reflected in the Compute_Time property value. However, these times
in a detailed schedulability model for a system. These times must either be apportio

threads, or to arn
overheads. A n
those specified
system.

A method of in
implementation
implementation 1

A method of imp
the assignment

implementation-gependent ordering of events or event data. This is the case for logicd

events or event
resulting in
Queue_Proces

onymous threads that are introduced into the“schedulability model to &
ethod of processing specifications is permitted to use larger compute
or a thread in order to account for these overheads when constructin

nplementing a system must «support the periodic dispatch protocol

hay support additional dispatch protocols not defined in this standard.

ementing the RaiselEvent service call may provide an optional paran
bf an Urgency value to the event. Such an Urgency value provides

pata arriving at the same event or event data port, and for logically sim
different ("'mode transitions. This capability also allows
Eing_Rrotocols to be supported for event and event data ports.

A method of im
whether the rais

ilementing the Raise_Event service call may provide a status return

may support only a subset.of the other standard dispatch protocolq.

ccount for these
ime values than
g or analyzing a

A method of
A method of

eter that permits
control over the
lly simultaneous
Llltaneous events

priority-based

value indicating

ed on delivery to

an event or event data port, or whether a raised event that triggers a mode transition is ignored.

A method of implementation may choose to generate the Get_Resource and Release_Resource calls
in support of critical regions for shared data access as part of the AADL runtime system generation, or it
may choose to require the application programmer to place those calls into the application code.

A method of implementing a system may perform loading and initialization activities prior to the start of
system operation. For example, binary images of processes and initial data values may be loaded by
permanently storing them in programmable memory prior to system operation.

A method of implementing a system must specify the set of errors that may be detected at runtime. This
set must be exhaustively and exclusively divided into those errors that are thread recoverable or thread
unrecoverable, and those that are exceptions to be handled by language constructs defined in the

-73-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

applicable programming language standard. The set of errors classified as source language exceptions
may be a subset of the exceptions defined in the applicable source language standard. That is, a method
of implementation may dictate that a language-defined exceptional condition should not cause a runtime
source language exception but instead immediately result in an error. For each error that is treated as a
source language exception, if the source text associated with that thread fails to properly catch and
handle that exception, a method of implementation must specify whether such unhandled exceptions are
thread recoverable or thread unrecoverable errors.

A consequence of the above permissions is that a method of implementing a system may classify all
errors as thread unrecoverable, and may not provide an executing recovery scheduling state and

transitions to and from it.

A method of in
dispatches of s
minimum and m
runtime timing vi

A method of imp|
the suspended,

arrivals for a spg
thread enters th
immediately entg

If alternative thn
perform thread
thence to the sug
sequence is the

If alternative tk

nplementing a system may enforce, at runtime, a minimum time
poradic threads. A method of implementing a system may enforce,
aximum specified execution times. A method of implementing @-syste
blations.

ementing a system may support handling of errors that.are-detected w
ready, or blocked state. For example, a method of/implementation

radic thread that violate the specified period. Such érrofrs are to be kept
b executing state, at which instant the errors are\raised for that thread
r the recover state.

pad scheduling semantics are used, a thread unrecoverable error th
nitialization state may result in a transition to the perform thread red
pended awaiting mode state, rather than to the thread halted state. The
sum of the initialization deadline and the recovery deadline.

nterval between
at runtime, the
m may detect at

ile a thread is in
ay detect event
pending until the
and cause it to

At occurs in the
overy state and
deadline for this

read scheduling semantics.are used, a method of implementation

ay prematurely

terminate thread
suspended awai

S when a system mode change occurs that does not contain them, ingtead of entering
ing mode. Any blocking resources acquired by the thread must be released.

If alternative thr
greater than the
dispatch point pr

pad scheduling semantics are used, the load deadline and initialize deadline may be
period for a thread. In this case, dispatches of periodic threads shall hot occur at any
or to the initialization deadline for that periodic thread.

This standard dd
be a thread in th

es not.specify which thread or threads perform virtual address space lopding. This may
b runtime system or one of the application threads.

NOTES:

The deadline of a calling thread will impose an end-to-end deadline on all activities performed by or on behalf of that
thread, including the time required to perform any server subprogram calls made by that thread. The deadline
property of a server subprogram may be useful for scheduling methods that assign intermediate deadlines in the
course of producing an overall end-to-end system schedule.

5.4 Thread Groups

A thread group represents an organizational component to logically group threads contained in
processes. The type of a thread group component specifies the features and required subcomponent
access through which threads contained in a thread group interact with components outside the thread
group. Thread group implementations represent the contained threads and their connectivity. Thread
groups can have multiple modes, each representing a possibly different configuration of subcomponents,
their connections, and mode-specific property associations. Thread groups can be hierarchically nested.

-74 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A thread group does not represent a virtual address space nor does it represent a unit of execution.

Therefore, a thre

ad group must be contained within a process.

Legality Rules
Category Type Implementation
Features: Subcomgotnents:
e server subprogram : thar:ad
ort
thread : F;ort group * thread group
group e provides data access Subprogram calls: no
' . Connections. yes
e requires data access Flows: yes
Flow specifications: yes Modeé' yes
Properties: yes Properties: yes

A thread group
group, and ser
associations.

A thread group ¢

An instantiable t

or one thread grgup subcomponent.

A thread group
subclause, and (]

A thread group must not contain a subprogram calls subclause.

-- Propertie
Source_Text:

Inhertabl

Synchronized,

component type can contain provides and requires data access, as V|
er subprogram declarations.

omponent implementation can contain data, thread, and thread group dg

nread group component implementation must contain at least one threa

implementation can contain a *conhnections subclause, a flows subg
roperties subclause.

Standard Properties

b

related tao\source text
inherit-1ist of aadlstring

=)

thréad properties

| Component: inherit aadlboolean => true

ell as port, port

It can also contain“flow specificatiops and property

clarations.

d subcomponent

lause, a modes

Active_Thread_Handling Protocol:
inherit Supported_Active_Thread Handling_Protocols
=> wvalue (Default_Active_Thread Handling_Protocol)

Period:

Deadline:

inherit Time

Time => inherit wvalue (Period)

-- Properties specifying constraints for processor and memory binding

Allowed_Processor_Binding Class:

inherit list of classifier
Allowed_Processor_Binding:

Actual_Processor_Binding:

(processor, system)

inherit list of reference (processor,

inherit reference (processor)

system)

-75-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Allowed_Memory_ Binding Class:

inherit list of classifier (memory, system, processor)
Allowed_Memory_ Binding: inherit list of reference (memory, system, processor)
Actual_Memory_Binding: inherit reference (memory)
Allowed_Connection_Binding Class:

inherit list of classifier(processor, bus, device)
Allowed_Connection_Binding: inherit list of reference (bus, processor, device)
Actual_Connection_Binding: inherit reference (bus, processor, device)

NOTES:

Property associati
a contained thread
value for the threa

A thread group 4
group type decla
a thread group ¢

A thread group
nesting permits
connections to §
different configu
associations.

5.5 Processes

A process repre
whether this virt
boundaries are

source text asso|
must contain at |

ns of thread groups are inheritable (see Section 10.3) by contained subGempon
does not have a property value defined for a particular property, theri-the corrg
 group is used.

Semantics

llows threads contained in processes to be logically, organized into a hiej
res the features and required subcomponent agcess through which thre
AN interact with components declared outside the thread group.

threads to be organized hierarchically” A thread group implementati
pecify the interactions between the contained subcomponents and mo
ations of subsets of subcomponents and connections as well as mode-

ents a virtual address space. The Runtime_Protection process p
al address space’is runtime protected, i.e., it represents a space pan
enforced at fuptime. The virtual address space contains the prograr]

bast ong'thread or thread group subcomponent.

mplementation contains threads, data components, and thread groups.

bnts. This means if
sponding property

rarchy. A thread
ads contained in

Thread group
bn also contains
fdes to represent
specific property

Foperty indicates
tition unit whose
n formed by the

ciated with-the process and its subcomponents. A complete implemenation of a process

Legality Rules
Category Type Implementation
Features: Subcomgotnents:
e server subprogram : thar:a d
e port
e thread group
Process * port group Subprogram calls: no
e provides data access L
) Connections: yes
e requires data access Flows: yes
Flow specifications: yes Modes: yes
Properties: yes Properiies: yes

-76-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A process component type can contain port, port group, provides and requires data access, and server
subprogram declarations. It can also contain flow specifications and property associations.

A process component implementation can contain data, thread, and thread group declarations.

A complete process component implementation must contain at least one thread subcomponent or one
thread group subcomponent.

A process implementation can contain a connections subclause, a flows subclause, a modes subclause,
and a properties subclause.

The complete source text associated with a process component must form a complete and legal program
as defined in thel applicable source language standard. This source text shall include thg source text that
corresponds to the complete set of subcomponents in the process’s containment hiérarghy along wth the
data and subprograms that are referenced by required subcomponent declarations-

Standard Properties

-- Runtime enforcement of virtual address space boundaxy
Scheduling_Protocol: list of Supported Scheduling.Protocols
-- Propertieg related to source text

Source_Text:| inherit list of aadlstring

Source_Langufge: Supported_Source_Languages

-—- Propertieg related to virtual address) space loading
Load_Time: Time_Range

Load_Deadling¢: Time

-- Inhertabl¢ thread properties

Synchronized,

Active_Threa
inherit S
=>

Period: inhe

Deadline: Tij

| Component: inherit aadlboolean => true

i_Handling. Protocol:
hpported Active_Thread_Handling Protocols
ralue (Défault_Active_Thread_Handling_ Protocol)

Fit Tdime

né-~=> inherit wvalue (Period)

-- Properties specifying constraints memory binding

Allowed_Processor_Binding Class:

inherit list of classifier (processor, system)

Allowed_Processor_Binding: inherit list of reference (processor,

Actual_Processor_Binding: inherit reference (processor)

Allowed_Connection_Binding Class:

inherit list of classifier(processor, bus, device)

Allowed_Connection_Binding: inherit list of reference (bus,

Actual_Connection_Binding: inherit reference (bus, processor,

system)

processor, device)

device)

-77 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Allowed_Memory_ Binding Class:

inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system,
Not_Collocated: list of reference (data, thread, process, system,
Actual_Memory_Binding: inherit reference (memory)

Semantics

processor)

connections)

Every process has its own virtual address space. ThIS address space provides access to source code

and data associg

modes is determjned by the mode transition declarations and is triggered by the arrival off

The associated gource text for each process is compiled and linked to form binary imag
with the applicaljle source language standard. These binary-images must be loaded int
any thread contdined in a process can execute, i.e., enter its\perform thread initialization

The time to load binary images into the virtual .address space of a process is
Load_Deadling and Load_Time properties. (The failure to meet these timing
considered an efror.

The process stafes, transitions, and actions are illustrated in Figure 8. Once processors
platform are stafted, binary images making up the virtual address space of process
processor are ready to be loaded.—“koading may take zero time for binary images

process. If the
the process are

ansition between
events.

bs in accordance
b memory before
State.

pounded by the
requirements is

of an execution
bs bound to the
that have been

preloaded in ROM, PROM, or ERROM. Completion of loading, which is indicated by lpaded(process),

triggers threads {o be initialized(see Figure 5).

A process, i.e., ifs containgd,threads, can be stopped (also known as a deferred abort), v
by stop(proces§). A process is considered stopped when all threads of the procesy
awaiting a dispaijch, orlare not part of the current mode. When a process is stopped, eé

hich is indicated
are halted, are
ch of its threads

is given a chance¢ to.€xecute its finalize entrypoint.

A process, i.e., its contained threads, can be aborted, which is indicated by abort(process).

In this case,

all contained threads terminate their execution immediately and release any resources (see Figure 5,

Figure 6, and Figure 7).

-78-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

unloaded process -+

i

E [

E | started(processof)

E { load{process) Proces
abortiprocess) E lree)
ahurt[prucessur]E ¥

loading process

complete loading process

T

é
| stopiprocessj) proce

5 load

error detected

A method of imp
a process, inclu
subcomponents.
defined by the g
performed in acg

If the applicable
may have differe

This standard p|
loading has com
must assure that

NOTES:

An AADL procesg
subcomponent in
of port connection
implicit thread.

loaded(process)
art-t alir

| SOPIPTOCESSOT

1 loaded process

Figure 8 Process States and Actions

Processing Requirements and Permissions

ementation must link all associated source text forthe complete set of slibcomponents of

ling the process component itself and all actual¥subcomponents spec
This set of source compilation units must.form a single complete and

fied for required
egal program as

pplicable source language standard. Linking of this set of source compilation units is

ordance with the applicable source language standard for the process.

source language standard permits~a mixture of source languages, then
Nt source language property values.

subcomponents

ermits dynamic virtual mémory management or dynamic library linking after process

pleted and thread execution has started. However, a method for implen
all deadline propertieswill be satisfied to the required level of assurance

represents;only a virtual address space and requires at least one explicit

henting a system
for each thread.

y declared thread

rder to be'executable. The explicitly declared thread in AADL allows for unambiguous specification

s to threads. In contrast, a POSIX process represents both a protected addr

PSS space and an

5.6 Predecla

red Runiime services

Language-specific annexes to this standard will define predeclared subprograms that are included with

every thread, and process implementation.

Names used for explicitly declared components, features,

connections and behaviors must be distinct from the names of all standard predeclared components.

Every language-specific annex will define a source language application program interface for the
predeclared subprograms, shown below.

The following subprograms can be called by any application thread from its source text:

Raise_ Event

Raise_Error

subprogram ;

subprogram ;

-79-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The following are subprograms, whose calls are only necessary in application source text, if the particular
implementation method does not perform those functions as part of its AADL runtime support.

Await_Dispatch : subprogram ;
Get_Resource : subprogram ;

Release_Resource : subprogram ;

-80-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

6

Execution Platform Components

This section describes the four categories of execution platform components: processor, device, memory

and bus.

Processors can

execute threads. Processors can contain memory subcomponents.

devices can access memories over buses.

Processors and

Memories represent randomly addressable storage capable of storing binary images in the form of data
and code. Memories can be accessed by executing threads.

Buses provide dccess between processors, devices, and memories. A bus provid

s the resources
form exchanges of control and data as specified by connections. /A _cohnection may be
is analogous to

necessary to pe
bound to a sequ

bnce of buses and intermediate processors and devices in a manner th

the binding of thieads to processors.

Devices represe
have complex b
and subprogram

ht entities that interface with the external environment of an‘application
bhaviors. A device can interact with application software: components t
features. A device may achieve its functionality threugh device internal

require device dfiver software to be executed by a processor. Binaty images or threads

to devices.

Processors may
of binary images
implement the ca

Execution platfo
execution platfo
software/hardwal
execution platfor
memory to repr
storage, for exa
modeler.

The hardware r
description or si
programmable |
descriptions are

contain software subcomponents, where the associated source text and
will be bound to memories accessible from that processor. These softy
pability of the processor to schedule and execute threads bound to that

m components can be assembled into execution platform systems, i.e.
rm components to model.;.¢omplex physical computing hardware (
re computing systems, through the use of system components (see S
m systems and their components may denote physical computing hardw
bsent a hard disk of:RAM. Execution platform systems may also n

bpresentediby the execution platform components may be modeled
mulation-language. Alternatively, they may be represented using confi

hlso\wiewed as associated source text.

pgic_@évices. Or a simulation may be used to characterize the conjponents.

system and may
nrough their port
software or may
cannot be bound

data in the form
are components
Drocessor.

into systems of
omponents and
ection 7.1). The
are for example,
nodel abstracted

mple, a device or-memory to represent a database, depending on th¢ purpose of the

by a hardware
puration data for
Such

Execution platform components can be used to model a layered system architecture. Processors, buses,
memory, and devices may represent abstractions of a virtual machine layer. Those abstractions can be
modeled as systems in terms of software components and of execution platform components of the next
virtual machine layer; eventually a system architecture layer representing physical hardware. The
mapping between different layers of a multi-layer architecture may be represented by an appropriate
property for each of the execution platform categories. For example, a Maps_To property may be defined
to specify the mapping of an execution platform component classifier to a system classifier that
represents the implementation of the abstraction in the virtual machine layer.

6.1 Processors

A processor is an abstraction of hardware and software that is responsible for scheduling and executing
threads. Processors execute threads declared in application software systems and in devices that can be

-81-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

accessed from those processors. Processors may contain memories and may access memories and
devices via buses.

Legality Rules
Category Type Implementation
Features: Subcomponents:
e server subprogram e memory
e port Subprogram calls: no
processor e port group Connections: no
e requires bus access Flows: yes
FTow Specifications: yes VodesTyes
Properties: yes Properties: yes

A processor conpponent type can contain port, port group, server subprogram{and required bus access
declarations. It hay contain flow specifications as well as property associations.

A processor component implementation can contain declarations of memory subcompongnts.

A processor implementation can contain a modes subclause) flows subclause, ahd a properties
subclause.

A processor implementation must not contain a connectionssubclause or a subprogram calls subclause.
A processor comrrponent must contain at least one memory component or require at least jone bus access.
Standard Properties

-- Hardware @lescription properties
Hardware_Des¢ription_Source_‘Fext: inherit list of aadlstring
Hardware_Source_Language:(Supported_Hardware_Source_Languages
-- Propertieg related~to source text that provides thread schedulidng services
Source_Text:| inherit list of aadlstring
Source_Langufge :\Supported_Source_Languages

Source_Code_$ize: Size

Source_Data_Size: Size
Source_Stack_Size: Size

Allowed_Memory_ Binding Class:
inherit list of classifier (memory, system, processor)

Allowed_Memory Binding: inherit list of reference (memory, system, processor)
Actual_Memory_Binding: inherit reference (memory)

-- Processor initialization properties

Startup_Deadline: inherit Time

-- Properties specifying provided thread execution support

-82-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Thread_Limit: aadlinteger 0 .. value(Max_Thread_Limit)

=> value(Max_Thread_Limit)
Allowed_Dispatch_Protocol: list of Supported_Dispatch_ Protocols
Allowed_Period: list of Time_Range
Server_Subprogram_Call_Binding: inherit list of reference (thread, processor)
Process_Swap_Execution_Time: Time_Range
Thread_Swap_Execution_Time: Time_Range

Supported_Source_Language: list of Supported_Source_Languages

-- Proeprtieg related to data movement in memory
Assign_Time:| Time

Assign_Byte_ Time: Time

Assign_Fixed|Time: Time

-- Propertieg related to the hardware clock
Clock_Jittert Time

Clock_Period} Time

Clock_Period]|Range: Time_Range

NOTES:
The above is list ¢f the predefined processor properties;- Additional processor properties may be¢ declared in user-

defined property s¢ts. Candidates include properties\that describe capabilities and accuracy of a synchronized clock,
e.g. drift rates, differences across processors.

Semantics
A processor is the execution platform component that is capable of scheduling and eXecuting threads.
Threads will be pbound to a protessor for their execution that supports the dispatch protocol required by
the thread. Thg Allowed{Dispatch_Protocol property specifies the dispatch protocols that a
processor supplies.

A processor to which-thréads are bound must have a Scheduling_Protocol property yalue.

Support for threadexecutionmmmay beembedded i the processor trardware or it may Tequire software that
implements processor functionality such as thread scheduling, e.g., an operating system kernel or other
software virtual machine. Such software must be bound to a memory component that is accessible to the
processor.

The code that threads execute and the data they access must be bound to a memory component that is
accessible to the processor on which the thread executes.

If a processor executes device driver software associated with a device, then the processor must have
access to the corresponding device component.

Flow specifications model logical flow through processors. For example, they may represent requests for
operating system services through server subprograms or ports.

-83-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The source text property may include a reference to source text that is a model of the hardware in a
hardware description language. This provides support for the simulation of hardware.

Modes allow processor components to have different property values under different operational
processor modes. Modes may be used to specify different runtime selectable configurations of processor
implementations.

Processor states and transitions are illustrated in the hybrid automaton shown in Figure 9. The labels in
this hybrid automaton interact with labels in the system hybrid automaton (see Figure 17) and the process
hybrid automaton (see Figure 8). The initial state of a processor is stopped. When a processor is started,
it enters the processor starting state. In thls state the processor hardware is initialized and any processor
software that prV| and initialized. Once a

process virtual dddress spaces are loaded, process initialization entrypoints ate execufed, if they have
been specified. At this point, the started(system) and started(processor):transitions|have completed
and the processor is in the processor operating state.

While operationgl, a processor may be in different modes with<different processing characteristics
reflected in appropriate property values.

As a result of 4§ processor abort, any threads bound to .the’processor are aborted,|as indicated by
abort(processoy) in the hybrid automaton in Figure 9 and in'the hybrid automata figureg in Sections 5.3
ing $tate at the next
d_Components
property to minimize the number of periodic threads that must be synchronized within|the hyperperiod
(see Section 11) When the next hyperperiod begins, the processes with threads bound|to the processor
are informed abput the stoppage request, astindicated by stop(processor) in the hybfid automaton in
Figure 9. The grocess hybrid automaton(see Figure 8) in turn causes the thread hybyid automaton to
respond, as indi¢ated with stop(process)-in the hybrid automata figures in Section 5.3. [In this case, any
threads bound tp the processor are-permitted to complete their dispatch executions and perform any
finalization beforg the processor is'stopped.

The synchronization scopefor start(processor) and stop(processor) in Figure 9 consists of all
processes whose threads that are bound to the processor. The edge labels start(processor) and
stop(processor) also appear in the set of concurrent semantic automata for processes.

-84 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Processor stopping

stop (pro cessor)

2

stoppediprocessor)

Frocessor stapped

start(system)
start(processor)

Processor starting
8T < startup_deadline

abort(system)
abort(processor)

A method of imp
error.

6.2 Memory

A memory comj

5T mod Hyper(Mode)
stop (processor)

Processing Requirements and Permissions

startedipro cessor)

startedi{system)
‘ﬁT = startup_deadline

FProcessaor operating
Processaor fatal ern

Figure 9 Processor States and Actions

Frofessor Tatdl prear

-

lementation is not required to monitor the'startup deadline and report ah overflow as an

pbonent represents an execution platform component that stores binafy images. This

execution platfoqm component consists of hardware such as randomly accessible physital storage, e.g.,

RAM, ROM, or
Memories have
data, and proce
processors wher
accessible from

more complex permanent storage such as disks, reflective memory, of logical storage.
properties such as.the number and size of addressable storage locationg. Subprograms,
5ses — reflectedtin’ binary images - are bound to memory componenis for access by
executing threads. A memory component may be contained in a progessor or may be
h processor.via a bus.

memory

Legality Rules
(Type Implementation |
Subcomponents:
e memory

Features

e requires bus access
Flow specifications: no
Properties: yes

Subprogram calls: no
Connections: no
Flows: no

Modes: yes
Properties: yes

A memory type can contain
contain flow specifications.

requires bus access declarations and property associations. It must not

A memory implementation can contain memory subcomponent declarations.

-85 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A memory implementation can contain a modes subclause and property associations.

A memory implementation must not contain a connections subclause, flows subclause, or subprogram

calls subclause.

-- Properties related memory

Memory_Protocol:

Word_Size:
Word_Count:
Word_Space:
Base_Address
Read_Time: 1
Write_Time:
-- Hardware

Hardware_Des

Hardware_Sou

Memory compon
are loaded into n
contained in the
contained in this
binary images ir

preloaded into memory before systém ‘startup. An example of the latter case is PH

containing binary

A memory is ac
the Al1lowed_Ad

Memory compon

Kadlinteger 1

Standard Properties

as a resource and its access

enumeration (read_only, write_only, read_write)

Size => 8 bits

faY | LD Il -l 1)
r—0o .. U (MaX_Worc_CouIrt)

.. value (Max_Word_Space) => 1

access aadlinteger 0 value (Max Base_Address)

st of Time_Range
Llist of Time_Range
Hescription properties
fription_Source_Text: inherit list of\aadlstring

rce_Language: Supported_Hardware_Sdurce_Languages

Semantics
nemory representing the virtual address space of a process and are accq
respective processes bound.to'the processor. Such access is possible
processor or is accessible jto this processor via a shared bus compor
to memory may occur during processor startup or the binary images
images.

tessible from,a“processor if the memory is connected via a shared bug

ents can have different property values under different operational mode

ents are used to store binary images of source text, i.e., code and datq.

cess_Protocol property value for that bus includes Memory_Access|

6.3 Buses

=> read_write

These images
ssible to threads
if the memory is
ent. Loading of
may have been
OM or EPROM

component and

A bus component represents an execution platform component that can exchange control and data
between memories, processors, and devices. This execution platform component represents a
communication channel, typically hardware together with communication protocols.

Processors, devices, and memories can communicate by accessing a shared bus. Such a shared bus
can be located in the same system implementation as the execution platform components sharing it or
higher in the system hierarchy. Memory, processor, and device types, as well as the system type of
systems they are contained in, can declare a need for access to a bus through a requires bus reference.

Buses can be connected directly to other buses by one bus requiring access to another bus.

connected in such a way can have different bus classifier references.

Buses

-86 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Connections between software components that are bound to different processors transmit their
information across buses whose protocol supports the respective connection category.

Legality Rules
Category Type Implementation
Subcomponents:
Features * None
. Subprogram calls: no
e requires bus access o
Bus A Connections: no
Flow specifications: no
Properties: yes Fiows o
' Modes: yes
Properties: yes

A bus type can h
A bus type must
A bus implement
A bus implement

A bus implemen
subclause.

-- Propertie

Allowed_Conn

Allowed_Acce

Allowed_Mess

Transmission

ave requires bus access declarations and property associations.
not contain any flow specifications.

ation must not contain any subcomponent declarations.

ation can contain a modes subclause and property associations.

tation must not contain a connections(subclause, flows subclause, or 5

Standard Properties

b

specifying bus transmission properties

Tist of enumeration
(Data_Connection,
Event_Connection)

bction_Protocol:

list of enumeration (Memory_Access,

Device_ Access)

Es__ ProtocOls

hge_&Size: Size_Range

| Time: list of Time_Range

Propagation_Delay: Time_Range

-- Hardware description properties

Hardware_Description_Source_Text:

Hardware_Source_Language:

inherit list of aadlstring

Supported_Hardware_Source_Languages

-- Data movement related properties

Assign_Time:

Assign_Byte_ Time:

Assign_Fixed_Time:

Time
Time

Time

ubprogram calls

-87-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Semantics

A bus provides access between processors, memories, and devices. This allows a processor to support
execution of source text in the form of code and data loaded as binary images into memory components.
A bus allows a processor to access device hardware when executing device software. A bus may also
support different port and subprogram connections between thread components bound to different

processors.

The Allowed_Connection_Protocol property indicates which forms of access a

particular bus supports. The bus may constrain the size of messages communicated through data or
event data connections.

A bus component provides access between processors, memories, and devices.

component, for

It is a shared

vhich access is required by each of the respective components. A device is accessible

from a processo
value for that bu
bus component
Memory_ Acces

Buses can be di
access to anothd

Bus componentsg

A method of imp
Im
information are n

connection.

A method of imp

bus VME

end VME;

memory Memor:

features

Card_Connector

if the two share a bus component and the A11owed_Connection_PBx
5 includes Device_Access. A memory is accessible from a processor i
and the Allowed_Connection_Protocol property valuevfor th

5.

rectly connected to other buses. This is represented by one bus declg
r bus in its requires subclause.

can have different property values under differentoperational modes.

Processing Requirements and Permissions
lementation shall define how the final size of a transmission is determir
plementation choices and restrictions such as packetization and hg
ot defined in this standard.
ementation shall define the.methods used for bus arbitration and schedu

Examples

7 Caxd

btocol property
f the two share a
ht bus includes

ration specifying

ed for a specific
ader and trailer

ling.

requires bus access VME;

end Memory_Card;

processor PowerPC

features

Card_Connector

end PowerPC;

requires bus access VME;

processor implementation PowerPC.Linux

-88 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

end PowerPC.Linux;

system Dual_Processor end Dual_Processor;

system implementation Dual_ Processor.PowerPC

subcomponents

System_ Bus:

Left:

bus VME;

processor PowerPC.Linux;

Right: pr

Shared_Mer

connections

bcessor PowerPC.Linux;

nory: memory Memory Card;

bus acces
bus acces
bus acces

end Dual_Pro

6.4 Devices

A device comp
environment. A
software system
modeled. If the
execute on a prq
for the device.

A device interag
device has phys
accessing the ph
Those logical g

System_Bus -> Left.Card_Connector;
System_Bus -> Right.Card_Connector;
System_Bus -> Shared_Memory.Card_Cohnector;

fessor . PowerPC;

bnent represents an execution: platform component that interfaces W
device may exhibit complex-'behavior that requires a nontrivial interfa
5. Devices may internally have a processor, memory and software thg
Hevice has associated.software such as device drivers that must reside
cessor external tothe device, this can be specified through appropriatg

ts with both{execution platform components and application software
cal conneetions to processors via a bus. This models software executin
ysical device. A device also has logical connections to application softw
onnections are represented by connection declarations between d

ith the external
ce to application
t is not explicitly
n a memory and
property values

components. A
J On a processor
are components.
bvice ports and
e and a thread

application softy

are’ component ports. For _any logical connection between a devid

executing application source text, there must be a physical connection in the execution platform.

A device can be viewed to be a primary part of the application system. In this case, it is natural to place
the device together with the application software components. The physical connection to processors
must follow the system hierarchy.

A device may be viewed to be primarily part of the execution platform. In this case, it is placed in proximity
of other execution platform components. The logical connections have to follow the system hierarchy to
connect to application software components.

Examples of devices are sensors and actuators that interface with the external physical world, or
standalone systems (such as a GPS) that interface with an application system.

-89 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Legality Rules
Category Type Implementation

Features Subcomponents:

e port e None

e port group Subprogram calls: no

device e server subprogram Connections: no

e requires bus access Flows: yes
Flow specifications: yes Modes: yes
Properties: yes Properties: yes

A device type clin contain port, port group, server subprogram, requires bus access-declarations, flow
specifications, ag well as property associations.

A device component implementation must not contain a subcomponents’ subclause, connections
subclause, or supprogram calls subclause.

A device implemgntation can contain a modes subclause, a flows subclause, and property associations.
Standard Properties

-- Hardware @lescription properties
Hardware_Des¢ription_Source_Text: inherit- list of aadlstring
Hardware_Source_Language: Supported_Hardware_Source_Languages
-—- Propertieg specifying device driyer software that must be
-- executed by a processor

Source_Text:| inherit list of @aadlstring

Source_Langufge: Supported(Source_Languages

Source_Code_§fize: Size

Source_Data_§$ize: SiZe

Source_Stack| Sizesx-Size

-- Propertieg spec¢ifying the thread properties for device softwars

-- executinglefi——precessex

Device_Dispatch_Protocol: Supported_Dispatch_ Protocols => Aperiodic
Period: inherit Time
Compute_Execution_Time: Time_Range
Deadline: Time => inherit wvalue(Period)
-- Properties specifying constraints for processor and memory binding
Allowed_Memory_ Binding Class:
inherit list of classifier (memory, system, processor)
Allowed_Memory_ Binding: inherit list of reference (memory, system, processor)

Allowed_Processor_Binding Class:

-90 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

inherit list of classifier (processor, system)

Allowed_Processor_Binding: inherit list of reference (processor, system)
Semantics

A device component represents an execution platform component that provides an interface with the
external environment. It can exhibit complex behaviors that require a nontrivial interface to application
software systems via ports and subprogram features. This functionality may be fully embedded in the
device hardware, or it may be provided by device-specific software. This software must reside as a
binary image on memory components and is executed on a processor component. The executing
processor that has access to the device must be connected to the device via a bus. The memory storing
the binary image[mustbe accessibie 10 the processor.

A device is accgssible from a processor if the device is connected via a shared buscomnponent and the
Allowed_Conngction_Protocol property value for that bus includes Device.&cceds.

A device declargtion can include flow specifications that indicate that a device is a flow source, a flow
sink, or a flow pgth exists through a device.

Device compongnts can have different property values under different-operational modes
Processing Requirements and Permissions

Execution of th¢ device driver software may be considered to be part of the progessor execution
overhead or it may be treated as an explicitly declared thread with its own execution propgrties.

-91 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

7 System Composition

Systems are organized into a hierarchy of components to reflect the structure of physical systems being
modeled. This hierarchy is modeled by system declarations to represent a composition of components
into composite components. A system instance models an instance of an application system and its
binding to a system that contains execution platform components.

7.1 Systems

A system represents an assembly of interacting application software, execution platform, and system
components. Systems-can-have-multiple-modes—each—+representing—a—possibly-differen} configuration of
components and their connectivity contained in the system. Systems may require accésg to data and bus
components dedlared outside the system and may provide access to data and bus components declared
within. Systemis may be hierarchically nested. This provides for modelingVvof large-scale runtime
architectures.

Legality Rules
Category Type Implementation
Subcomponents:
Features: ° data
e server subprogram ° g;ggg:or
e port *
e port group : bmuesmory
e provides data-access .
system e provides bus access * devtlce
e requijres data access ° system)
\ Subprogram calls: no
e requires bus access Connections: ves
Flow specifications: yes Flows: ves Y
Propefties: yes Modeé‘yyes
Properties: yes

A system compgdnent typescan contain provided and required data and bus access declarations, port, port
group, and server subprogram declarations. It can also contain flow specifications as|well as property
associations.

A system component implementation can contain data, process, and system subcomponent declarations
as well as execution platform components, i.e., processor, memory, bus, and device.

A system implementation can contain a modes subclause, a connections subclause, a flows subclause,
and property associations.

Standard Properties

-- Properties related to source text
Source_Text: inherit list of aadlstring
Source_Language: Supported_Source_Languages

-- Process property that can be specified at the system level as well

-92-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- Runtime enforcement of address space boundaries
Scheduling_Protocol: list of Supported Scheduling Protocols
-- Inhertable thread properties

Synchronized_Component: inherit aadlboolean => true

Active_Thread_Handling_ Protocol:
inherit Supported_Active_Thread_ Handling_Protocols

=> wvalue (Default_Active_Thread_ Handling_Protocol)
Period: inherit Time

Deadline: Time => inherit value (Period)

-- Propertieg related binding of software component source text-ij

systems t
Allowed_Proc

inherit 1
Allowed_Proc
Actual_Proce
Allowed_Memo

inherit 1
Allowed_Memo
Not_Collocat
Actual_Memor:
Allowed_Conn

inherit 1
Allowed_Conn
Actual_Conne
-- Propertie
Available_Pr

Available_Mer

b processors and memory
bssor_Binding Class:

st of classifier (processor, system)

bssor_Binding: inherit list of reference' (processor, sgystem)

Esor_Binding: inherit reference (processor)

vy_Binding Class:

ist of classifier (memory, system, processor)

v Binding: inherit list of ‘reference (memory, system,]| processor)

bd: list of reference (data, thread, process, system, |connections)

/) Binding: inherit reference (memory)
bction_Binding_Class:

ist of classifier(processor, bus, device)
of reference

(bus,

bction_Binding i»~inherit list (bus, procegsor, device)

Ftion_Binding: inherit reference processor, device)

b

relatéd,'systems as execution platforms

bcesgox_Binding: inherit list of reference (processor/| system)

hory_ Binding: inherit list of reference (memory, systTm)

Hardware_Source_Language:

Supported_Hardware_Source_Languages

-- Properties related to startup of processor contained in a system
Startup_Deadline: inherit Time

-- Properties related to system load times
Load_Time: Time_Range
Load_Deadline: Time

-- Properties related to the hardware clock
Clock_Jitter: Time

Clock_Period: Time

-03-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Clock_Period_Range: Time_Range

Semantics

A system component represents an assembly of software and execution platform components.

subcomponents of a system are considered to be contained in that system.

All

System components can represent application software components and connections that must be bound
to execution platform components, i.e., processors, memories, and buses in order to be executable.
Those software components and connections may be bound to execution platform components within the

system, or they must be bound to execution platform components outside the system.

Some system
execution platfo

components outside the system itself. An example is an application\so

Some system components consist purely of execution platform components. They'repres|
of execution platform components that act as the execution platform.

Some system cgmponents are self-contained in that all software compongents and conne
to execution plafform components contained within the system. Such.self-contained sy
external connectjvity in the form of logical connection points represented by ports and ph
points in the form of required or provided bus access. Examples, of such systems are d
GPS receivers, and digital cameras. Such self-contained systems with an external inter
modeled as deyices. The device representation takes .a “black-box perspective, W
representation tgdkes a white-box perspective.

A system compd
configuration of
determined by th
system can havg

nent can contain a modes subclause.” Each mode can represent an a
contained subcomponents andtheir connections. The transition be
e mode transition declarations of the system and is triggered by the arr
mode-specific property assogiations.

st be bound to
ftware system.

ent aggregations

ctions are bound
stems may have
sical connection
atabase servers,
face can also be
hile the system

ternative system
fween modes is
val of events. A

-94 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

8 Featur

es and Shared Access

A feature is a part of a component type definition that specifies how that component interfaces with other
components in the system. The four categories of features are: port, subprogram, parameters, and
subcomponent access.

Port features represent a communication interface for the exchange of data and events between

components.

Ports are classified into data ports, event ports, and event data ports.

Port groups

represent groups of component ports or port groups. Port groups can be used anywhere ports can be
used. Within a component, the ports of a port group can be connected to individually. Outside a

component, port

The subprogram
Server subprogr
remotely. Data

features, and se

Parameter featu
are typed with a

Subcomponent
data or bus con
components out
requires access
declaration.

feature
port_spe
port_gro
server_s
data_sub;

subcompo

groups can be connected as a Qingln unit

feature represents a call interface for a service that is accessible’ to)ot
am features represent subprograms that execute in their own thread a

ver subprogram features.

es represent data values that can be passed into_and ‘out of subprogra
Hata classifier reference.

hccess represents communication via shared“access to data and bus
ponent declared inside a component implementation is specified to
side using a provides access feature-declaration. A component ma
to a data or bus subcomponent declared outside utilizing a requires

Syntax

L

|

hp_spec |
hbprogrami/spec |
brogramyspec |

lent.dccess |

her components.
nd can be called

subprogram features represent subprograms through whichyihe data component is
manipulated. Call sequences (see Section 5.2) specify calls to subprogram:glassifiers,

jata subprogram

ms. Parameters

components. A
be accessible to
indicate that it
access feature

-

paramete

feature_refinement

port_refinement |

port_group_refinement |

server_subprogram_refinement |

data_subprogram_ refinement |

subcomponent_access_refinement |

parameter_refinement

-905-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Naming Rules

The defining identifier of a feature must be unique within the interface namespace of the associated
component type.

Thread features may not be declared using the predeclared ports hames Dispatch, Complete or
Error.

Each refining feature identifier that appears in a feature refinement declaration must also appear in a
feature declaration in the associated component type or one of its ancestors.

A feature is nam
feature declared
implementations
subcomponent ig

The feature clas
the feature class

in the type is named in the implementations by its identifier.
that contain subcomponents with features, a subcomponent feature
entifier and the feature identifier separated by a “.” (dot).”

Legality Rules

sifier reference and the port direction in a refined feature declaration my
fier reference and the port direction in the refined declaration.

In the case of data and event data ports, the refined feature declaration in a componer

mponent type, a
ithin component
s named by the

st be identical to

t type extension

can complete an|incomplete data classifier reference.

Feature refinemgnts can associate new property values,
Each feature car be refined at most once in the same component implementation or type|extension.
Semantics

patures are also
hat contains the

A feature declafation specifies an externally accessible element of a component. F
visible from witHin component implementations associated with the component type 1
feature declaratipn.

A refined featur¢ declaration.amay complete an incomplete component classifier reference and declare

feature property pssociationst

8.1 Ports

Ports are logicallconnection points between components that can be used for the transfer of control and
data between threads or between a thread and a processor or device. Ports are directional, i.e., an
output port is connected to an input port. Ports can pass data, events, or both. Data transferred through
ports is typed. From the perspective of the application source text, data ports look like data components,
i.e., they are data variables accessible in the source text. From the perspective of the application source
text, event ports represent Raise_Event runtime service calls and transfer the event to receiving
components or to the system executive to trigger a mode change. Event data ports transfer the data
along with the event to receiving components.

Syntax

port_spec
(in | out | in out) port_type

]

defining port_identifier

[

.
I

{ { port_property_association }* }

-96 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

port_refinement ::=

defining port_identifier : refined to

(in | out | in out) port_type
[{ { port_property association }*} 1 ;
port_type ::=
data port [data_classifier_ reference]
| event|data port [data_classifier_reference]

| event|port

Naming Rules
A defining port identifier adheres to the naming rules specified for all featufes (see Sectioh 8).

The unique component type identifier must be the name ofsa“data component |type. The data
implementation ifentifier, if specified, must be the name of a data component implementation associated
with the data commponent type.

Legality Rules

Ports can be declared in subprogram, thread, thread group, process, system, processor, and device
component types.

Data and event gata ports may be incompléetely defined by not specifying the data conponent classifier
reference or data component implementation identifier of a data component classifier reference. The port
definition can be|completed using refinément.

Data and event| data ports may_ be refined by adding a property association. The data component
classifier declargd as part of the.data or event data port declaration being refined doe$ not need to be
included in this refinement.

The property names Overflow_Handling_Protocol, Queue_Processing Protocol,
Dequeue_Protpcol-and Queue_Size may only appear in property associations for in event ports and
in event data pofts:

Standard Properties

-- Properties specifying the source text variable representing the port
Source_Name: aadlstring

Source_Text: inherit list of aadlstring

-- property indicating whether port connections are required or optional
Required_Connection : aadlboolean => true

-- Optional property for device ports

Device_Register Address: aadlinteger

-97-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- Port specific compute entrypoint properties for event and event data ports
Compute_Entrypoint: aadlstring

Compute_Execution_Time: Time_Range

Compute_Deadline: Time

-- Properties specifying binding constraints for variables representing ports

Allowed_Memory_ Binding Class:
inherit list of classifier (memory, system, processor)

Allowed_Memory_ Binding: inherit list of reference (memory, system, processor)

-- In port gfieue propercies
Queue_Size: aadlinteger 0 .. value(Max_Queue_Size) => 0
Queue_Procesping_ Protocol: Supported_Queue_Processing_ Protoegolds =3 FIFO

Overflow_Hanflling_ Protocol: enumeration (DropOldest, DropNewest, Hrror)
3> DropOldest

Urgency: aadlinteger 0 .. value (Max_Urgency)
Dequeue_Protpcol: enumeration (OnelItem, AllItems)) => Oneltem

Semantics

A port specifies|a logical connection point in the interface of a component through which incoming or
outgoing data and events may be passed. Ports maybe named in connection declarations. Ports that
pass data are typed by naming a data component classifier reference.

A data or event dlata port represents a data instance that maps to a static variable in the $ource text. This
mapping is ppecified with the Source_Name and Source_Text progerties. The
Allowed_Memotry_ Binding and Allowed_Memory_Binding_Class properties indi¢gate the memory
(or device) hardware the port resources reside on.

Event and even{ data ports may 'dispatch a port specific Compute_Entrypoint. Thig permits threads
with multiple evgnt or event data ports to execute different source text sequences for gvents arriving at
different event ports. If specified, the port specific Compute_Time and Compute_Peadline takes
precedence ovell those of\the containing thread.

Ports are directipnal.~An out port represents output provided by the sender, and an in port represents
input needed by the receiver. An in out port represents both an in port and an out port. Incoming
connection(s) and outgoing connection(s) of an in out port may be connected to the same component or
to different components. An in out port maps to a single static variable in the source text. This means
that the source text will overwrite the existing incoming value of the port when writing the output value to
the port variable.

A port can require a connection or consider it as optional as indicated by the Required_Connection
property. In the latter case it is assumed that the component with this port can function without the port
being connected.

Data and event data ports are used to transmit data between threads. They appear to the thread as input
and output buffers, accessible in source text as port variables. In the case of a data out port, data is
automatically transmitted at the completion of thread dispatch execution. In the case of an event data out

-08 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

port, data is automatically transmitted at the time of the Raise_Event runtime service call (see Section
9).

Data ports are intended for transmission of state data such as signals. Therefore, no queuing is
supported for data ports. A thread can determine whether the input buffer of an in data port has new data
at this dispatch by checking the port status, which is accessible through the port variable.

Event ports are used to communicate events. Events can be raised by source text executing in
subprograms, threads, and by processors and devices. Events can trigger the dispatch of other threads
or can cause a mode switch. If the receiving thread is already active, the event is queued. Events are
triggered by an explicit Raise_Event runtime service call executed within a thread. Or if the thread’s
predeclared Com i i j pletion event is
generated.

and the event qu

When the threa
threads, by the
dequeued. If the
is set to the nun
periodic thread tp sample an event stream to determine the number of events that arrivg in a given time
interval. For exgmple, it permits the thread to determine the speed of a wheel based on a rotational
sensor on the wheel. It also permits a system health monitor thread to periodically procegs system alarms
without overload|ng the processor due to spikes incalarm arrivals.

j dispatch is triggered through the predeclared Digpatch port or, in th
clock, then the port variable value of all event\ports is set to one
Dequeue_Protocol property is set to A11Ltems, then the value of €

nber of queued events at that time and the{queue is emptied. This cgpability allows a

case of periodic
nd one event is
ch port variable

Event data portg
data at the port
Dispatch porti

The message transmission is triggered by an explicit Raise_Event runtime service ¢

event data port.
data is transmitt
were written.

Event data portg

are intended for message\transmission, i.e., the queuing of the evenf and associated
of the receiving thread. “If the receiving thread is not executing a dispatch and the
5 not connected, then the ‘arrival of a message triggers a dispatch of the [receiving thread.
Il on the specific
If not transmitted through an explicit Raise_Event runtime service call, then the event
bd at completion:of dispatch execution for those event data ports into which new values

are represented by port variables. The status of whether an event data port provides a

new value to a t
dispatch, the eve

nread-is accessible through the port variable. If the queue is empty at the time of thread
nt’data port variable retains its old value.

When a thread dispatch is the result of an event, the value of the event data port variable is set to the
data value of the event data in the queue that triggered the dispatch and the event data is dequeued. If
the Dequeue_Protocol property is set to Al1Ttems, then the data of all event data is placed in the
port variable and the event data queue is emptied. The port variables of other event data ports retain
their old value. If the thread dispatch is triggered through the predeclared Dispatch port, then the port
variable value for each event data ports is set to the data value of the first event data in the queue and
the event data is dequeued. If the Dequeue_Protocol property is set to Al1lItems, then all event
data is placed in the port variable for each event data port and the event data queue is emptied.

Any subprogram, thread, device, or processor with an outgoing event port, i.e., out event, out event
data, in out event, in out event data, can be the source of an event. During a single dispatch execution,
a thread may raise zero or more events and transmit zero or more event data through Raise_Event

-99-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

runtime service calls. It may also raise an event at completion through its predeclared Complete port
(see Section 5.3) and transmit event data through event data ports that contain new values that have not
been transmitted through explicit Raise_Event runtime service calls.

Events are received through in event, in out event, in event data, and in out event data ports, i.e.,
incoming ports. If such an incoming port is associated with a thread and the thread does not contain a
mode transition naming the port, then the event or event data arriving at this port is added to the queue of
the port. If the thread is aperiodic or sporadic and does not have its Dispatch event connected, then
each event and event data arriving and queued at any incoming ports of the thread results in a separate

request for thread dispatch.

If an event port i
and the mode trg
it is processed a

The Queue_Si
properties speci
associated data
property determi
an error occurs
standard Dispa
DropNewest an

Queues will be

event and event
higher Urgency
empty, then the
algorithms for pi
managing each i

For each data o
sufficient buffer
Adequate buffer
The applicable s
to the data or ey

fly queue characteristics.

nsition names the event port then the arnval of an event is a mode Chc
cording to the mode switch semantics (see Sections 11 and 12.3)«

Queue_Processing Protocol, and Overflow Handling |
If an event arrives and the number.of queued
) is equal to the specified queue size, then the Overflow_Hand]
hes the action. If the Overflow_Handling_ Protodol property valug

7 e,

d mode transition,
nge request and

Protocol port
events (and any
ing_ Protocol
is Error, then

for the thread. The thread can determine the port ‘that caused the erfor by calling the

Fch_Status runtime service. For Overflow_Handling Protocol p)
d DropOldest, the newly arrived or oldest event in the queue event is

serviced in a first-in, first-out order. When an event-driven thread deq
data ports in its type and more than one of these queues are nonempty,
property value gets serviced first, ~If several ports with the same Uy
oldest event will be serviced (global FIFO).
cking among multiple non-empty queues. Disciplines other than FIFO
hdividual queue .

Processing Requirements and Permissions

I event data port-declared for a thread, a system implementation meth
space within~the associated binary image to unmarshall the value d
space must be allocated to store a queue of the specified size for each
burce/language annex of this standard defines data variable declarationg

It is permitted to defing

roperty values of
Hropped.

lares multiple in
the port with the
gency are non-
and use other
may be used for

od must provide
f the data type.
event data port.
that correspond

ent\data features. Buffer variables may be allocated statically as part g

data declaration

5.

f the source text

Alternatively, buffer variables may be allocated dynamically whil¢ the process is

loading or during thread initialization.
declarations to appear within source files that have been specified in the source text property.

A method of implementing systems may require the data

In some

implementations, these declarations may be automatically generated for inclusion in the final set of
source text. A method of implementing systems may allow direct visibility to the buffer variables. Runtime
service calls may be provided to access the buffer variables.

The type mark used in the source variable declaration must match the type name of the port data
component type. Language-specific annexes to this standard may specify restrictions on the form of a
source variable declaration to facilitate verification of compliance with this rule.

For each event or event data port declared for a thread, a method of implementing the system must
provide a source name that can be used to refer to that event within source text. The applicable source
language annex of this standard defines this name and defines the source constructs used to declare this
name within the associated source text. A method of implementing systems may require such

-100 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

declarations to appear within source files that have been specified in the source text property. In some
implementations, these declarations may be automatically generated for inclusion in the final set of

source text.

A method of implementing systems must provide a capability for a thread to determine whether a data
port has been updated with a new value since the previous dispatch. This capability may be implemented
in the form of a “fresh” field in the port variable. A runtime service call may be provided to supply port
variable status information.

If any source text associated with a software component contains a runtime service call that operates on
an event, then the enumeration value used in that service call must have a corresponding event feature

declared for that

component.

A method of pro
to define alternat

A method of implementing systems is permitted to optimize the number of<port variab

perform the trar
maintained. Fo
variable represe
their execution li

package Nav_'
data GPS)
data INS)
data Posi
data Posi

end Nav_Type

process Blen

Cessing specifications is permitted to use non-standard property names
ive queuing disciplines.

smission of data between ports as long as the semantics of such

example, the source text variable representing anout data port and
nting the connected in data port may be mapped tothe’ same memory
espan does not overlap.

Examples

[vpes public

broperties Source_data_Size => 30 B; end GPS;

broperties Source_data(Size => 20 B; end INS;

rfion_ECEF properties-Source_data_Size => 30 B; end Pogd

rion_NED properties Source_data_Size => 30 B; end Pos]

b 7

Hed_Navigation

hnd associations

es necessary to
connections are
the source text
ocation provided

ition_ECEF;

tion_NED;

features
GPS_Data in data port Nav_Types: :GPS;
INS_Data in data port Nav_Types: :INS;

Position_ECEF

Position_NED

out data port Nav_Types::Position_ECEF;

out data port Nav_Types::Position_NED;

end Blended_Navigation;

process implementation Blended Navigation.Simple

subcomponents
Integrate thread;
Navigate thread;

-101 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

end Blended_Navigation.Simple;

8.2 Port Groups and Port Group Types

Port groups represent groups of component ports or port groups. Within a component, the ports of a port
group can be connected to individually. Outside a component, port groups can be connected as a single
unit. This grouping concept allows the number of connection declarations to be reduced, especially at
higher levels of a system when a number of ports from one subcomponent and its contained
subcomponents must be connected to ports in another subcomponent and its contained subcomponents.
The content of a port group is declared through a port group type declaration. This declaration is then
referenced wher| port groups are declared as component feafures.

Syntax

-- Defining fhe content structure of a port group
port_group_type ::=
port group defining identifier
(features
{ port_spec | port_group_spec }°

[inverse of unique_port_group_typesreference]

inverse¢ of unique_port_group_stype_reference

)

[properties ({ portgroup_property_association }* | none_statement)]
{ annex_subflause }”

end defining|identifierty;

port_group_type_extension ::=

port group defining identifier extends unique_port_group_type|reference

(features

{ port_spec | port_refinement |
port_group_spec | port_group_refinement 3

[inverse of unique_port_group_type_reference]

inverse of unique_port_group_type_reference
)
[properties ({ portgroup_property_association }* | none_statement)]
{ annex_subclause }~

end defining identifier ;

102 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- declaring a port group as component feature

port_group_spec

defining port_group_identifier : port group

[unique_port_group_type_reference]

[

.
I

]

{ { portgroup_property_ association }* }

port_group_refinement

defining pprt_group_identifier refined to
[unique_port_group_type_reference]

]

port g
[{

Foup

-

L H

portgroup_property_association }* }

jroup_type_reference

]

unique_port_

[package_ port_group_type_identifiesr

Naming Rules
The defining identifier of a port group type must be unique‘within the package namespac

where the port group type is declared. If the port grouptype is declared in the AADL spe
it must be unique within the anonymous namespace,

e of the package
ification directly,

Each port group provides a local namespace:~ The defining port identifiers of port| and port group

declarations in al

namespace of a
port group type K
port group type

The defining ide
port or port grou

The defining po
local namespac
declarations in

!

port group type must be unique within the namespace of the port grouy
port group type extension‘includes the defining identifiers in the local n
eing extended. This means, the defining identifiers of port or port group
bxtension must not(exist in the local namespace of the port group type

D in the local nameéespace of an ancestor port group type.

identifiers/of port_spec declarations in port group refinements mus
of any-port group being extended. The defining port identifier of pox
port\ group refinements must exist in the local namespace of any ¢

type. The local
hmespace of the
declarations in a
being extended.

ntifiers of port or\port group refinements in a port group type extension must refer to a

not exist in the
t_refinement
ort group being

extended.

The package name of the unique port group type reference must refer to a package name in the global
namespace. The port group type identifier of the unique port group type reference must refer to a port
group type identifier in the named package namespace, or if the package name is absent, in the
anonymous namespace.

Legality Rules
A port group type may contain zero or more elements, i.e., ports or port groups. If it contains zero
elements, then the port group type may be declared to be the inverse of another port group type.
Otherwise, it is considered to be incompletely specified.

A port group type can be declared to be the inverse of another port group type, as indicated by the
reserved words inverse of and the name of a port group type. Any port group type named in an inverse

-108 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

of statement cannot itself contain an inverse of statement. This means that several port groups can be
declared to be the inverse of one port group. However, chaining of inverses such as B inverse of A and C
inverse of B is not permitted.

A port group type that is an extension of another port group type cannot contain an inverse of statement.
The port group type being extended cannot contain an inverse of statement.

Two port group types are considered to complement each other if the following holds:

e The number of ports or port groups contained in the port group and its complement must be
identical.

e Each of the declared ports or port groups in a port group must be a pair-\iise complement
with that in the port group complement, with pairs determined by declaration ¢rder.

If both port group types have zero features, then they are considered to complement each other. In the
case of port grolip type extensions, the port and port group declarations in the extensiop are considered
to be after the dgclarations in the port group type being extended. Ports,are pair-wise ¢omplementary if
they have complementary direction (out / in, in / out, in out / in out); and are of the same port type. In
the case of event data or data ports, the data component classifier reference must be identical.

A port group degclaration that does not specify a port group™type reference is incomplete. Such a
reference can bg added in a port group refinement declaration.

A port group deglaration may be refined by adding a property association. Inclusion of the port group
type reference is optional.

If the Aggregatje_Data_Port property of a part group has the value true, all ports corjtained in its port
group type or the¢ port group type of any contained port group must be data ports and they must all have
the same port difection.

Standard Properties

Aggregate_Data_Port: aadlboolean => false
-- Port properties defined to be inherit, thus can be associated with a
-- port group to apply to all contained ports.

Source_Text:|inherit list of aadlstring

Allowed_Memo f:\lr_'R-i ndl nr_-‘r_(“'l acc .
inherit list of classifier (memory, system, processor)

Allowed_Memory_ Binding: inherit list of reference (memory, system, processor)

Semantics

A port group declaration represents groups of component ports that can be connected to externally
through a single connection. Port groups can contain port groups. This supports nested grouping of
ports for different levels of the modeled system.

Within a component, the ports of a port group can be connected to individually. The members of the port
group are declared in a port group type declaration that is referenced by the port group declaration. The
referenced port group type determines the port group compatibility for a port group connection.

-104 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The inverse of reserved words of a port group type declaration indicate that the port group type
represents the complement to the referenced port group type. The legality of port group connections is

affected by the ¢

omplementary nature of port groups (see Section 9).

The AADL supports the concept of aggregate data port as an extension of the port group concept. A port
group property called Aggregate_Data_Port identifies the role of the port group as an aggregate data
port. This port property applies to all out data ports and in out data ports of the port group.

The role of an aggregate data port is to make a collection of data from multiple out data ports available in

a time-consistent manner.

Time consistency in this context means that if a set of periodic threads is

dispatched at the same time to operate on data, then the recipients of their data see either all old values

or all new value

The functionality]
data values from

Processing Requirements and Permissions

of an aggregate data port can be realized as a thread whosge,0nly rolg
several in data ports and make them available at the sameitime on thg

data ports. The function may be optimized by mapping the data ports of the“individual th

area representin

port group G

features
Wakeup: i

Observati

end GPSbasic]|

port group G

features
WakeupEve
Observati

-- the fe

j the aggregate data port variable. This aggregate is then transferred ag
Examples

PSbasic_socket

h event port;

bn: out data port GPSLib:¥position;
| socket;

PSbasic_plug

ht: out ewvent port;
bnData:\in data port GPSLib::position;

htureS, must match in same order with opposite directid

inverse o

is to collect the
ir respective out
reads into a data
a single unit.

n

F “GPSbasic_socket

end GPSbasic_plug;

port group MyGPS_plug

-- second

port group as inverse of the original

-- no chaining in inverse and

-- no pairwise inverse references are allowed

inverse of GPSbasic_socket

end MyGPS_plug;

-105 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

port group GPSextended_plug

features
Signal: out event port;
Cmd: in data port GPSLib:

end GPSextended_plug;

process Satellite_position

features

extends GPSbasic_plug

:commands ;

position:

port group GPSBasic_socket;

end Satellit

process GPS_
features

position:

b_position;

By stem

port group GPSbasic_plug;

end GPS_Systéem;

system implerentation Satellite.others

subcomponent

SatPos: p¥rocess Satellite_positign;

MyGPS: precess GPS_System;

connections

port group Satpos.position -> MyGPS.position;

end Satellite.others;

8.3 Subprograms As Features

A data subprogram/feature represents an execution entrypoint in source text that opérates on a data
component of the associated data type. Server subprogram features represent entrypoints for remote

procedure calls, i.e., the ability to synchronously call this subprogram from a separate thread that may

execute on a different processor.

data_subprogram_spec ::=

defining subprogram_identifier

Syntax

subprogram

[subprogram classifier_reference]

[{ { subprogram property_ association }*}]

.
I

- 106 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

data_subprogram_ refinement

defining subprogram identifier refined to subprogram

[subprogram classifier_reference]
1 :

[{ { subprogram_property_ association }*}

server_subprogram_spec

defining subprogram identifier server subprogram
[unique_subprogram_ reference]

[{

subprogram property_association }7}]

.
I

server_subprpgram_refinement

defining spbprogram identifier refined to

server subprogram

[unigue_subprogram_reference]

[{

.
I

subprogram property_association }79¥]

unigque_subpr
subprogr

| data_s

data_subprog

bgram_reference =
bm classifier_reference
hbprogram_feature_classdfier_reference

ram_feature_classifier_reference

[packagge_name ::] data) type_identifier subprogram_ identifier

Naming Rules

A unique subptogram_reference must be a subprogram classifier reference or a| reference to a

subprogram featpire declaration in a data component type.

Legality Rules

Data subprogram features can be declared in data components and must not have the reserved word
server.

Server subprogram features can be declared in thread, thread group, process, processor, and system
component types. They must have the reserved word server.

A server subprogram feature declaration must only refer to a subprogram classifier or to a subprogram
feature in a data component type.

If several subprogram declarations refer to the same subprogram type or via the Source_Name property
to the same subprogram in the source text, then their parameter signatures in the source text and the
property associations must be consistent with each other.

-107 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

When a server subprogram declaration appears in a thread component type, the scheduling protocol
property value for all thread implementations, subcomponents, and instances having that component type
must be Aperiodic or Sporadic.

A subprogram refinement can specify a subprogram type reference and declare property associations.
For calls to server subprograms, the subprogram classifier or subprogram feature reference of the
subprogram call and the subprogram classifier or subprogram feature reference of the server subprogram

must be the same.

Standard Properties

Source_Name:

Source_Text:

Source_Stack,

-—- Subprograt

Subprogram_E
-- Client su
Client_Subpr

-—- Server su

aadlstring

inherit list of aadlstring
| Size: Size

h execution properties
kecution_Time: Time_Range
bprogram execution properties
bgram_Execution_Time: Time

bprogram execution properties

Compute_Execfition_Time: Time_Range

Compute_Deadline: Time

Recover_Execfition_Time: Time_Range

Recover Deadline: Time

Overflow_Hanflling_ Protocol: enumeration (DropOldest, DropNewest, Hrror)

3> DropOldest

Queue_Size: aadlinteger 0 i. value (Max_Queue_Size) => 0

Semantics
Data subprogram features.represent entrypoints into source text that operate on data cqmponents of the

associated data pompenent type. They are called by naming a data component type and the subprogram
separated with a|‘~(dot) (see also Section 5.2).

Data subprogram features can refer to separately declared subprogram classifiers, which may specify the
parameters, required access, and out event or out event data ports of the subprogram (see Section 5.2).

If server subprogram features refer to subprograms in source text with parameters, the parameters are
marshalled and unmarshalled as necessary.

If server subprogram features refer to subprograms that raise events or event data, then the raised event
in the server subprogram is mapped to the corresponding event or event data port in the caller
subprogram.

Threads and subprograms can contain subprogram calls (see Sections 5.2 and 5.3). These can be calls
to subprograms local to thread, or they can be synchronous remote calls to a server subprogram in
another thread that is indicated by the Actual_Subprogram_Call property. In case of a remote call,

-108 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

the requesting thread calls a local proxy that carries out the service request. The execution time of the
client proxy is determined by the Client_Subprogram_Execution_Time. The actual call results in
communicating the subprogram execution request. While the call is in progress, the calling thread is
blocked. Upon completion of the remote subprogram execution and return of results, the calling thread
resumes execution by entering the ready state.

Server subprogram features model service requests such as remote procedure calls to services provided
by a thread. Actual calls are specified as explicit subprogram calls whose call binding property specifies a
server subprogram.

Server subprogram features can be declared with their signature defined in the referenced and separately
declared subprogram classifiers

A server subprqgram feature declaration in a thread component type represents._ an
remotely callablg code sequence in the source text associated with a different thread.
reside in the same process, a different process on the same processor, or op.@ differe
request for exeqution of such a subprogram is a dispatch request to the thread contd
subprogram — the same way events represent dispatch requests for aperiodic or sporad
the case of events, requests for execution of server subprograms may be queued if the
executing a dispptch request. A thread can have multiple subprogram entrypoints, exprg
server subprogram feature declarations in the respective companent type. Only one
subprograms mgy be executed per thread dispatch. Queuing and’ queue servicing folloy
of event port qudues.

If an event is rai
calling subprogr
port of the caller

sed during the execution of a server subprogram, this event is communig
hm and propagated according to the ‘connection declaration associate
(see also Section 5.3).

If an error occyrs or is raised while the.thread is executing the server subprogra
communicated through the Error port of the)containing thread - as previously defined in

Processing Requirements and Permissions

Every method fqr processing specifications must parse subprogram feature declaration

legality rules defined in this standard. However, a method of processing specifications
how to build a system fromna specification that contains subprogram features. In this ¢
features may be| rejectedas unsupported. In this case, a warning message may be g¢
haviat,in the toolset.

the user of this

entrypoint to a
This thread may
nt processor. A
ining the server
c threads. As in
thread is already
ssed by multiple
of these server
Vs the semantics

ated back to the
0 with the event

m, that error is
Section 5.3.

s and check the
need not define
hse, subprogram
nerated to notify

A subprogram f

jated source text

as defined in the source language annex of this standard. This source subprogram must be declared and
visible at the outermost lexical scope as defined by the applicable source language standard. The
parameter identifiers appearing in the subprogram feature declaration must map to formal parameter
names appearing in the source subprogram declaration. Rules for mapping subprogram and parameter
identifiers to source text are defined in the source language annex of this standard. Any special rules for
server subprograms and parameter are defined in the source language annex of this standard.

A call to a server subprogram feature of a software component maps to a call to the proxy for the remote
subprogram in the associated source text. This proxy routine performs the appropriate remote invocation.
Actual calls to the proxy subprogram in the source text are found in the source program of the calling
thread. The data types of the actual parameter expressions must be compatible with the declared data
types in the specification as defined by the applicable source language standard. The details of these
mappings are defined in the source language annex of this standard.

- 1009 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A method of implementation may automatically generate the source text required to perform a remote
subprogram call. This may include the marshalling and unmarshalling parameter values or the
transmission and reception of call and return events.

If the calling thread can execute on the same processor as the server subprogram, then a method of
implementation may use the calling thread to execute the server subprogram code rather than a separate
thread. When using this optimization procedure, proper synchronization must be maintained to preserve
the same runtime semantics. If runtime address space protection is required, then this technique cannot
be used if the protection between the calling thread and server subprogram thread is lost as result of the
optimization.

NOTES:

The annex sudeuse may be used along with the existing syntax to build a component-ased client/server
subprogram mode|. An example of this approach follows.

Examples

package Pierre

public
process printers
features
printonhServer : server subprogram print;
mainPrjinter: in event port;
backupPrinter: in event port;

end print

'S ;

process inlementation printers

subcompon

nts

A : thread prinfier in modes (modeA);

B : thread printer in modes (modeB);
Modes

modeA:|initial mode;

modeB: mode;

modeA -[backupPrinter]-> modeB;

modeB -[mainPrinter]-> modeA;

end printers;

thread printer

features

print

server subprogram print;

end printer;

-110 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subprogram print
features
filetoprint: data file;

end print;

end Pierre;

thread A

features

print: requires subprogram Pierre::print;

calls
print: subprogram;

end A;

-- example of a server subprogram call

process B

annex pierre| {**

-- a new feafures declaration to indicate a required subprogram

features

remotepriht: requires subprogram Pierre: :print;

**}

end B;

-- example of a leecal subprogram call

-- the subpr¢gram’is locally declared within the process.

-- the call =s—otrd—teo—+t—
process C

end C;

process implementation C.default
subcomponents
app: thread A;

annex pilierre {**

-- a new subcomponents declaration to specify a local

subcomponents

subprogram

111 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

localprint:

subprogram Pierre: :print;

-- a new connection declaration to bind a required subprogram to a

-- local subprogram or a server subprogram via connections

connections

subprogram app.print -> localprint;

**}

end C.default;

8.4 SubprogFanT Parameters

rameter declarations represent data values that can be passed

Subprogram pa
subprograms. P

parameter
defining

(

[

in

{

parameter_re
defining

(

[

in

{

A defining param

The data classifi

arameters are typed with a data classifier reference representing-the dat

Syntax

| parameter_identifier
| out | in out) parameter [datapclassifier_ refereng
]

parameter_property_association™’ }

H
F inement =
| parameter_identifier refined to
| out | in out) parameter [data classifier_refereng
]

parameter_property_association }7 }

Naming Rules
eter identifier-adheres to the naming rules specified for all features (see

br reference must refer to a data component type or a data component in

nto and out of
h type.

e

e

Section 8).

plementation.

Legality Rules

Parameters can

be declared for subprogram component types.

If a parameter refinement includes a data classifier reference, then the classifier reference must be the

same as that of t

he parameter being refined.

If the parameter being refined has an incomplete data classifier reference, then the parameter refinement
may complete an incompletely specified data classifier reference.

A parameter refinement cannot redefine the direction of a parameter.

-112-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Standard Properties

-- Properties specifying the source text representation of the parameter

Source_Name:

Source_Text:

aadlstring

inherit list of aadlstring

Semantics

A subprogram parameter specifies the data that are passed into and out of a subprogram. The data type
specified for the parameter and the data type of the actual data passed to a subprogram must be

compatible.
8.5 Subcom

Subcomponents
that they require
subcomponents.

A required subcq
subcomponent 1

subcomponent accesses are resolved to actual data subcomponents as part of 3

declaration. D
Required_Acc

A provides subc
a subcomponer
subcomponent
provided access

A subcomponen
subcomponent 1
access or it ma
declared within g
the containing su

This is illustrated
process subcom
feature declarat

gccesses can be used to reseolve required subcomponent access.

ponent Access

can be made accessible outside their containment hierarchy,Gompon
access to externally declared subcomponents. Componentsimay provid
Provided subcomponent access is a feature of a compeghent.

mponent access declaration in the component type‘ef the subcomponer
equires access to a data component declared external to the compdg

fferent forms of required access, such.as’ read-only access, are
Ess property.

t provides access to a data .component contained in the compo
such as read-only access, are’specified by a Provided_Access prope

t that is accessed bywmere than one subcomponent is shared. Theg
hay be declared within the same component implementation as the

Di

bnts can declare
e access to their

t indicates that a
nent. Required
subcomponent
specified by a

bmponent access declaration in the .component type of the subcompongnt indicates that

Provided
ifferent forms of

rty.

nent.

actual (shared)
one(s) requiring

be declared higher'in the component containment hierarchy. Alterna
subcomponent.at'the current level (of the ones requiring access) or hig
bcomponenbwill specify that it provides access to the shared subcompo

in Figure 10. Data D is a data component contained in the process i
pbonent A. The process type of A makes it accessible through its provi
on. It is belng accessed by thread Q WhICh is contalned as subc

process implementa
Q indicate the need to access a data component through a requires data access feature declaration.

ively, it may be
her. In this case,
ent.

plementation of
es data access
pmponent of the

=ad type of thread

In

the system implementation of system Simple the provides data access feature of process A is
connected to the requires data access feature of process B through a data access connection. The
textual AADL model of this specification is given as an example later in this section.

=113 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- The requi

subcomponent

System Simple

Frocess & Procesz B

Drata O

| A7

7
Provicled au:u:e:&s\\ H f’HRequired ACCEES
Access connection

Figure 10 Containment Hierarchy and Shared Access

Syntax

res and provides subcomponent access subclauge

| access

definingl| subcomponent_access_identifier

subco

[{

subcomponent

definingl| subcomponent_access_identifier

subc

[{

subcomponent| access_classifier

(pry

[un

hponent_access_classifier

(access_property_association }". A ¥] ;

| access_refinement =
refined to
bmponent_access_classifier

access_property_association }* } 1 ;

bvides | =requires) (data | bus) access
| que_component_type_identifier

[. component_implementation_name]

Naming Rules

]

The defining identifier of a provides or requires subcomponent access declaration must be unique within
the interface namespace of the component type where the subcomponent access is declared.

The defining identifier of a provides or requires subcomponent refinement must exist as a defining
identifier of a required subcomponent in the interface namespace of the associated component type or
one of its ancestors.

The component type identifier or component implementation name of a subcomponent access classifier
reference must exist in the specified (package or anonymous) namespace.

=114 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Legality Rules

The category of the subcomponent access declaration must be identical to the category of the component
type (and of the component implementation) in the referenced subcomponent classifier.

Required_Access

Provided_Access

Standard Properties

write_only,
=> read_write

(read_only,
by_method)

access enumeration

write_only,
=> read_write

(read_only,
by_method)

access enumeration

read_write,

read_write,

The requires su
subcomponent 1
subcomponent g
given componery
subcomponents.

when a subcomponent of the component type requiring access is declared.

subcomponent r
subcomponent i

The provided ¢
component imp
property indicate

system implementation simple.impl

subcomponent
A: proces
B: proces

connections

data accegs Al dataset -> B.regdataset;

end simple.ippl);

Semantics

bcomponent access declaration indicates that the component requi
ot contained in any of the implementations of the componént type
ccess declaration. The Required_Access property specifies how a
t type accesses a required subcomponent componentithat may be sh
The reference to a required subcomponent is resolved, i.e., bound to 3

cferences of two different subcomponents are . bound to the same su
shared by them.

ubcomponent access declaration indicates that a subcomponent o
ementations is made accessible ouiside the component. The Prgq
S how the shared data component may be accessed.

Examples

pp.i;
aqg.i;

es access to a
vith the requires
component of a
ared by multiple
. subcomponent,
When required
bcomponent, the

ontained in the
vided_Access

process pp
features
Dataset:

end pp;

provides data access dataset_type;

process implementation pp.i

subcomponents

Sharel:

data dataset_type;

-115-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-— other

connections

subcomponent declarations

data access Sharel -> Dataset;

end pp.i;

process qg

features

Regdataset: requires data access dataset_type;

end gqg;

process impl

subcomponent

Ementation aqg. i

Q: thread|rr;

connections

data accegs Regdataset -> Q.reql;

end gg.i;

thread rr

features

Regl: requires data access dataset_type;

end rr;

-116 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

9 Connections and Flows

A connection is a linkage that represents communication of data and control between components. This
can be the transmission of control and data between ports of different threads or between threads and
processor or device components. A connection may denote an event that triggers a mode transition.
The timing of data and control transmission depends on the connection category and on the dispatch
protocol of the connected threads. The flow of data between parameters of subprogram calls within a
thread may be specified using connections. Finally, connections designate access to shared
components.

A flow is a Iogmwaﬂanqhmgh_a&quew_mssﬁs, devices, and
connections. A gomponent can have a flow specification, which specifies whether a conpponent is a flow
source, i.e., the flow starts within the component, a flow sink, i.e., the flow ends within tHe component, or
there exists a flow path through the component, i.e., from one of its incoming ports to one of its outgoing
ports.

Connect

9.1 ons

The AADL supp|
connections. P
executing comp
Parameter conn

calls, i.e., betwegn units of sequential execution within a thread. Access connections des
ponents by concurrently executing threads or by subprograms executing within a thread.

shared data com
They also repre
bus.

connection
port_con
| parame

| access|

connection_r

pris three types of connections: port connections, warameter connecti
brt connections represent the transfer of data_and control between

bnents, i.e., between two threads or between-a thread and a proc
bctions denote the flow of data through the parameters of a sequenc

bent communication between processors, memory, and devices by acq

Syntax

hection
fer_connectiorn
| connectien

b iement

bns, and access
WO concurrently
bssor or device.
b of subprogram
ignate access to

essing a shared

port_con

e Neli} —
ICCCIOI_IC I IIICINCIIC

| parameter_ connection_refinement

| access_

9.11

connection_refinement

Port Connections

Port connections represent transfer of data and control between two concurrently executing components,
i.e., between two threads or between a thread and a processor or device. These connections are
semantic port connections. A semantic port connection is determined by a sequence of one or more
individual port connection declarations that follow the component containment hierarchy in a fully
instantiated system from an ultimate source to an ultimate destination. An individual port connection
declaration links a port of one subcomponent to the port of another. Or it joins a port of a subcomponent
with a port of a containing component.

=117 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Semantic port connections are illustrated in Figure 11. The ultimate source of a semantic port connection
is an outgoing feature, i.e., an out or in out port of a thread, processor, or device component. The
ultimate destination of a semantic port connection is an incoming feature, i.e., an in or in out port of a
thread subcomponent, a processor or device component. In the case of event connections and port group
connections, a mode transition may also be specified as part of the port connection.

Port connection declarations follow the containment hierarchy of threads, thread groups, processes and
systems. Some connections link an outgoing feature to the corresponding feature in the containing
component and an incoming feature to the corresponding feature of a contained component. In other
words, these connections traverse up and down the containment hierarchy.

other component
| of the containment h|erarchy, i.e., it connects sibling components THese connections
ighest level required for the connection declaration or at the top\of fthe containment
d for the declaration.

Semantic port connections may also route a raised event to a modal component through a sequence of
connection decl@rations. A mode transition in such a component is-/the’ ultimate dgstination of the
connection, if thg mode transition names an in or in out event port in the enclosing comgonent, or an out
or in out event port of one of the subcomponents (see Section 11).

System Simple
Process & Process B
...................
i Thread P Thread @
b o o o o .Jk.: J‘;r --------- !
X/X JMmmedemmmMH
timate source Hierarchical
connections bling
connection > Port

Figure 11 Semantic Port Connection

This section defines the cencepts of departure and arrival times of port connection trangmission for each
of the port connection categories, i.e., for data port connections, event port connections, event data
port connections, and-port group connections. The transfer semantics between conphected ports are
defined such thal the departure and arrival times of connection transmissions occurs in t¢rms of deadline,
execution completion, and dispatch times. These semantics ensure deterministic communication between
periodic threads through data ports.

Syntax

port_connection ::=
data_connection
| event_connection
| event_data_connection

| port_group_connection

-118 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

data_connection ::=
[defining data_connection_identifier :]
data port source_unique_port_identifier
(immediate_connection_symbol | delayed_connection_symbol)
destination unique_port_identifier

[{ { property association }*} 1]

[in_modes_and_transitions] ;
immediate_copnection_symbol ::= =>
delayed_conng¢ction_symbol ::= =>>

event_connecftion ::=
[definihg event_connection_identifier :]
event port source_unique_port_identifien
-> dpstination_unique_port_identifiter
[| { { property_association }™9%} 1

[|[in_modes_and_transitions 1 ;

event_data_cennection ::=
[definihg event_data_connection_identifier :]
event data port souxcg& unique_port_identifier
-> destinatidm-unique_port_identifier
[| { { property association }*} 1]

[[intmodes_and_transitions] ;

-- connection between port groups of two subcomponents or between
-- a port group of a subcomponent and a port group in the component type
port_group_connection ::=
[defining port_group_connection_identifier :]
port group source _unique_port_group_identifier
-> destination_unique_port_group_identifier
[{ { property association }*} 1]

[in_modes_and_transitions] ;

-119 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

port_connection_refinement ::=
connection_identifier : refined to
(data port | event port | event data port | port group)
(({ { property_association }*}
[in_modes_and_transitions])
| in _modes_and_ transitions

) i

unique_port_jdentifier ::=
-- pprt in the component type

compongnt_type_port_identifier

-- pprt in a subcomponent

subcomponent_identifier . port_identifier

-- pprt element in a port group of bthie' component type

compongnt_type port_group_identifiexr™. element_port_identifier
unique_port_g¢group_identifier ::=
-—- pprt group in the component type

compongnt_type port_group-identifier

-- pprt group in a subcomponent

subcomponent_identifier . port_group_ identifier

-- pprtigroup element in a port group of the component type

componert—tyre—port—cr Uu_b/_Jl.\].ClltJl.le.CJ_ —etement oo E—or uu_b/_J._\, entifier
Naming Rules

The defining identifier of a defined port connection declaration must be unique in the local namespace of
the component implementation with the connection subclause. For mode-specific connection
declarations, as indicated by the in_modes_and_ transitions subclause, a connection name may
appear more than once.

The connection identifier in a port connection refinement declaration must refer to a named connection
declared in an ancestor component implementation.

-120 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A source or destination reference in a port connection declaration must reference a port or port group
declared in the component type, a port or port group of one of the subcomponents, or a port or port group
that is an element of a port group in the component type.

Legality Rules

The ultimate source of a semantic port connection must be a feature of a thread, processor, or device.
The source feature referenced in a port connection declaration must be a feature of a thread, thread
group, process, processor, device, or system component. The ultimate destination of a semantic port
connection must be a port of a thread, a processor, a device. If the ultimate destination is the result of a
mode transition, the mode change is indicated by the mode subclause of the respective thread, thread

group, process,
transitions. The
thread, thread gn

One end of the ¢

If the ultimate ¢
ultimate source 1

If a semantic pq
ultimate destinat

If a semantic poft connection is declared to apply to a particular mode transition, then th

component mus
destination comp

The category of
described in thd
connection must

The direction de
the direction dec]

If the
the {
port,
com

If the

destination feature referenced in a port connection declaration must-k
oup, process, processor, device, or system component.

onnection must be a thread. The other end may be a processof;“a devici

estination of a semantic port connection is the result-of-a mode tra
hust be an out event port.

rt connection is declared to apply to a particularxmode, then the ultin
on components must be part of that mode.

t be part of a system mode that includes the old mode identifier
onent must be part of a system mode'that includes the new mode identi

the port connection declaration~must match the source and desting
following paragraphs. This implies that all connection declaration
be of the same category.

ared for the source.feature(s) as defined by the following rules:

port connection declaration represents a connection between sibling ¢
ource must®e an out or an in out port and the destination must be a
or in the\case of port group connections the source and destination por
blements of each other (see Section 8.2).

%

one of its mode
e a feature of a

p, or a thead.

hsition, then the

hate source and

ultimate source
nd the ultimate
er.

tion features as
of a semantic

S

»]

tlared for the destination feature of a port connection declaration must b¢ compatible with

bmponents, then
N in or an in out
groups must be

I on d : on | I

ents of two port

groups in the component type, then source must be an in or an in out port and the
destination must be an out or an in out port, or in the case of port group connections the
source and destination port groups must be complements of each other (see Section 8.2).

If the port connection declaration represents a connection up or down the containment

hierarchy, then the source and destination must both be an out or an in out port, or both an
in or in out port, or in the case of port group connections the port groups of the same port

group type.

A data port cannot be the destination feature reference of more than one port connection declaration
unless each port connection declaration is (are) contained in a different mode. In this case, the restriction
applies for each mode.

- 121 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The ultimate source and ultimate destination of a delayed port connection must be periodic threads.

For data and event data port connections, the data classifier of the source port must be identical to the
data type of the destination port.

If more than one port connection declaration in a semantic port connection has a property association for
a given connection property, then the resulting property values must be identical.

For port group connections the following must hold:

e |f the connection declaration represents a component connection between sibling
components, the port group types must be complements as indicated with the inverse of

statgment in one of the two port group types.

If the
the g

connection declaration represents a connection up or down the contai
ort group types must be identical.

hment hierarchy,

Standard Properties

Connection_Protocol: Supported_Connection_Protocols

Allowed_Conn
inherit 1

bction_Binding_Class:

ist of classifier (processor, bus, device)

Allowed_Conng¢ction_Binding: inherit list of reference (bus, procegsor, device)

Not_Collocated: list of reference (data, (Ehread, process, system, |connections)

Actual_Conne¢tion_Binding: inherit reference (bus, processor, device)

Semantics

A semantic port
processor and a
destination can |

connection represents directed flow of data and control between two thn
thread, or a devicetand a thread. In the case of event port connect
€ a in a new mode:

eads, between a
ons the ultimate

The AADL supp(
connections, i.e.
receives an instg
can support mu

rts n-to-n connectivity for event and event data ports. A port may have
its content\is transmitted to multiple destinations. This means that eac

tiple incoming connections resulting in sequencing and possibly que

multiple outgoing
destination port

nce of the-event, or event data being transmitted. Similarly, event and]:event data ports

ing of incoming

events and even} data.

Data connections are restricted to 1-n connectivity, i.e., a data port can have multiple outgoing
connections, but only one incoming connection. If the component with the destination data port has
modes then this restriction applies to each mode. Port groups may have multiple outgoing and incoming
connections unless any ports that are elements of a port group place additional restrictions.

If a component has an in out port, this port may be the destination of a connection from one component
and the source of a connection to another component. Bi-directional flow between two components is
represented by two connections between the in out ports of two components.

A port connection can be refined by adding property associations for the connection in a connection
refinement declaration.

-122 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A port connection declared with the optional in_modes_and_transitions subclause specifies
whether the connection is part of specific modes or is part of the transition between two specific modes.
The detailed semantics of this subclause are defined in Section 11.1.

While in a given mode, transmission over a port connection only occurs if the connection is part of the
current mode.

During a mode switch, transmission over a data port connection only occurs at the actual time of mode
switch if the port connection is declared to apply to the transition between two specific modes. The actual
mode switch initiates transmission. This allows data state to be transferred between threads active in
different modes.

A data port conngction is declared to be immediate (“->”) or to be delayed (“->>"). Ajsgmantic data port

connection is considered to be delayed if at least one of the connection declarations i

delayed. Othe

top of the contaipment hierarchy of a semantic connection.

For immediate d
and enters the g
and receiving th
receiving thread
thread’s port var

immediate conngction. Their value is the data port value of the sending thread at the tin

thread’s executid

Immediate and @
threads executin
connection, shoV

declared to be

ise, the semantic data port connection is considered to be immedigte. Typically, a
delayed data connection is specified through the sibling connection declarationyize., the

uspended state. Immediate data transfer only occurs“when the period
ead align, i.e., their dispatch occurs logically simultaneous. The actual
is delayed until the sending thread completes”execution. The content
ables is determined at the time of dispatch-except for data ports that 3

n completion.
elayed connections are illustrateddn Figure 12. Thread 1 and Thread 2

g at a rate of 10Hz, i.e., theyare logically dispatched every 100 ms.
yn on the left of the figure, the\actual start of execution of the receiving t

eclaration at the

Ata port connections the data transmission is initiated«wvhen the source thread completes

s of the sending
execution of the
of the receiving
re connected by
e of the sending

are two periodic
For immediate
hread (Thread 2)

will be delayed after its dispatch event until)the sending thread (Thread 1) completes éxecution and its

out port data va
twice the rate of

to receive the dajta at completion of Thread 1. Every other time Thread 2 will start executi

time with the old

For delayed datg
The data is avail
after the source
logical time inste

ue has been transferred into the in port of the receiving thread. If Thre
Thread 1, then the execution of Thread 2 will be delayed every time the

value in its data port.

port connections, the data transmission is initiated at the deadline of th
hble atthe destination port at the next dispatch of the destination thread
thread deadline. If the source deadline and the destination dispatch o
nt;.the transmission is considered to occur within the same time instan

Ad 2 executes at
wo periods align
ng at its dispatch

e source thread.
that occurs at or
ccur at the same
k. This is shown

on the right of Fig

goro—2—The-eutput-of Thread—tis-made-avaiablotoThread 2at-th

beginning of its

next dispatch. Thread 1 producing a new output at the next dispatch does not affect this value.

-123-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Petiodic 10 Hz Periodic 10 Hz
,-—'_'_r _,_:—"'_F
fTITTTTTTTTTTG Foo T N g TTTTETITTTR ol T
4 Thread 1 Thread 2 s Thread1 p—#— Thread2
. . b e e e e e e e m U e e e e e e e ———
Thread 1 Thread 1
Thread 2 v v Thread 2 N\ \
I t i > f I : >
Tn T4 Tz Tno Ty . Tz
Immediate Connection Delayed Connection

Figure 12 Timing of Inmediate & Delayed Data Connections

If multiple transrissions occur for a data port connection from the source thread befors
the destination tiiread, then only the most recently transmitted data is available in the_de
other words, thg destination thread undersamples the transmitted data. In thelcase d
periodic threads] this situation occurs when the source thread has a shorter pgriod tha
thread. In the case of a periodic thread connected to an aperiodic thread; this situat
aperiodic thread| receives two dispatch events with an inter-arrival time larger than t
source thread. |n the case of an aperiodic thread connected to a periodic thread, this S
the aperiodic thr¢ad has two successive completion times less than the period of the peri

If no transmissign occurs on an in data port between two dispatches of the destination
thread receives the same data again, resulting in oversampling-of the transmitted data. 4
is accessible to fhe source text of the thread as part of the port variable to determine wh
fresh. This allows a receiving thread to determine whether a connection source is prov
expected rate orfat all.

e the dispatch of
stination port. In
f two connected
h the destination
on occurs if the
ne period of the
ituation occurs if
bdic thread.

thread, then the
\ status indicator
ether the data is
iding data at the

The semantics
deterministic cor
the sending ang
execution and v3

of immediate and delayed.data transmission between periodic

receiving thread are statically known and are not affected by pree
riation in actual execution. time.

NOTES:

h
hmunication of state data. .The alignment of transmission start and en’k‘

Such deterministig
explicit send and
executed at the ng
and result in non-g

communication-cannot always be guaranteed if the transmission is initiated
receive service calls in the source text of the sending and receiving thread.
rmal thread-priorities, the time of actual data transfer through the send and red
eterministic change in the send and receive order of two communicating threads

reads assures
times between
ption of thread

and completed by
If these calls are
eive call may vary

If a processor o

dévice is the data connection source, then the transmission is initiate

 and completed

when the destination thread is dispatched.

For event and event data connections the transmission of control and data occurs immediately when the
source thread executes a Raise_ Event call.

If the event connection source is a device or processor, then the occurrence of an interrupt represents the
initiation of an event transmission.

Transmission completion for event and event data connections results in queuing of the event or event
data. It also represents the arrival of a dispatch request for an aperiodic or sporadic thread, if the thread’s
Dispatch port is not connected. For details on the content of port variables at the time of dispatch for

periodic, aperiod

ic and sporadic threads see Section 8.1.

- 124 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Within a synchronized system, an event arrives logically simultaneously at all ultimate connection
destinations (see also Section 12.3).

Arrival of events on event ports can also trigger a mode switch if the event port is named in a mode
transition originating in the current mode (see Section 11). Events that trigger mode transitions are not
queued at event ports.

Processing Requirements and Permissions

The temporal semantics for port connections define several cases in which the transmission initiation and
completion times are identical. Wh|Ie it is not possible to perform a transmission mstantaneously in a
physical system on schedule that
preserves the te P
where the actu
transmission. S
transmission. S
the logical sema

result in undersampling when the period of the sending thread is fess than the period| of the receiving
pling occurs when the period of the sending thread is greater than the period of the

A method of implementing systems is permitted to provide an optimization which may
hysical transfers of data that can be guaranteed to be overwritten,| or that can be
e identical to previously transferred values: Error-free transmission may be assumed
such an optimization.

For port connec’:}ons between periodic threads, the standard semantics and default prop

thread. Oversa

receiving thread
eliminate any p
guaranteed to b
when performing

A method of buil
failed transmissi
by an applicatio
report a failure 1
method of buildi
arriving transmis
source languagse
information abol
and error detecti

Hing systems must include a runtime capability in every system to detect
bn over a data connection between periodic threads to the degree of as
. A method of building systems must include a runtime capability in
o perform a transmission\ by a sending periodic thread to all connect
hg systems must include. a runtime capability in every system to det¢
sions over any conngction to the degree of assurance required by an

annex to this standard specifies the application program interface use
t transmissions, A method of building systems may define additional
bn mechanisms*and associated application programming interfaces.

an erroneous or
Surance required
every system to
bd recipients. A
ct data errors in
pplication. The
d to obtain error
error semantics

- 125 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

All data values that arrive at the data ports of a receiving thread are immediately transferred at the logical arrival time
into the storage resources associated with those features in the source text and binary image associated with that
thread. A consequence of the semantic rules for data connections is that the logical arrival time of a data value to a
data port contained in a thread always occurs either when that thread is dispatchable or during an interval of time

between a dispatch event and a delayed start of execution, e.g., due to an immediate connection.

That is, data

values will never be transferred into a thread’s data ports between the time it starts executing and the time it
completes executing and suspends awaiting a new dispatch.

Arriving event and event data values may be queued in accordance with the queuing rules defined in the port
features section. A consequence of the semantic rules for event and event data connections is that there will be

exactly one dispa

rmm@mmmmﬂmmﬂmwmmmm

overflow, and event data values will never be transferred into a thread between the time it starts

time it completes 3

-- A simple
-- The threa
-- The conne
data Alpha_T
properties
Source_Da

end Alpha_Ty]

port group X

features
Alpha o1
Beta in

end xfer_plu

port group X

nd suspends awaiting a new dispatch.
Examples

bxample showing a system with two processes ‘and thread
s have a semantic connection.
rtion declarations follow the containment hierarchy.

ype

fa_Size => 256 B;

be ;
Fer_plug

bt data port Alpha_ Type;
data port _Alpha_ Type;

J ;

Fer Socket

lost due to queue
executing and the

inverse o

xfer_ plug

end xfer_ socket;

thread P

features

Data_Source

end P;

out data port Alpha_Type;

thread implementation P.Impl

- 126 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

properties
Dispatch_
Period=>

end P.Impl;

process A
features
Produce

end A;

process impl
subcomponent
Producer
Result_Co
connections
data port
data port
end A.Impl;

thread Q
features
Data_Sink

end Q;

Protocol=>Periodic;

10 ms;

port group xfer_plug;

Ementation A.Impl

thread P.Impl;
Lsumer : thread Q.Impl;
Producer.Data_Source -> Produce<?@lpha;
Produce.Beta -> Result_Consumer.Data_Sink;

in data port RAlpha_Type;

thread implementation Q.Impl

properties
Dispatch_
Period=>

end Q.Impl;

process B
features
Consume

end B;

process impl

= i ul n . Jo
FrOoCcOoOCOTT—>TrCcrIToCTTrCY

10 ms;

port group xfer_ socket;

ementation B.Impl

-127 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subcomponent
Consumer
Result_Pr

connections
data port
data port

end B.Impl;

system Simpl

end Simple;

system imple
subcomponent

pr_A pr
pr_B pr

connections

s
thread Q.Impl;

oducer thread P.Impl;

Consume.Alpha -> Consumer.Data_Sink;
Result_Producer.Data_Source -> Consume.Beta;

%

rentation Simple.Impl

bcess A.Impl;

bcess B.Impl;

port group pr_A.Produce -> pr_B.Consume;

end Simple.T

9.1.2

Parameter conn

in a thread. Parameter connections-may be declared from an in data or event data port
event data port| of the containing thread to a subprogram call in or in out paran
connections alsp specify conngctions from an in parameter or in out parameter o

Parame

npl;

er Connections

ctions represent flow of data between the parameters of a sequence of

subprogram to a|subprogramrcall in or in out parameter, from a subprogram call out or

to a out or in olut paraméter of the containing subprogram, and from a subprogram c3
parameter to a gubprogram call in or in out parameter or an out or in out data or even
containing thregd.
hierarchy of subprogram calls nested in other subprograms. This is illustrated in Figure 1

In/other words, the parameter connection declarations follow

subprogram calls
or in out data or
eter. Parameter
f the containing
n out parameter
Il out or in out
data port of the
the containment
3.

- 128 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

parameter
connection ,

Figure 13 Parameter Connections

For parameter cpnnections, data transfer occurs at the time of the subprogram call and gall return. In the
case of subprogfam calls to server subprograms in other threads, the data is first-irangferred to a local
proxy and from there passed to the remote subprogram.

Syntax

parameter_cohnection ::=
[definihg parameter._connection_identifier :]
paramete}r source_unique_parameter_identifier
-> destination_unique_parameter_identifier
[| { { property association }%. 371

[|[in_modes] ;

parameter_copnection_refinement (:¢=
connectipn identifier : refined to parameter
{ {|property_association }"}

[ifg_modes] :

unique_param¢ter identifier ::=

-- parameéter in the thread or subprogram type

compon€Nt_Ctype_parameter _1dentitier

-- parameter in another subprogram call

subprogram call_identifier . parameter_identifier

-- data or even data port in the thread type of the component type

component_type_port_identifier

-- port element in a port group of the component type

-129 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- The port element must be a data or event data port

component_type port_group_identifier element_port_identifier

Naming Rules
The defining identifier of a defined parameter connection declaration must be unique in the local
namespace of the component implementation with the connection subclause. For mode-specific
parameter connections, as indicated by the in_modes subclause, a connection name may appear more
than once.

The connection identifier in a parameter connection refinement declaration must refer to a named

connection decld

A source or dest
preceding subpr
data port or evel
event data port t

Parameter conngctions must adhere to the following rule regardingytheir source and desti

the source must
and the destinati

the source mus
destination a suh

the source must
parameter of the

the source must
or in out paramg

If the parameter
then the source

parameter. Fur
sequence, and
sequence.

If a parameter cq

red in an ancesior component impliementation.

nation reference in a parameter connection declaration must reference
bgram call, a parameter declared in the component type of the eontainin
ht data port declared in the component type of the enclosing’thread,
nat is an element of a port group in the component type of the*enclosing

Legality Rules

be an in data or event data port or in out data or event data port of the
pn a subprogram call in or in out parameter,

t be an in parameter or in out parameter of the containing subp
program call in or in out parameter,

be a subprogram call out or
containing subprogram,

in out parameter and the destination

be a subprogram call out or in out parameter and the destination a su
ter or an out or in oUt-data or event data port of the containing thread.

connection decldration represents a parameter connection between sib

hermore, the-source must be a parameter of a preceding subprograr
the destination must be a parameter of a succeeding subprogram

nnection is declared to apply to a particular mode, then the source and

A parameter of a
g subprogram, a
br a data port or
hread.

hation:

ontaining thread
rogram and the
a out or in out
bprogram call in

ing components,

must be an outor an in out parameter and the destination must be af in or an in out

n call in the call
call in the call

destination must

hde

be part of that m

A parameter cannot be the destination feature reference of more than one parameter connection
declaration unless the source feature reference(s) of each parameter connection declaration is (are)
contained in a different mode. In this case, the restriction applies for each mode.

The data classifier of the source port or parameter must be identical to the data type of the destination
port or parameter.

Semantics
Parameter connections represent sequential flow of data through subprogram parameters in a sequence

of subprogram calls being executed by a thread. Those calls may be performed locally, i.e., within the
virtual address space of the containing process, or remotely by a synchronous call to a server

-130 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subprogram in another thread.

subprogram proxy.

In the latter case, the parameter values are passed via a local

Parameter connections are restricted to 1-n connectivity, i.e., a data port or parameter can have multiple
outgoing connections, but only one incoming connection.

If a subprogram has an in out parameter, this parameter may be the destination of an incoming
parameter connection and the source of outgoing parameter connections.

Parameter connections follow the call sequence order of subprogram calls.

In other words, parameter

connection sources must be preceding subprogram calls, and parameter connection destinations must be

successor subpr

aram calls.

The optional in
detailed semanti

9.1.3 Access

Access connecti
by subprograms
and devices by
semantic access
declarations tha
ultimate source t

The ultimate so
being shared.

without a contai
thread or a suby
memory, or a de
of access. Figurn

| modes subclause specifies what modes the parameter connection
Cs of this subclause are defined in Section 11.1.

Connections

pns represent access to shared data components by-econcurrently exe
executing within thread. They also denote communiCation between prog
accessing a shared bus. These connections are semantic access
connection is defined by a sequence of one~or more individual ac
follow the component containment hierarchy in a fully instantiated
D an ultimate destination.

rce of a semantic access connection\is the data component or bus ¢

is part of. The

uting threads or
eSSsors, memory,
connections. A
cess connection
system from an

bmponent that is

he ultimate destination of an access connection is the component reqliiring the access

ned subcomponent also requiring-access. For data access connectio
rogram call. For bus access(connections the ultimate destination may
vice. The direction of the{connection follows from the provider of acce
e 14 illustrates a semantic data connection from the data component D t

ns this can be a
be a processor,
s to the requirer
 thread Q.

Utimate source

System Simple
Processz A | Procesz B
Diata D Thread @ 4
A
Y A S
i N T 7

7 7
Provided au:u:e:&s\\ | f‘gﬁequired ACCESS
Access connection

Utimate destination

Figure 14 Semantic Access Connection

The flow of data of a semantic access connection is determined by the fact whether an ultimate
destination has read access or write access to the shared component. The actual data flow is specified
using the properties Required_Access or Provided_Access.

131 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Syntax

access_connection ::=
[access_connection_identifier :]
(bus | data) access unique_access_provider_identifier
-> unique_access_requirer_identifier
[{ { property_association }*} 1

[in_modes] ;

access_conne¢ttion_refinement ::=
connectipn_identifier : refined to (bus | data) access
{ { property_association }*}

[ir}_modes 1 ;

unique_acces$_provider_identifier ::=
-- required access feature in the component type

compongnt_type access_identifier

-- provided access in a subconponent

data_ok bus_subcomponent_identifier . access_identifier

-- data or bus subcomponent being accessed

data_ok bus_ subcomponent_identifier

unique_acces$_requiréer_identifier ::=
-- provided access feature in the component type

componentitype access_identifier

-- required access in a subcomponent

data_or_bus_subcomponent_identifier . access_identifier

Naming Rules

The defining identifier of a access connection declaration must be unique in the local namespace of the
component implementation with the connection subclause. For mode-specific access connections, as
indicated by the in_modes subclause, a connection name may appear more than once.

The connection identifier in an access connection refinement declaration must refer to a named
connection declared in an ancestor component implementation.

132 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A provider reference in an access connection declaration must reference a provides access feature of a
subcomponent, a requires access feature in the component type of the containing component, or a data
or bus subcomponent. A requirer reference in an access connection declaration must reference a
requires access feature of a subcomponent or a provides access feature in the component type of the

containing component.

Legality Rules

All access declarations forming a semantic data access connection must be data access declarations. All
access declarations forming a semantic bus access connection must be bus access declarations.

The ultimate sou
destination of a s
subprogram call
destination of a
memory, or devi

If a semantic ac
ultimate destinat

For access conn
be compatible w

If th
featd
com

If th
cont
be 4
prov

A requires accel
declaration unle
contained in a di

For access conr
requires access.

emantic data access connection must be a requires data access featur
without a containing subprogram call requiring the same data acce
semantic bus access connection must be a requires bus access/featur
be subcomponent.

on must be part of that mode.

ections between access features, the direction declared for the destina
th the direction declared for the source feature(s)as defined by the folloy

a)

-

access connection declaration represents an access connection
res of sibling components, then the sourCe must be a provides access
bonent and the destination must be a tequires access.

e access connection declaration represents a feature mapping u
hinment hierarchy, then the sgurce and destination must both be a requ

provides access, or the{ spurce a data or bus subcomponent and t
des access.

Ss cannot be the-'destination feature reference of more than one ag
ss the source, feature reference(s) of each access connection ded
ferent mode: In this case, the restriction applies for each mode.

ections_the data type of the provider access must be identical to the

If more than one

rce of a semantic access connection must be data or bus subcomponent. The ultimate

of a thread or a
The ultimate
of a processor,

Cess connection is declared to apply to a particular mode,\then the ultiimate source and

ion feature must
ving rules:

between access

or a data or bus

o or down the
res access, both
he destination a

cess connection
laration is (are)

data type of the

access feature in a semantic access connection has an access Reaui i

red_Access Or

Provided_Access property association, then the resulting property values must be compatible. This
means that the provider must provide read-only or read-write access if the requirer specifies read-
only. Similarly, the provider must provide write-only or read-write access if the requirer specifies
write-only. The provider must provide read-write access if the requirer specifies read-write.
Finally, the provider must provide by-method access if the requirer specifies by-method access.

Semantics
An access connection represents access to a shared data component by concurrently executing threads

or by subprograms executing within thread. A bus access connection represents communication between
processors, memory, and devices by accessing a shared bus.

-133 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Access connections are restricted to 1-n connectivity, i.e., a data or bus component can have multiple
outgoing access connections, but a requires access feature can only have one incoming connection.

The actual data flow is determined by the value of the Required_Access or Provided_Access
property. Read means flow of data from the shared component to the component requiring access, and
write means flow of data from the component requiring access to the shared component.

The optional in_modes subclause specifies what modes the access connection is part of. The detailed
semantics of this subclause are defined in Section 11.1.

9.2 Flows

The purpose of providing the capability of specifying end-to-end flows is to support varigus forms of flow
analysis, such ag end-to-end timing and latency, reliability, numerical error propagation, Quality of Service
(QoS) and resdurce management based on operational flows. To support sdch analyses, relevant
properties are provided for the end-to-end flow, the flow specifications of components, and the ports
involved in the flpw to be analyzed. For example, to deal with end-to-end laiency the end-to-end flow may
have properties| specifying its expected maximum latency and actual,latency. In addition, ports on
individual compdnents may have flow specific properties, e.g., an in_port property specifies the expected
latency of data felative to its sensor sampling time or in terms .of<{end-to-end latency from sensor to
actuator to reflegt the latency assumption embedded in its extrapolation algorithm.

End-to-end flo
declarations.

are represented by flow specification,(flow implementation, and |end-to-end flow

A flow specific
component’s po
flow originating i
Sink.

tion declaration in a component type specifies an externally visible
ts, port groups, or parameters. yThe flow through a component is callg
N a component is called the flou.source. A flow ending in a component

flow through a
d a flow path. A
s called the flow

A flow implementation declaration in a.component implementation specifies how a floy
realized in the implementation as a-sequence of flows through subcomponents along
the flow specification in port to the“flow specification out port. This is illustrated in Figure

v specification is
onnections from
15. The system

type S1 is declafed with three poris and two flow specifications. These are the flows th
that are externally visible. Imthe example, both flows are flow paths, i.e., they flow thrg

The ports identiflfed by theflow specification do not have to have the same data type, nof

be the same port type, i:€», one can be an event port and the other an event data port.
specifications to pe used to describe logical flows of information.

ough system S1
ugh the system.
do they have to
This allows flow

The system implern

ins two process

subcomponents P1 and P2 anh has two ports and a flow path spe0|f|cat|on as part of its process type
declaration. The flow implementation of flow path F1 is shown in both graphical and textual form. It starts
with port pt1, as specified in the flow specification. It then follows a sequence of connections and
subcomponent flow specifications. Modeled in the figure as the sequence of connection Cf1,
subcomponent flow specification P2.F5, connection C3, subcomponent flow specification P1.F7,
connection C5. The flow implementation ends with port pt2, as specified in the flow specification for F1.

-134 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Sy=stermn mplementation S1.mmpl

Systen 51

N

(pt1 = _ flowpahPs i;pt?
pt2
t Flow path F1_ _ _l Process P2 E
?“"’ === | cs |
- 3
Flow path F2 *p‘tS f
L) _Flow path F7 {
- -
Flow Specification Process P1)
Flowy path E—ptd—eotd
Flowy path B2 ptl -= pts Flow Implementation of flow path F1
Flowy path F4: ptl -= C1 -= P2F5 -= C3 -= PL.E?-= CE -= pt2

Figure 15 Flow Specification & Flow Implementation

An end-to-end fl
processors. Arn
declarations are
hierarchy that is
subcomponent i

bw is a logical flow through a sequence of system compdnents, i.e., thre
end-to-end flow is specified by an end-to-end<{flow declaration.
declared in component implementations, typically~the flow implementati
the root of all threads, processors, and devices”involved in an end-t
lentified by the first subcomponent flow spegification referenced in the
declaration contains the system component that is the starting point of the end-to-end fl
named subcomponent flow specifications contain additional system components. In the
in Figure 15, the| flow specification F7 of process P1_may have a flow implementation th
through two threpds which is not included in this view of the model. The identified subg
final referenced pubcomponent flow specification contains the last system component g

event, event datd,
end within the cqmponent,¢alled a flow sink. Or a flow may go through a component fro

hds, devices and
End-to-end flow
pn in the system
p-end flow. The
end-to-end flow
pw. Succeeding
example shown
at includes flows
omponent of the
f the end-to-end

g incoming ports,

he ports can be

or data ports=\A flow may start within the component, called a flow sodrce. A flow may

M one of its in or
path. In the case

an in port group is processed and derlved data from one of the port group s contalned
through different out ports.

Syntax

flow_spec
flow_source_spec
| flow_sink_spec

| flow_path_spec

pming in through
ports is sent out

- 135 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

flow_spec_refinement ::=
flow_source_spec_refinement
| flow_sink_spec_refinement

| flow_path_spec_refinement

flow_source_spec ::=
defining flow_identifier : flow source flow_feature_identifier

[{ { property_association }*} 1 :

flow_sink_spec ::=
defining| flow _identifier : flow sink flow_ feature_idengifier

[{ { property_association }*"} 1 :

flow_path_spec ::=
defining| flow _identifier : f£low path sourceflow_feature_identfifier ->
sink_flow_feature' identifier

[{ { property_association }*"} 1 :

flow_source_gpec_refinement ::=
defining| flow _identifier :

refined to flow source { { property_association }* }

~e

flow_sink_spec_refinement.™ :=
defining| flow _idémtifier :

refined to-flow sink { { property_association }}

~e

flow_path_sp SC—E efitremenrt———
defining flow _identifier :

refined to flow path { { property_association }"}

~e

flow_feature_identifier ::=
port_identifier
| parameter_identifier
| port_group_identifier

| port_group_identifier . port_identifier

-136 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Naming Rules

The defining flow identifier of a flow specification must be unique within the interface name space of the
component type.

The flow feature identifier in a flow path must refer to a port, parameter, or port group in the component
type, or to a port or port group contained in a port group in the component type.

The defining flow identifier of a flow specification refinement must refer to a flow specification or
refinement in an ancestor component type.

Legality Rules

The direction deglared for the destination of a flow path specification declaration mustybg@ compatible with
the direction declared for the source as defined by the following rules:

e If thg source is a port or parameter, its direction must be must be‘arin or an jn out.
o |f thg destination is a port or parameter, its direction must be~an out or an in ¢ut.

The direction deglared for the destination port or parameter of a flow.source specification|declaration must
be out or in out.

The direction deg¢lared for the source port or parameter of a\flow source specification de¢laration must be
in or in out.

Standard.Properties

Latency: Time
Throughput: Pata_Volume
NOTES:

These properties pre examples of properties for latency and throughput analysis. Additional groperties are also
necessary on port$ to fully support-throughput analysis, such as arrival rate and data size. Approgriate properties for
flow analysis may pe defined by.the tool vendor or user (see Section 10).

Semantics

A flow specification declaration represents a logical flow originating from within a component, flowing
through a component, or ending within a component.

In case of a flow through a component, the component may transform the input into a different form for
output. In case of data or event data port, the data type may change. Similarly the flow path may be
between different port types and between ports, parameters and port groups. This permits end-to-end
flows to be specified as logical information flows through a system despite the fact that the information is
being manipulated and its representation changed.

Examples

process foo

features

- 137 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Initcmd: in event port;
Signal: in data port gps::signal_data;
Resultl: out data port gps::position.radial;
Result2: out data port gps::position.cartesian;
Status: out event port;
Flows
-- two flows split from the same input
Flowl: flow path signal -> resultl;
Flow2: flow path signal -> result2;
-- An inpfit is consumed by process foo through its initcmdVport
Flow3: flow sink initcmd;
-- An output is generated (produced) by process foo and made available
-- through its port Status;
Flowd4: flow source Status;
end foo;
9.2.2 Flow Implementations
Component implementations must provide an .implementation for each flow speciffcation. A flow

implementation

specification, it §
itself and ends W

the flow implem

within the compdg
specification, thg
characteristics
in the flow specification. Flow, implementations can be declared to be mode-specific.

By declaring floy
user of a compg

checked separat

flow_implementation

(

|
[

[

flow_source_implementation

flow_so

flow_path_implementation
{ { property_association

in_modes_and_transitions

fdeclaration identifies the flow through its subcomponents. In case ¢
tarts from the flow source.of.a subcomponent or from the componen
ith the port named in the'flow source specification. In case of a flow s
bntation starts with the port named in the flow sink specification decld
nent implementationiitself or with the flow sink of a subcomponent. In c3
flow implementation’starts with the source port and ends with the destir
odeled by properties on the flow implementation are constrained by the

nent‘and the implementer of a component. Compliance with the spec

f a flow source
implementation
ink specification,
ration and ends
se of a flow path
ation port. Flow
property values

specifications explicitly we clearly specify the expectations of a componpent, for both the

fications can be

Fly from both perspectives.

Syntax

urce_implementation

flow_sink_implementation

-138 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

flow identifier : flow source

{ subcomponent_flow identifier =-> connection_identifier =-> }

flow_feature_identifier

flow_sink_implementation ::=
flow identifier : flow sink
flow_feature_identifier

{ =-> connection_identifier =-> subcomponent_flow_identifier }~

flow_path_implementation ::=
flow_identifier : f£low path
source| flow_feature_identifier
[{ =>| connection_identifier =-> subcomponent_fdow_identifien
-> tonnection_identifier]

-> sink flow feature_identifier

flow_implementation_refinement ::=
flow_soufrce_implementation_refinement
| flow_sink_implementation_refirement

| flow_path_implementation_refinement

flow_source_jmplementation(refinement ::=
flow_identifier :

refined to flow- source

—

({ propexty_association }*} [in_modes_and_transitions

| in|modes’ and transitions

) i

flow_sink_implementation_refinement ::=
flow identifier
refined to flow sink
({ { property_association }"} [in_modes_and_transitions]
| in_modes_and_transitions

) 7

flow_path_ implementation_refinement ::=

-139 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

flow identifier

refined to flow path

(

{ { property_association }"}

[in_modes_and_transitions

| in_modes_and_transitions

)

.
’

subcomponent_

subcomponent_identifier .

flow_identifier

flow_spec_identifier

]

The flow identifid

Naming Rules

r of a flow implementation must name a flow specification in the.eompg

flow implementation must be declared at most once in each component implementa

specific flow im
implementation 1

The flow feature
component type,

The subcompon
component type

The connection
implementation.

The defining flo
refinement in an

The source of a
flow feature of th
specification.

The destination

plementations, as indicated by the in_modes_and_trafisitions s
ame may appear more than once.

identifier in a flow implementation must refer to.a port, parameter, or
or to a port or port group contained in a port greup in the component typ

ent flow identifier of a flow implementation must name a flow spg
of the named subcomponent.

identifier in a flow implementation®* must refer to a connection in
v identifier of a flow implementation refinement must refer to a flow in
ancestor component implementation.

Legality Rules

connection named in a flow implementation declaration must be the sar]

of a~coehnection named in a flow implementation declaration must be

destination flow

nent type. Each
ion. For mode-
bclause, a flow

port group in the
e.
cification in the

the component

plementation or

ne as the source

e flow implementation or as the destination of the directly preceding subcomponent flow

he same as the

feature of the flow implementation or as the source of the dire

ctly succeeding

subcomponent flow Speciication.

If the component implementation provides mode-specific flow implementations, as indicated by the in

modes statemen

t, then there must be a flow implementation for each of the modes.

In case of a mode-specific flow implementation, the named connections and the subcomponents of the
named flow specifications must be declared for the modes listed in the in modes statement.

In a complete specification, if a system, process, or thread group component implementation contains a
flow implementation declaration, then the flow implementation must include flow specifications through
named thread, processor, or device subcomponents.

- 140 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

If the category of the component type containing a flow specification declaration is thread or subprogram,

and a component implementation of the component type does not contain subprogram calls, then the flow

specification represents its implementation and an explicit flow implementation declaration is not required.
Standard Properties

Latency: Time

Throughput:
NOTES:

Data_Volume

These properties are examples of properties for latency and throughput analysis. Their values represent the values of

the flow implemer
semantics of the ¢

A flow implemg
component implg

A flow path imp
through zero o
specification (sq
corresponding f
corresponding fl
flow source to a

A flow impleme
parameters.

A flow through 4
event data port,
and between po
flows through a
changed.

The optional in|
part of. The detz

tation, which must satisfy the constraints of the property values of the flow
bnstraint are analysis specific.

Semantics

mentation. A flow implementation may be declaredobe mode-specific
ementation starts with the port named in the ‘carresponding flow speg
e Figure 15). A flow source implementation ends with the por
ow specification. A flow sink implementation starts with the por

pw specification. A flow path implementation may specify a flow that god
low destination without any connegtions in between.

component may transform the input into a different form for output. I
ts and port groups. This permits end-to-end flows to be specified as I

system despitelthe fact that the information is being manipulated and i

lmode’s N\and_transitions subclause specifies what modes the flow i
iled;semantics of this subclause are defined in Section 11.1.

Epecification. The

ntation declaration represents the realization of a-flow specification in the given

ification, passes

more subcomponents, and ends with the’,port named in the cofresponding flow

named in the
named in the
s directly from a

htation within a thread may € modeled as flow through subprogragn calls via their

case of data or

the data type may(change. Similarly the flow path may be between different port types

gical information
s representation

mplementation is

Examples

-- process foo is declared in the previous section

process implementation foo.basic

subcomponents
A: thread bar.basic;
-- bar has a flow path fsl from port pl to p2
-— bar has a flow source fs2 to p3
thread baz.basic;
B: thread baz.basic;

- 141 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- baz has a flow path fsl from port pl to p2

-- baz has a flow sink fsink in port reset

connections

connl: data port signal -> A.pl;

conn2: data port A.p2 -> B.pl;

conn3: data port B.p2 -> resultl;

conn4: data port A.p2 -> C.pl;

connb5: data port C.p2 -> result2;

connb6: da

connToThr
flows

Flowl: £1
Flow2: f1
Flow3: £f1
-- a flow
--i.e.,

Flowd: f1

end foo.basi

9.2.3 End-To-

An end-to-end f
sequence of thrg
source and desti

ta port A.p3 -> status;

bad: event port initcmd -> C.reset;

bw path

tignal -> connl -> A.fsl -> conn2 ->

B.fsl -> conn3 -> result2?;

bw path

tignal -> connl -> A.fsl -> connd. ->

. fsl -> conn5 -> result2;

bw sink initcmd -> connToThread -> C.fsink;
source may start in a sgsubcomponent,

rhe first named element is a flow source

bw source A.fs2 —> connect6 -> status;

.
-

End Flows

ow represents a logical flow of information from a source to a desti
ads\that process and possibly transform the information. In a complete

hation can be threads, devices, and processors.

hation through a
specification, the

Syntax

end_to_end_flow_spec ::=

defining end to_end flow _identifier : end to end flow

start_subcomponent_flow_identifier

{ -> connection_identifier

-> flow path_subcomponent_flow identifier }*

-> connection_identifier -> end_subcomponent_flow_identifier

[{ (property_association }* }]

- 142 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

[

end_to_end_flow_refinement

defining

in _modes_and_transitions

]

7

end_to_end_identifier

refined to end to end flow

({{

property_association }*} [in_modes_and_transitions

| in_modes_and_transitions

)

.
r

]

The defining eng
name space of
specific end-to-¢
flow identifier mg

The connection
implementation.

The subcompon
component type

The defining ide
an ancestor com

The flow specifiq
paths.

The start_sub
The end_subco

In case of a mog

Naming Rules

the component implementation containing the end-to-endflow declar
nd flows, as indicated by the in_modes_and_transitiéns subclaus
y appear more than once.

dentifier in an end-to-end flow declaration must refer to a connection i
bnt flow identifier of an end-to-end flow deelaration must name a flow sg
of the named subcomponent.
ntifier of an end-to-end flow refinemént must refer to an end-to-end flow
ponent implementation.

Legality Rules

ations identified by(the flow_path_subcomponent_flow_identifi

component/flow_identifier mustrefer to a flow path or a flow sou
mponént_flow_identifier must refer to a flow path or a flow sink.

e-specific end-to-end flow declarations, the named connections and the

-to-end flow identifier of an end-to-end flow declaration must be-uniqu¢ within the local

ation. For mode
P, an end-to-end

n the component

ecification in the

or refinement in

er must be flow

fce.

subcomponents

of the named flow specifications must be declared for the modes listed in the in modes statement.

Standard Properties

Expected_Latency: Time

Actual_Latency: Time

Expected_Throughput:

Actual_Throughput:

Data_Volume

Data_Volume

- 143 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

These properties are examples of properties for latency and throughput analysis. The expected property values
represent constraints that must be satisfied by the actual property values of the end-to-end flow. The semantics of
the constraint are analysis specific.

Semantics

An end-to-end flow represents a logical flow of information through a system instance. The end-to-end
flow is declared in a component implementation that is the common root of all components involved in the
flow. The end-to-end flow starts with a subcomponent flow specification, followed by zero or more
connections and subcomponent flow specificaitons, and ends with a connection and a subcomponent

flow specification
connections to in

specifying a flow

The optional in |

of. The detailed

-- process f

process impl

subcomponent
A: thread
-- bar ha
-- bar ha
C: thread
B: thread
-- baz ha

-- baz ha
connections
connl: da
conn3: da
conn4d: da

conn5: ewv

connToThr
flows
Flowl: f£1

Flow3: flow sink initcmd -> connToThread -> C.fsink;

Ementation foo.basic

bar.basic;

baz.basic;
baz.basic;
E a flow-path fsl

E a £Fow sink fsink

4

. The actual end-to-end tlow starts from a device, processor, or thread,
termediate threads and ends with a thread, device or processor. If the

of an end-to-end flow is a thread, its contribution to the flow may be limited tg-a)par
implementation through a subset of its subprogram calls.

imodes_and_transitions subclause specifies what modes the end-t

semantics of this subclause are defined in Section 11,4~

Examples

bo is declared in the previous section

E a flow path fsl from'pl to p2

E a flow source fig2+to p3

follows semantic
start or end point
ial execution by

p-end flow is part

taport—=tgrmat— &Pt
ta port C.p2 -> resultl;
ta port A.p2 -> C.pl;

ent port A.p3 -> Status;

ead: event port initcmd -> C.reset;

ow path

signal -> connl -> A.fsl -> conn4 ->

C.fsl -> conn3 -> result2;

- 144 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

-- a flow source may start in a subcomponent,
-- i.e., the first named element is a flow source
Flow4: flow source A.fs2 -> connectb5 -> status;
-- an end-to-end flow from a source to a sink
ETEl: end to end flow
A.fs2 -> connd -> C.fsink;
-- an end-to-end flow where the end points are not sources or sinks

ETE2: end to end flow

A.fsl -> connd -> C.fsl;

end foo.basig;

- 145 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

10 Properties

A property provides information about component types, component implementations, subcomponents,
features, connections, flows, modes, and subprogram calls. A property has a name, a type, and a value.
The property name declares a name for a given property along with the AADL components and
functionality to which the property applies. The property type specifies the set of acceptable values for a
property. Each property has a value or list of values that is associated with the named property in a given
specification.

A property set contains declarations of property types and property names that may appear in an AADL

specification. Th
are applicable tg

project or toolsei.

accessed using
component type,
and subprogram

Properties can H
The time at wh
specification is g
binding decision
During analysis,

all AADL specifications. User's may define property sets that are uniqu

The properties and property types that are declared in user-defined
their qualified name. A property name declaration within a property
5, component implementations, subcomponents, features,, c@hhection
calls, for which this property applies.

ave associated expressions that are statically typedyand evaluate to
ch a property expression is evaluated may depend on the property
rocessed. For example, some expressions may\be evaluated immedi
5 have been made, and some reflect runtime,state information, e.g., tH
all property expressions can be evaluated.t6*kKnown values, if necessar

all possible runtime states. A given property name may have a default expression.

10.1 Property

A property set d¢g

property._set
property
{ proj
| p
| o

Sets

fines a named group of propertytypes, property names, and property cg

Syntax

set defining-property_set_identifier is
pberty_type~declaration
ropertysriame_declaration

roperty_ constant }°

end defi

perty types that
e to their model,
property sets are
et indicates the
5, flows, modes,

a specific value.

and on how a
htely, some after
e current mode.
, by considering

nstant values.

hirg property setr identifier
L L 3 — —

Naming Rules

Property set defining identifiers must be unique in the global namespace.

The defining identifier following the reserved word end must be identical to the defining identifier following
the reserved word property set.

Associated with every property set is a property set namespace that contains the defining identifiers for all
property types declared within that property set. This means that properties with the same identifier can
be declared in different property sets.

- 146 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A property or property type declared in a property set is named by its qualified name, that is the property

set identifier followed by the property identifier, separated by a double colon (“:”).

and property types are referred to by their property identifiers.

10.1.1 Property Types

Predeclared properties

A property type declaration associates an identifier with a property type. A property type denotes the set
of legal values in a property association that are the result of evaluating the associated property

expression.

property typ

definin

property typ

proper

property_ typ

aadlb
| enume
| numbe
| class
| refer
enumeration_

enumera

units_type

units u

Syntax

b_declaration ::=

b property. type_identifier : type property_type_ désigr

b_designator ::=

'y _type | unique_property_type_identifier
bolean | aadlstring
Fation_type | units_type
- type | range_type

| fier type

Pnice_type

fype ::=
tion (defining enumeration_literal_ identifier

(Adefining enumeration literal_identifier }*)

pits list

units_list

(defining unit_identifier

{

defining unit_identifier =>

ator

.
’

unit_identifier * numeric_literal }")

- 147 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

number_type ::=
aadlreal [real_range] [units units_designator]

| aadlinteger [integer_range] [units units_designator]

units_designator ::=
units unique_property_type_identifier

| units_list

real_range :}p= real_lower_bound .. real_upper_bound
real_lower_bpund ::= signed_aadlreal_or_constant
real_upper_bpund ::= signed_aadlreal_or_constant
integer_rang¢ ::= integer_lower_bound .. integé¥_upper_bound
integer_lower_bound ::= signed_aadlinteder_or_constant
integer_upper_bound ::= signed_aadlinteger_or_constant

signed_aadlreal_or_constant-ii=

(signed|aadlreal | [\.éign] real property_constant_term)

signed_aadliptegersor constant ::=

(signed|aad¥integer | [sign] integer_property_constant_tern

signed_aadlinteger ::=

[sign] integer_literal [unit_identifier]

signed_aadlreal ::=

[sign] real_literal [unit_identifier]

- 148 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

range_type ::=
range of number_type

| range of number_unique_property_type_ identifier

classifier_type ::=

classifier [(component_category { , component_category }) |

reference_type ::=

referenge [(" Toferabie_clemMent_Ccategory

{ , referable element_category }) 1

referable_element_category ::=

compgnent_category | connections server subprogram

unique_property_ type_identifier ::=

[property set_identifier ::] property type_identifier
Naming.Rufes

All property typg defining identifiers declared within the same property set must be distinct from each
other, i.e., uniqu¢ within the property set namespace.

A property type fis named by its property type identifier or the qualified name specifieq by the property
set/property typq identifier pair, separated.by a double colon (“::”). An unqualified property type identifier
must be part of the predeclared property sets. Otherwise, the property type identifier mpst appear in the
property set namespace.

An enumeration|type introducés an enumeration namespace. The enumeration literal|identifiers in the
enumeration list gdeclare assetof enumeration literals. They must be unique within this naJnespace.

A units type intrpducés a units namespace. The units identifiers in the units list declgre a set of units

literals. They mupt-he unique within this namespace.

The units identifier to the right of a => must refer to a unit identifier defined in the same units type
declaration.

Legality Rules

The value of the first numeric literal that appears in a range of a number_type must not be greater than
the value of the second numeric literal including the value’s units.

Range values should always be declared with unit literals if the property requires a unit literal.

The unique property constant identifier in an integer range must represent an integer constant.

- 149 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A boundless range type may be declared such that the actual range declarations have no limit on the

upper and lower

bound.

The unique property constant identifier in a real range must represent a real constant.

If the property requires a unit , then the unit must be specified for both lower and upper bound.

Semantics

A property type declaration associates an identifier with a property type.

The aadlboolean property type represents the two values, true and false.

The aadlstring

An enumeration
legal values.

A units property
values. The sq
conversion facto
measurement un

An aadilreal pro
clause is presen
of the enumerati
value. If a simplg

An aadlinteger property type represents an integer value or an integer value and its mea

an units clause i
literals specified
simple range is (]

The range type
value that is a ra
specifying a ran
greatest value o
values called th
otherwise undefi

roperty type represents all legal strings of the AADL.

property type represents an explicitly listed set of enumeratiofmidentifi

type represents an explicitly listed set of measurement\tnit identifiers a
cond and succeeding unit identifiers are declared’with a multiplier

r that is applied to the previous unit to determine the value in terms
it.
perty type represents a real value or a realvalue and its measuremen
, then the type value is a pair of values,:a'real value and a unit. The unit
DN literals specified in the units clausex‘if a units clause is absent, then t
range is present, then the real value must be an element of the specifie

5 present, then the value is a'pair of values, and unit may only be one of

represents closed’intervals of numbers. It specifies that a property o
nge term. The-range type specifies the number type of values in the rg

alled thé.upper bound of the interval, and optionally the difference b
e delta,” The delta may be unspecified, in which case the range is
hed ‘wWhether the range is an interval of the real or the rational numbers.

ers as the set of

s the set of legal
fepresenting the
of the specified

t unit. If a units
may only be one
ne value is a real
] range.

surement unit. If
the enumeration

in the units clause. If an, units clause is absent, then the value is an ipteger value. If a
resent, then the integer'value must be an element of the specified range.

this type has a
nge. A property

ge term as\ifs value indicates a least value called the lower bound ¢f the interval, a

ctween adjacent
dense, but it is

A classifier property type represents the subset of syntactically legal component classifier references
whose category matches one of component categories in the specified list. If the category list is absent,
all component classifier references are acceptable.

A reference type (indicated by the reserved word reference) represents the subset of syntactically legal
references to those components whose category matches one of component categories in the specified
list, or to connections, or to server subprogram features. If the category list is absent, all components,
connections, and server subprograms are acceptable.

- 150 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

The classifier and reference property types support the specification of properties representing binding constraints.

Examples
Length _Unit : type units (mm, cm => mm * 10,
m =>cm * 100, km => m * 1000);
OnOff : type aadlboolean;

Car_Length :rtypeeaadireal—t+—5—4 5 units—tmcter—r
Speed_Range type range of aadlreal 0 .. 250 units (kph);

10.1.2 Property Names

All property names that appear in a property association list must-be declared with property name
declarations insifle a property set. Property names are typed and{are defined for spgcific component,
port, port group, subprogram, access, mode, flow, and connection categories.

Syntax

property_namg¢_declaration ::=
defining| property_name_identifier :~\ access] [inherit]
(sipgle_valued_property | multi_valued_property)
applies to (
(property_owner_category { , property_owner_categpry }*

| all)

single_valuefl_propéerty ::=

property] typevdesignator [=> default_property_expression]

multi_valued_property ::=
list of property_ type_designator
[=>

([default_property expression { , default_property expression }])

property owner_ category ::=
component_category [classifier_ reference]

| mode | port group | flow

- 151 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

| [
| server

| [

connection_type

port group |

All property nam
other and distinc
set namespace (

The reserved wd
category list cor
These categorie

A property namg
accepts a single
defined for thos
subprogram, m
Property_Own
corresponding g
can have proper

the classifier is @ component type, then the property applies to both the type and imple

specified compo
only to the imple

applies to any Py

A property declg
rather than the
component, one

event

connection_type

] [data]
subprogram | parameter

]

port

connections

[event] [data] port | access | parameter

Naming Rules

t from all property type defining identifiers declared within that property
ontains the defining identifiers for all property names declared within.tha

Legality Rules

rd access is only permitted for property name declarations whose ap
tains categories of subcomponents that can be required or provided
5 are data and bus.

Semantics

declaration introduces a new property by~a name that is of a specifie
value or a list of values, and may specify:-a default property expression.
£ component categories, specific component classifiers, or for port,

pde, and connection categories, that are listed after the app
br_Category list. This indicates that component classifiers and
the specified category, portsiport groups, flows, subprograms, modes,

y associations for such a property. If the category specification includeg

nent category. In thecase of a component implementation classifier, the)
mentation. The reserved word all in the applies to statement indicates
operty_ Owner_.Category.

red with the* reserved word access is associated with the access to
data component itself. For example, two components can require g
requiring read-only access, while the other requires write-only access.

istinct from each

t. The property
property set.

plies to property
subcomponents.

d property type,
This property is
bort group, flow,
ies to in the
subcomponents
and connections
a classifier, and
mentation of the
property applies
that the property

b subcomponent
ccess to a data

A property decla

for a component, then its value WI|| be inherited from a containing component

determining property values are described in Section 10.3.

A property name declared without a default value is considered undefined (see also Section 10.3).

ROt be determined
The detailed rules for

A

property name declared to have a list of values is considered to have an empty list if no default value is

declared.

-152 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Wheel_speed

Examples

aadlinteger 0 rpm .. 5000 rpm units (rpm)

applies to (system);

10.1.3 Property Constants

Property constants are property values that are known by a symbolic name. Property constants are
provided in the predeclared property sets and can be defined in property sets. They can be referenced in
property expressions by name wherever the value itself is permissible.

property_ con

singll

single_value

defining

=> C

multi_valued]

defining

Syntax

Etant ::=

e_valued_property_constant | multi_valued_prioperty_co

l_property_constant ::=

| property._constant_identifier : constant

(aadlinteger | aadlreal
[units_unique_property_type 1dentifier 1)
| aadlstring | aadlboolean
enumeration_unique_property type_identifier
integer. range_uniQue_property_ type_identifier

| real_range_unigue_property_type_identifier
| integer_unigue_property_type_identifer

real_unique_property_type_identifer)

bnstant_property_value ;

| propérty_constant ::=

| property._constant_identifier : constant list of

nstant

=> (

(

(aadlinteger | aadlreal
[units_unique_property type_identifier])
aadlstring | aadlboolean

enumeration_unique_property_ type_identifier

real_range_unique_property_type_ identifier

| integer_range_unique_property_type_identifier
| integer_ unique_property_type_identifer

real_unique_property type_identifer)

[constant_property value { , constant_property value }* 1) ;

- 153 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

constant_property value ::=
string_literal
signed_integer
signed_real

boolean_value

signed_aadlinteger .. signed_aadlinteger [delta signed_aadl

|
|
|
| enumeration_identifier
|
| signed]|aadlreal .. signed_aadlreal [delta signed_aadlreal-]

unique_property_constant_identifier ::=

value ([property set_identifier :: 1 property constant_ident

Naming Rules

The defining property constant identifier must be distinct from.all other property corn

integer]

ifier)

stant identifiers,

property name identifiers, and property type identifiers in the namespace of the property [set that contains

the property congtant declaration.

A property conslant is named by its property constant’identifier or the qualified name
property set/property constant identifier pair, separated by double colon (“::”). An und

specified by the
ualified property

constant identifier must be part of the predeclared property sets. Otherwise, the property constant

identifier must appear in the property set namespace.

Legality Rules

If a property cornstant declaration_has more than one property expression, it must confain the reserved

words list of.

The property type of the\property constant declaration must match the property type
property value.

of the constant

If the constant preperty value is an integer or real value with a unit identifier, then the property type

specification of the property constant must include a units identifier.

Semantics

Property constants allow integer, real, and string values to be known by symbolic name and referenced

by that name in property expressions. This reference is expressed by the construct va
the value of the constant to be used instead of the reference.

Examples

Max_Threads : constant aadlinteger => 256;

lue() resulting in

- 154 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

10.2 Predeclared Property Sets

There is a standard predeclared property set named AADI._Properties, which is part of every AADL
specification. In addition, there is a set of enumeration property types and property constants for which
enumeration literals and values can be defined for different AADL specifications. This set of property
types is declared in a property set named AADIL_Project. All of the property enumeration types and
property constants listed in Appendix A.2 must be declared in this property set. The set of enumeration
literals may vary. The AADIL_Properties and AADL_Project property sets are implicitly a part of
every AADL specification.

The property types, property names, and property constants of these predeclared property sets can be
named without preperty-set-rame-gualification:

property set|AADL_Properties is
-- See Appendix A.1l
end AADIL_Properties;

property set|AADL_Project is
-- See Appendix A.2
end AADL_ Prpject;
NamingRules

The predeclarefl property sets AADL_Properties and AADL_Project share |a property set
namespace.

Legality Rules
The AADI_Proplerties property,set.cannot be modified.

Existing property type and property constant declarations in the AADI,_Project property set can be
modified. New dgclarations-must not be added to the AADI,_Project property set, but cgn be introduced

through a separgte property set declaration.

Processing Requirements and Permissions

Additional property name declarations may not be inserted into the standard predeclared property set
AADI_Properties. Different property set declarations must be used for nonstandard property names.

Providers of AADL processing methods may modify the standard property type declarations in
AADI_Properties to allow additional values for a specific property name. For example, additional
enumeration identifiers beyond those listed in this standard may be added.

Additional property sets may be defined. AADL tools may be defined that include support for additional
property sets. Similarly, AADL specifications may be define that property associations from additional
property sets.

Additional property sets that may be suitable for a wide variety applications may be defined in an Annex.
AADL tools that support this Annex should include support for these additional property sets. Similarly,

- 155 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

AADL specifications that conform to the Annex shall satisfy the requirements associated with the annex
property set.

10.3 Property Associations

A property association correlates a property value or list of property values with a property name resulting
from evaluation of property expressions. Property associations can be declared within component types,
component implementations, subcomponents, features, connections, flows, modes, and subprogram
calls, as well as their respective refinement declarations. Subcomponents can also declare contained
property associations of subcomponents contained in them. Contained property associations permit
separate property values to be associated with every component in the system instance hierarchy (see
Section 12.1).

Syntax

bciation

property_ass

| set_identifier
]
i nding]
]

]

property_value

[property.
[
[
[

property _name_identifder >

(

constant

in_b

.
’

in_mpdes

access_property association
| set_identifier
]
inding]
]

[property]
[
[
[

]

access propertyivalue

property _name_identifier

(

=>

constant

in b

.
’

in_mpdes

contained_pr

[property.

bperty_association

| set_identifier

]

(

[constant)] property_value

property_nagme._identifier

applies to contained unit_identifier {
[
[

in_binding]

]

.
’

in_modes

property_value

single_property_value

property_list_value

. contained unit_identifier }~

single_property value | property list _value

property_expression

- 156 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

(

in_binding

[property_expression {

}e

, Property_expression

in binding (platform classifier_reference

platform classifier_reference

{ , platform classifier reference }”)

processor_classifier_reference

| mer

| bud

A property name
by a double colo

The property se
identifier in a pro

The property id¢
identifier is abd
AADIL_Project

A property nam
implementation,
AADL model ele

The dot-separat
association iden
which the prop
implementation

zero or more su
identifier. A port

If a property ass

ory_classlrlier_rererence

classifer_reference
Naming Rules

consists of an optional property set identifier followed by, a-property ide

N (“:7).

identifier, if present, must appear in the global-fiamespace and mus
perty set declaration.

ntifier must exist in the namespace of the-property set, or if the optig
ent, in the namespace of the predeclared property sets AADI,_H

e may appear in the property._association clause of a component f
subcomponent, feature, flow;.connection, mode, or subprogram call only
ment is listed in the applies._to list of the property name declaration.

bd identifier sequenee:following the reserved words applies to of a cg

erty value holds.™ The root of this path is the subcomponent or
vith the contained property association declaration. The path consists
bcomponeént identifiers followed by a subcomponent, feature, flow, con
in a port-group is identified by the port group identifier and the port ident

htifier, separated

be the defining

nal property set
roperties oOr

ype, component
if the respective

ntained property

ifies a component, féature, flow, connection, or mode in the containment hierarchy, for

the component

bf a sequence of
hection, or mode
fier.

pciation has an in binding statement, the property value is binding-spec

fic. The property

value applies if t

memory, or bus.

If a property association list contains both binding-specific asso

re-binedit) is-to-one-ofthe opcu;f;cd execution p:atfunll typco ofthe uatcgories processor,

ciations and an

association without an in binding statement, then the latter applies to all bindings not explicitly declared
in in binding statements.

If a property association has an in modes statement, the property value is mode-specific. The property
value applies if one of the specified modes is active. If a property association list contains both mode-
specific associations and an association without an in modes statement, then the latter applies to all

associations not

explicitly declared in in modes statements.

A property association list must have at most one property association for the same property name. In
case of mode-specific and binding-specific property associations, there must be at most one association
for each mode and binding.

-157 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Legality Rules

The property named by a property association must list the category of the component type, component
implementation, subcomponent, feature, connection, flow, or mode the property association is declared

for in its Proper

ty_Owner_Category list (see Section 10.1.2).

If a property association is declared within a package, the property value applies to all component
classifier declarations contained in the package for which the property is valid.

If a property expression list consists of a list of two or more property expressions, all of those property
expressions must be of the same property type.

If the property d
the property val
property hame d

bclaration for the associated property name does not contain the rese
lle must be a single property value. If the property declaration

which is interprefed to be a list of one value.

The property as
property name ¢
an in modes or
The property asg

In a property as§
the named prope

A property value
The semantics r
associations for

priority associati

The reserved wq
and provided acq

The unique com

sociation operator +=> must only be used if the property declaration fdg
bntains the reserved words list of. Furthermore, the{property associati
in binding statement.

ociation operator +=> may not be used in contained property associatior]

ociation, the type of the evaluated property-expression must match the
rty.

declared by a property association with the reserved word constant can
iles below for determining thé.value of a property impose a precedencq
A property. A property association with the reserved word constant mu

DN.

rd access is only-permitted and is required in property associations deg
ess subcomponent declarations and refinements.

bonent type,identifiers in the in binding statement must refer to compo

categories procgssor, memory, or bus.

Property associg

tions declared as part of a component type declaration, port group ty

feature or featur

d words list of,

f'cvf the associated
ontains the reserved words list of, the property value can be asingl

property value,

r the associated
bn may not have

S.

property type of
not be changed.
on the property
st be the highest
lared in required

nent types of the

pe declaration, a

h_rafinamaont doeclaration-in-a3 combonaent-ivoe-orpodaroupn-tuyne —or as
FeHASHHe Gt tioR—H—a—GOHRPOReHATtYPE of

o grocp—typos—o T

part of a feature

refinement in the refines type clause of a component implementation are not permitted to have an in
modes statement as the scope of modes is limited to component implementations. A feature refinement
in the refines type clause of a component implementation must not inherit a modal property association
from its component implementation.

- 158 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Semantics

Property associations determine the property value of the component instances and their feature,
connection, flow, and mode instances in the system instance hierarchy (see Section 12.1). The property
association of a component type, component implementation, subcomponent, feature, flow, connection,
mode, or subprogram call determines the property value of all instances derived from the respective
declaration.

If a property association is declared within a package, the property value applies to all component
classifier declarations contained in the package for which the property is valid.

The value of a_property is determined through evaluation of the property expression.
associations arp declared in the properties subclause of component types

implementations| They are also declared as part of feature declarations in component
subcomponent, |connection, flow and mode declarations in component implémenta
property associations declared with subcomponents can represent separate property vg
instances of sulhcomponents, their features, connections, flows and modés that are
subcomponent. [Contained property associations can also be used to_recerd system

Property
And component
types, as part of
ions. Contained
lues for different
contained in the
nstance specific

property values for all components, features, connections, flows, and¢modes in a syste
permits AADL gnalysis tools to record system instance specific ififormation about a
separate from the declarative AADL specification. For example, a‘tesource allocation to
actual bindings ¢f threads to processors and source text to memory through a set of cd
associations, an@l can keep multiple such binding configurations’/for the same system.

m instance. This
physical system
bl can record the
ntained property

The property value is determined according to the following rules, which impose a pre¢cedence on the

property associations for a particular property. The earlier a property association for the
encountered by the rules, the higher it's precedence:

If a property valye is not present after applying_all of the rules below, it is determined by
of its property name declaration. If not ptesent in the property name declaration, the
undefined.

For component types and port group types, the property value of a property is determing
association in the properties subclause. If not present, the property value is determ
ancestor compagnent type or_port group type with its property association. If not

given property is

the default value
broperty value is

d by its property
ned by the first
present and the
e property value

component type lor port group’type is declared in the private section of a package, then tf
is determined by its association in the property subclause of the private section. If n
private section, [it is détermined by its association in the property subclause of the

section. If the gomponent type or port group type is declared in the public section o
property value i$ determined by its association in the public section of the package.
considered not present.

bt present in the
backage’s public
a package, the
Otherwise, it is

For component implementations and port groups, the property value of a property is determined by its
property association in the properties subclause. If not present, the property value is determined by the
first ancestor component implementation or port group with its property association. If not present, it is
determined by the property value of the component implementation’s component type according to the
component type rules.

For subcomponents, the property value of a property is determined by its property association in the
subcomponent declaration. If not present and the subcomponent is refined, then the property value is
determined by a property association in the subcomponent declaration being refined; this is done
recursively along the refinement sequence. If not present in the subcomponent, it is determined by the
subcomponent’s component classifier reference according to the respective component implementation
or component type rules described above. If not present and the property name has been declared as
inherit, it is determined by the property value of the component implementation that contains the

- 159 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subcomponent declaration according to the component implementation rules. Otherwise, it is considered
not present.

For modes, connections, or flow sequences the property value of a property is determined by its property
association in the mode, connection, or flow sequence declaration. If not present and the mode,
connection, or flow sequence is refined, then the property value is determined by a property association in
the mode, connection, or flow sequence declaration being refined; this is done recursively along the
refinement sequence. If not present and the property name has been declared as inherit, it is determined
by the property value of the component implementation that contains the mode, connection, or flow
sequence declaration according to the component implementation rules. Otherwisg, it is considered not
present.

For subprogram calls in call sequences, the is determined by its property
association in tHe subprogram call. If not present and the called subprogram name.|s a subprogram
classifier referenjce, the property value is determined by the subprogram classifier @ccording to the
component implementation or component type rules described above. If not{present and the called

subprogram nar
determined by th

he is a subprogram feature reference in a data componenty the property value is
e subprogram feature according to the feature rules described below. If not present and

the property nanpe has been declared as inherit, it is determined by the property value gf the component

implementation
Otherwise, it is ¢

For features in

property value o
declaration. If n
determined by a
done recursively,

hat contains the subprogram call according to the €ompoment implgmentation rules.
bnsidered not present.

h component type or port group type, or flowespecifications in a component type, the
a property is determined by its property association in the feature or flow specification
bt present and the feature or flow specification is refined, then the property value is
property association in the feature or flow specification declaration being refined; this is
along the refinement sequence. Forisubprogram, server subprogram and port group

features, if not p
the property val

according to the

described above

resent and the feature references a“subprogram classifier or port group type reference,
e is determined by the subprogram component classifier reference of port group type
respective component implementation, component type, or port group type rules

. If not present and the feature references a subprogram feature in a

data component

type, the properly value is determined by the subprogram feature according to the feajure rules. If not

present and the property name has been declared as inherit, then it is determined by th
of the component type or port group' type that contains the feature or flow specific
according to theg respective component type or port group type rules. Otherwise, it i
present.

e property value
htion declaration
b considered not

For features in g refines typé clause of a component implementation, the property valug

determined by ifs propetty association in the feature refinement declaration If not g

of a property is
resent, then the

property value i$

done recursively

inherit, it is det

detérmined by a property association in the feature declaration being refined; this is
atong the refinement sequence. If not present and the property value has been declared
i i iep—according to the

component implementation rules. Otherwise, it is considered not present.

For component, feature, connection, flow, or mode instances in the system instance hierarchy, the
property value of a property is determined by the contained property association highest in the system
instance hierarchy that references the component, feature, connection, flow, or mode. If not present, then
the property value is determined by the respective subcomponent, mode, connection, feature declaration
that results in the instance according to the rules above. If not present and the property name has been
declared as inherit, then it is determined by the property value of the first containing component in the
containment hierarchy of the system instance. Otherwise, it is undefined.

- 160 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

|,f Instance

e

Ins‘tann:eE @f Instances '
! 1

e

Imigl,
Inzstanced

Figure 16 illustre

tes the order in which the value of a property is determined. Instdnce4|is an element in

the system instg
property associ

nce hierarchy. The value of one of its properties is determined by f|rst looking for a

ed with the instance itself — shown as step 1.

This is specified-by a cgntained property

association. The|contained property association for this instance declared in-a.component implementation
highest in the instance hierarchy determines that value. If no instance<value exists, th¢ implementation
(ImplA) of the ingtance is examined (step 2). If it does not exist, ancestor implementatiohs are examined
(step 3). If the groperty value still has not been determined, the cemponent type is examined (step 4). If
not found there,|its ancestor component types are examined (step'5). If not found anfl the property is
inherited, for sulbcomponents and features, the enclosing implementation is examined,| Otherwise, the

containing component in the component instance hierarchy™Ns examined (step 6).

Fi

ally, the default

value is conside

Two property ag

ed.

sociation operators are supported=\The operator => results in a ng

w value for the
Md

property. The operator +=> results in the addition'of a value to a property value list.
property association via the operator => replaces any associations of lower precedence

re specifically, a
according to the

above rules. A| property association via the operator +=> appends to the value deg
association immediately preceding it according to the order imposed by the above rules.

termined by the

A property valug
values in order.
property express

list is evaluated byyevaluating each of the property expressions, an
If the property expréssion evaluates to a list, all the list elements are &
ion evaluates.torundefined, it is treated as an empty list.

H appending the
lppended. If the

If a property assgciation is.declared with the reserved word constant, then the following fules apply:

Annot contain a

For subcompongnts;.eonnections, flow sequences, and modes, any refinements c¢
property associafion for this property.

For features or flow specifications, any refinements cannot contain a property association for this
property.
For component implementations, any component implementation extension, or any subcomponents

referencing the component implementation or any of its descendents as component classifier cannot
contain a property association for this property.

For port groups, any port group refinement cannot contain a property association for this property.

For component types, any component type extension, any component implementation, any
subcomponent, or any subprogram or server subprogram feature referencing the component type or any
of its descendents cannot contain a property association for this property.

For port group types, any port group type extension or any port group feature referencing the port group
type or any its descendents cannot contain a property association for this property.

- 161 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

A property association declared with the reserved word access applies to the access to an actual
subcomponent represented by the provided or required subcomponent access rather than the actual
subcomponent itself. Two different components sharing access to a component may have different

access property associations.

The optional in_modes subclause specifies what modes the property association is part
semantics of this subclause are defined in Section 11.1.

of. The detailed

Component instance property associations with specified contained subcomponent identifier sequences

allow separate property values to be associated with each component instance in
hierarchy. In particular, it permits separate property values such as actual processor

the containment
binding property

values or result values from an analysis method to be associated with each compone
instance containment hierarchy.

10.4 Property Expressions

A property expfession represents the value that is associated with a property thr
association. The type of the value resulting from the evaluation of the<property expres
the property typq declared for the property name.

Syntax

property_exp¥ession ::=
booleah_term
real_ term
integeyr_term
string| term

enumergtion_term

|

|

|

|

| real_rgnge_term
| integey_range_term

| properfy_term

| component_classifier_term
|

referenhce. term

t in the system

bugh a property
5ion must match

boolean_term ::=
boolean_value
boolean_property_constant_term

not boolean_term

| boolean_term and boolean_term
| boolean_term or boolean_term

(boolean_term)

boolean_value ::= true | false

-162 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

real_term

signed_aadlreal_or_constant

integer_term

signed_aadlinteger_or_constant

string_term = string literal | String property_constant_term
enumeration_ferm =

enumeratlon identifier | enumeration_property_constantatérm
integer_rangg¢_term =

integer_term .. integer_term [delta integer_term]

| integel range_property_constant_term

real_range_t
real_teri

| real_r

property._ ter

value (

property_ con

value (

P

n real_term [delta real.\term]

hnge property constant_texm

n

[property set_4identifier] property name_identifie

Etant_texm

[propexty set_identifier ::] property. constant_ident

component_cl

hosifier_term

component_category

[unique_component_type_identifier

[. component_implementation_identifier]]

reference_term

reference

subcomponent_identifier { . subcomponent_identifier }~

| { subcomponent_identifier.

| { subcomponent_identifier

}+
}+

connection_identifier

r

ifier)

server. subprogram identifier

- 163 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

Boolean operators

have the following decreasing precedence order: (), not, and, or.

Naming Rules

The component type identifier or component implementation name of a subcomponent classifier
reference must appear in the anonymous namespace or in the namespace of the specified package.

The enumeration identifier of a property expression must have been declared in the enumeration list of
the property type that is associated with the property.

If the base type
integers.

The type of a prq
association.

The type of a pri
name in the prog

Property name
expression that
indirectly depend

Every property €
be statically detd
the property asg
association or dg

Boolean terms 4
Boolean values
Expressions cor
disjunction and ¢

Legality Rules

of a property number type or range type is integer, then the dumeric

perty named in a property term must match the type of the'property nan

pbperty constant named in a property constant term. must match the typ
erty association.

references in property expressions canneét be circular. If a property
refers to a property name, then that preperty’s expression evaluation g
on the value of the original property.

Semantics

Xpression can be evaluated to produce a value, a range of values, or a
rmined whether this value satisfies the property type designator of the
ociation. The value_of the property association may evaluate undefing
fault value has,been declared.

re of property type aadlboolean. The reserved words true and false
true and-false. The operator not logically negates the value of
taining the operators or and and are of type Boolean.

decreasing prec

onjunction of the values of their subexpressions. Boolean operators h

literals must be

e in the property

b of the property

has a property

annot directly or

eference. It can

broperty name in
d, if no property

evaluate to the
Boolean term.

They evalugte to the logical

ve the following
n property terms

that reference the values of other properties, and a referenced property value could be undefined, the

Boolean operato

rs are defined to operate over the three values true, false, and undefined.

op1 and op2 True False Undefined
True True False Undefined
False False False False
Undefined Undefined False Undefined

-164 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Number terms e
of a numeric va
type if the nume
aadireal propert
designator of thg
the property typq

Enumeration ter
name is satisfied

Range terms are
bounds plus and
each must satis
represents the m
represent range

String terms are
by that literal.

op1 or op2 True False Undefined
True True True True
False True False Undefined
Undefined True Undefined Undefined

X Not X

True False

False True

Undefined Undefined

aluate to a numeric value denoted by the numericliteral, or evaluate to

ic value is a numeric literal without decimalpoint or exponent. Otherwi

a pair consisting

e, it satisfies the

ue and the specified units identifier. A number term satisfies an aad%integer property

y type. If specified, the units identifier ynust be one of the unit iden
property type. Furthermore, the valug;must fall within the optionally s
— taking into account unit conversionias necessary.

ms evaluate to enumeration identifiers. The enumeration property typ
if the enumeration identifierisdeclared in the enumeration list of the pro

of range property type.and are represented by number terms for lower
an optional delta value. Range terms evaluate to two or three numerig
fy the number type declared as part of the range property type.

aximum differehce between two values. Properties with range terms a
and incremént-constraints on data streams communicated through ports

of aadlstring property type. A string literal evaluates to the string of ch

ifiers in the unit
pecified range of

b of the property
perty type.

and upper range

values that and
[he delta value
5 values typically

hracters denoted

Property terms

valuatle 10 the value or the referenced property. Inis allows one pro|

erty value to be

expressed in terms of another. The value of the referenced property is determined in the context of the
element for which the property value is being determined. For example, the Deadline property has the
property term value(Period) as its default property expression. If this default value is not overwritten by
another property association, the value of Deadline of a thread subcomponent is determined by
evaluating the property term in the context of the thread subcomponent, i.e., the Deadline value is
determined by the Period value for the thread subcomponent rather than the context of the default
value declaration. The value of the referenced property may be undefined, in which case the property
term evaluates to undefined.

Property constant terms evaluate to the value of the referenced property constant. This allows one
property value to be expressed symbolically in terms of a constant identifier rather than the actual value.

- 165 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Component classifier terms are of the property type component classifier. They evaluate to a
component category and an optional component classifier reference.

Reference terms are of reference property type and evaluate to a reference. This reference may be a
reference to a component in the component containment hierarchy or to a connection or server
subprogram contained in a component.

= For property associations of component implementations, the first identifier in the reference must
appear as a subcomponent identifier in the local namespace of the component implementation to
which the property association belongs.

a subcomponent
pferenced as the

= For prop
identifien] within the local namespace of the component implementation that is-r
componegnt classifier of the subcomponent.

= Subseqyent identifiers must appear in the namespace of the component| implementation
associated with the subcomponent identified by the preceding identifier and must map to
subcomponent declarations.

the last identifief in that name. In other words, the sequence of.identifiers specifies & path down the
containment hiefarchy starting with the component in the context of which the propefty association is
declared.

The entire refergnce evaluates to the component, connection, or sefyer subprogram fee}ure identified by

NOTES:

Expressions of the| property type reference or classifier are provided to support the description of pinding constraints
and of binding-spegific property expressions.

Processing(Requirements and Permissions

A method of professing specifications.thay define additional rules to determine if an expression value is
legal for a property name, beyond.the restrictions imposed by the declared property type. The declared
property type represents a minimum set of restrictions that must be enforced for every lise of a property
name.

If an associated expression-or default value is not specified for a property name, a methpod of processing
specifications is permitted to reject that specification as erroneous. A method of processing specifications
is permitted to donstruct a default expression, providing that default is made known tq the developers.
This decision m@y-be made on a per property basis. If a property value is not required for a specific
development activity, then the method of processing associated with this activity may accept a
specification in which that property has no associated value.

A method of processing specifications may impose additional restrictions on the use of property
expressions whose value depends on the current mode of operation, or on bindings. For example, mode-
dependent values may be allowed for some properties but disallowed for others. Mode-dependent
property expressions may be disallowed entirely.

Examples

thread Producer

end Producer;

- 166 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

thread imple

properties
Compute_E
Compute_E

end Producer

process Coll

mentation Producer.Basic

xecution_Time => Oms..1l0ms in binding

xecution_Time => Oms..8ms in binding

.Basic ;

ect_Samples

end Collect_Samples;

(powerpc.speed_350Mhz) ;

(powerpc.speed_450MHz

system Software

end Software

system imple

subcomponent

rentation Software.Basic

Sampler_ A| : process Collect_Samples;

Sampler_ B
{

So
Pe
Yo

end Software

process Collect_Samples
A property with a list of wvalues
irce_Text => (“collect_samples.ads”,

riod => 50 ms;

Basic;

system Hardw@re

end Hardware

system imple

subcomponent

mehtation Hardware.Basic

“collect_sampled

Host_A: processor;

Host_B: processor;

end Hardware

system Total

.Basic ;

_System

end Total_System;

system imple

mentation Total_ System.SW_HW

.adb”

) ;

)

- 167 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subcomponents
SW : system Software.Basic;
HW : system Hardware.Basic;
properties
-- examples of contained property associations
-- 1in a subcomponent of SW we are setting the binding to a
-- component contained in HW

Allowed_Processor_Binding => reference HW.Host_A

applies to SW.Sampler_A;
Allowed_Processor_Binding => reference HW.Host_B

applies to SW.Sampler?A;
end Total_Sygtem.SW_HW;

- 168 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

11 Operational Modes

Modes represent the operational states of software, execution platform, and compositional components in
the modeled system. A component can have mode-specific property values. A component can also have
mode-specific configurations of subcomponents and connections. Mode transitions model dynamic

operational behavior that represents switching between configurations and changes in components
internal characteristics.

This section defines modes and mode transitions to support the modeling of operational modes.

11.1 Mode

A mode represgnts an operational mode state, which manifests itself as a configuratjon of contained

components, cophnections, and mode-specific property value associations. A gonfigur
execution platfofm configuration in the form of a set of processors, memories) buses,
configuration in the form of a set of communicating threads within or &
and systems; or[a source text operational mode within a thread, i.e., an‘execution beha

the source text itself. When multiple modes are declared for a component, a mode trx

declaration identjifies which events cause a mode switch and the new mode, i.e., a cha
configuration. Ejactly one mode is considered the current mode.)The current mode de

of threads that
available to trang

A mode transitig
transitions are tr
the switch betwe
mode transitiong
for threads and

re considered active, i.e., ready to respond to dispatches, and the con
fer data and control.

n specifies possible runtime passagée’from one state or condition tg

htion may be an
and devices; an
Cross processes
ior embedded in
nsition behavior
ge to a different
termines the set
hections that are

another. Such

ggered by events. When declared for processes and systems, mode {ransitions model

en alternative configurations of ‘agtive threads. When declared for exe
model the change between different execution platform configurations.
data, mode transitions modelthe changeover between modes that arg

cution platforms,
When declared
encoded in the

source text and may result in different associated property values.

Syntax

mode
mode

]

initial

[]

modesproperty_assocation }* }

defining| mode_identifier

[{

.
’

mode_transitIon

source_mode_identifier { , source mode identifier }*

-[unique_port_identifier { , unique_port_identifier }" 1->

.
’

destination mode identifier

mode_refinement
defining mode_identifier refined to mode

{ { mode_property assocation }* }

.
’

- 169 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

in_modes

in modes ((mode identifier { , mode identifier }~

| none))

in_modes_and_transitions
(mode_or_transition { , mode_or_ transition }~

)

in modes (

| none)

mode_or_trangition

mode |identifier | (old mode_identifier -> new _mode_identilfier)

Naming Rules
The defining mode identifiers must be unique within the local-namespace of |[the component
implementation.

The identifiers ih a mode transition that refer to modes must)éexist in the local na
component implgmentation that contains the mode subclausez, In other words, only m
the component implementation that contains the mode transition or in any of its extensid
be referenced.

mespace of the
pdes declared in
n ancestors can

The mode idenfifiers named in an in modes statement must refer to modes declafed in the mode

subclause of thg
declaration, or p
subcomponents,
component implg

The same modsd
specific declarat
association.

An in modes st

b component implementation that-contains the subcomponent declarg
operty association with the in-modes, or any of its extension ancestors
connections, and property.~associations can only be applicable td
mentation they are contained in.

or mode transition must not be named in the in modes statement o
ions of the same)subcomponent, call sequence, flow implementatig

tement in.a refinement declaration may be used to specify mode memb

tion, connection
In other words,
modes of the

different mode-
n, and property

ership to replace

the one, if any, in the declaration being refined.

The old and new] mode identifier in a mode_or_transition clause must not be the sanpe.

Legality Rules

A mode can be declared in data, thread, thread group, process, system, processor, bus, memory, and
device component implementations.

If a component implementation contains mode declarations, one of those modes must be declared with
the reserved word initial. If the component implementation extends another component implementation,
the initial mode may have been declared in one of the ancestor component implementations.

The set of transitions declared within a single component implementation must define a deterministic
transition function. For each mode, there must exist exactly one transition associated with a single event
arrival, which can cause transition to another mode.

-170 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The unique port identifier must be either an in or in out event port identifier in the interface namespace of
the associated component type or an out or in out event port in the interface namespace of the

component type associated with the named subcomponent.

The mode semantics described here focus on a single mode subclause.

Semantics

A system instance that

represents the runtime architecture of an operational system can contain multiple components with their
own mode transitions. The semantics of system-wide mode switching are discussed in Section 12.3.

A mode represents an operational state that is represented as a runtime configuration of containee

components, co
interconnected

execution platfo
as threads and d

Systems and th
subcomponents,

associated in modes statement.

A component im
current mode. In

In the case of m
the current mod
other threads ard

In the case of m
Observable diffg
implementations

In the case of e
mode are acces
current mode ca

The in modes s
flow implementa
property values
component imp

ystems, processes and threads is such an operational state. As/i
m components. An operational mode embedded in the source text:may
ata with modes and different associated property values.

bir components may have mode-specific property value associations.
connections, flow implementations or property assogiations are speq

plementation may contain several declared modes: Exactly one of thg
itially, the initial mode is the current mode.

odes declared in system and process implementations, only the thread
b are in the suspended awaiting dispatch' state — responding to dispat
in the suspended awaiting mode state or thread terminated state.

odes in threads, the current mode reflects conditional execution within
rences in execution can be reflected in AADL by mode-specific call
connections, and property associations (see Section 10.4).

kecution platforms, dnly'the execution platform components that are p
sible to software-components. Only the processors and memories th
N be the target of bindings of components active in that mode.

atement js~declared as part of subcomponent declarations, subprogram
ions, and.property associations. It specifies the modes for which these
hold.<The mode identifiers refer to mode declarations in the modes

ementation. If the in modes statement is not present, then the

configuration of
5 a collection of
be represented

The modes for
cified using the

se modes is the

5 that are part of
ch requests. All

the source text.
sequences, flow

rt of the current
are part of the

call sequences,
declarations and
tubclause of the
subcomponent,

subprogram call

secuence flow implementation.or nronerty association-is part of all mod
= T ™ Y ™= r4 ™

es. If a property

association has both mode-specific declarations and a declaration without an in modes statement, then
the declaration without the in modes statement applies to those modes not covered by the mode-specific
declarations. The reserved word none is used to indicate a declaration is not part of any mode.

The in modes statement declared as part of connection declarations specify the modes or mode
transitions for which these connection declarations hold. The mode identifiers refer to mode declarations
in the modes subclause of the component implementation. If a connection is declared to be part of a
mode transition, then the content of the ultimate source port is transferred to the ultimate destination port
at the actual mode switch time. If the in modes statement contains only mode transitions, then the
connection is part of the specified mode transitions, but not part of any particular mode. If the in modes
statement is not present, then the connection is part of all modes. If a connection has both mode-specific
declarations and a declaration without an in modes statement, then the declaration without the in modes

=171 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

statement applies to those modes not covered by the mode-specific declarations. The reserved word
none is used to indicate a declaration is not part of any mode or mode transition.

If the in modes statement is declared as part of a refinement, the newly named modes replace the
modes specified in the declaration being refined.

Mode Switch
The modes subclause declares a state machine describing the dynamic mode switching behavior of

modes. The states of the state machine represent the different modes and the transitions specify the
event(s) that can trigger a mode swﬂch to the destlnanon mode Only one mode alternat|ve represents the

current mode at
named in one of
there is no trans
event is ignored,
of the current
implementation
mode transition

Any change of t
with mode-speci

A mode switch
subprogram call
execution behay
deadline, or wor
threads, process

A mode switch

and activating t
components. D¢
that are not part
suspended awai
that are part of
complete. Threg
to dispatches an
in the new mode

When a mode s

Al
the transitions out of the state representmg the current mode If an ev
tion out of the current mode naming the event port through which the

If several events occur logically simultaneously and affect different’moq
mode, the order of arrival for the purpose of determiningZthe md
lependent.
vith the highest urgency takes precedence.

ne current mode has the effect of changing the property value in prop
ic values — as expressed by the in modes statement.

within a thread results in a change of its cutféent mode. The effect is
sequence and mode-specific property values to reflect a change in so
ior. Such a change in property valugs*may include a change in the
st-case execution time. A mode switch within a thread does not affect
ors, devices, buses, or memories, or does it affect the set of active con

vithin a system, process, or.thread group implementation has the effeq
hreads to respond to dispatches, and changing the pattern of conn
activated threads transition to the suspended awaiting mode state. Bag
of the new mode suspend performing their execution. Activated threads
ing dispatch state ‘and start responding to dispatches. Suspended bag

ds that are part of both the old and new mode of a mode transition cor]
d performexecution. Ports that were connected in the old mode, may H
and vjeewersa.

itch(is requested through the arrival of an event on a mode transition,

switch occurs i

at an event port that is

nt is raised and

gvent arrives, the

le transitions out
de transition is

If an Urgency property is associated with each mode trampsition, then the

prty associations

a change in the
iIrce text internal
thread’s period,
the set of active
hections.

t of deactivating
bctions between
kground threads
transition to the
kground threads

the new modewresume performing execution once the transition into the new mode is

tinue to respond
ot be connected

the actual mode

bcurs once these

nrlinfnly if no parir\rlir\ threads are pnrf of the old mr\rlny otherwise it o

periodic threads in the old mode are synchronized at their hyperperiod. Only those threads with a
Synchronzied_Component property value of true are considered in the determination of the
hyperperiod (see Section 12.3).

Starting with the actual time of mode switch, the component is in a mode transition in progress state for a
limited amount of time. During this time some threads are deactivated, other threads are activated,
connections are adjusted, and the active threads in the new mode start to execute. This time period
takes the synchronized_Component property into account and is determined at the level of the whole
system instance (see Section 12.3). After that period of time, the component is considered to operate in
the new mode.

At the time of the actual mode switch, the deactivate entrypoint is invoked for the following threads that
must be deactivated: periodic threads that are synchronized with the mode switch; aperiodic or sporadic

-172 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

threads that are in the suspended awaiting dispatch state. This is shown in Figure 5 with the transition
labeled thread exit(mode).

At the time instant of actual mode switch, aperiodic and sporadic threads as well as periodic threads not
synchronized with the mode switch may still be in the perform computation state (see Figure 5). The
Active_Thread Handling Protocol property specifies for each such thread what action is to be
taken. Possible actions are:

Abort the execution of the thread and permit the thread to recover any state through execution of its
recover entrypoint. This permits the thread to recover to a consistent state for future activation and
dispatch. Upon completion of the recover entrypomt executlon event and event data port queues of the
thread are flushed and the thre he thread was executing
a server subprogram, the current dispatch execution of the calling thread of a call in prdgress or queued
call is also abortg¢d.

Permit the thread to complete the execution of its current dispatch. Any remaining qyeued events, or
event data may pe flushed, or remain in the queue until the thread is activated’again aq specified by the
Active_Threa@_Queue_Handling_Protocol property.

Permit the threadl to finish processing all events or event data in its quetes.

The semantics df any such actions for threads in the performing computation state at the time instant of
actual mode swifch is not shown in the hybrid automaton in Figure 5.

Background progesses that are only part of the old mode.are suspended when the acfual mode switch
occurs.

At the time of thg actual mode switch, any threads that were inactive in the old mode and are active in the
new mode execlite their activate entrypoint. In the.case of periodic threads, this is immgdiately followed
by their first disgatch of the compute entrypointi-in the case of background threads, theg thread resumes
execution from where it was suspended at the'last deactivation.

Threads that arg active in both the oldiand the new mode are dispatched in their usugl manner; in the
case of background threads, they continue in the execute state.

Some property Yalues for a component or its subcomponents may be mode-specific, |for example the
period of a periofdically dispaiched thread may be different in different modes of operatign. It changes at
the time of actual mode swit¢h.

Processing Permissions and Requirements

Every method forprocessingspecifications—mustparse—modetransitiom dectarations and check the
legality rules defined in this standard. However, a method of processing specifications need not define
how to build a system from a specification that contains mode transition declarations. That is, complex
behaviors that may have multiple modes of operation may be rejected by a method of building systems as
an unsupported capability.

If two different events that occur logically simultaneously result in more than one possible transition out of
the current mode, a method of implementation may supply an implementation-dependent order or
response to these events. An implementation may provide an Urgency parameter to the Raise_Event
service call (see Section 5.3) to prioritize the response to simultaneous events. A method of
implementation is permitted to raise a runtime error to indicate the nondeterministic nature of the system.
Or, a method of implementation may specify additional rules to define the order in which transitions will
occur.

-173-

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

In a physical distributed system, exact simultaneity among multiple events cannot be achieved.

A

physical system implementation must use synchronization protocols sufficient to insure that the causal
ordering of event and data transfers defined by the logical temporal semantics of this standard are
satisfied by the physical system, to the degree of assurance required by an application.

A method of implementation is permitted to provide preservation of queue content for aperiodic and
sporadic threads on a mode switch until the next activation. This is specified using the thread property
Active_Thread_Queue_Handling Protocol.

A method of implementation is permitted to support a subset of the described protocols to handle threads

that are in the performing computation state at the time instant of actual mode switch.

document th

chosen subset and its semantic behavior as

Supported_Ac

data Positio

end Position,

process Gps_
features

Position:

if con

Secondary

end Gps_Send

Five_Thread_Handling_ Protocol property.

Examples

L_Type
| Type;

bender

out data port Position_Types
hected secondary position(dnformation is used to recal
Position: in data port Position_Type

{ Required_Connection => false;}

process implementation«Gps_Sender.Basic

end GPD_Send

br . Basic;

process implfmentation Gps_Sender. Secure

end Gps_Sender.Secure;

process GPS_Health_ Monitor

features

Backup_Stopped: out event port;

Main_Stopped: out event port;

All _Ok: out event port;

Run_Secure:

Run_Normal:

out event port;

out event port;

They must
art of the
ibrate

-174 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

end GPS_Health_ Monitor;

system Gps

features
Position: out data port Position_Type;
Init_Done: in event port;

end Gps;

system impletentation Gps.Dual

subcomponent

~

Main_Gps:|process Gps_Sender.Basic in modes (Dualmode, Mdinmods
Backup_Gp$: process Gps_Sender.Basic in modes (Dualmode, Backugmode) ;
Monitor: process GPS_Health Monitor;
connections
data port|Main_Gps.Position -> Position in modes (Dualmode, Mainmode) ;
data port|Backup_Gps.Position -> Positiondin modes (Backupmode);
data port|Backup_Gps.Position -> Main_Gps.SecondaryPosition
in modes (Dualmode) ;
modes
Initializ¢: initial mode;
Dualmode mode;
Mainmode mode;

Backupmodé¢: mode;

Initializ¢ —-[InitiDone]-> Dualmode;

Dualmode {[Monitor.Backup_Stopped]-> Mainmode;
Dualmode } [Menitor.Main_Stopped]-> Backupmode;
Mainmode, '“Baekupmode—Morrttor—2At++—0k— Brueatmode-

end Gps.Dual;

system implementation Gps.Secure extends Gps.dual

subcomponents

Secure_Gps: process Gps_Sender.Secure in modes (Securemode) ;
connections

data port Secure_Gps.Position -> Position in modes (Securemode) ;
modes

Securemode: mode;

-175 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

SingleSecuremode: mode;

Dualmode -[Monitor.Run_Secure]-> Securemode;

Securemode —-[Monitor.Run_Normal]-> Dualmode;

Securemode -[Monitor.Backup_Stopped]-> SingleSecuremode;
SingleSecuremode -[Monitor.Run_Normal]-> Mainmode;
Securemode —-[Monitor.Main_Stopped]-> Backupmode;

end Gps.Secure;

-176 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

12 Operational System

Component type and component implementation declarations are architecture design elements that
define the structure and connectivity of a physical system architecture. They are component classifiers
that must be instantiated to create a complete system instance. A complete system instance that
represents the containment hierarchy of the physical system is created by instantiating a root system
implementation and then recursively instantiating the subcomponents and their subcomponents. Once
instantiated, a system instance can be completely bound, i.e., each thread is bound to a processor; each
source text, data component, and port is bound to memory; and each connection is bound to a bus if
necessary.

A completely ing
created and con

12.1 System In

A system instan
software compor

A system instand
specified and co

A system instang
all source text m
if their ultimate
bound to server

A set of contai

instances of cofmponents, ports, connections, provided and required access.

represent the ac
of the completel
can be associatg

The system type

A complete syq

igured into load instructions according to the system instance specificati
stances

Ce represents the runtime architecture of a physical system that consig
ents and execution platform components.

mpletely resolved.

e is completely instantiated and bound if alMthreads are ultimately boun

source and destinations are bound-10 different processors, and subp
Subprograms as necessary.

ned property associations «can reflect property values that are sped
These
ual binding of components, as well as results of analysis, simulation, or

instantiated and beund system. Thus, multiple sets of contained prop
d with the same system instance to represent different system configura

Legality Rules

specifiedifor a system instance must not contain any required subcompd

tantiated and bound system acts as a blueprint for a system build., Blnary images are

n in AADL.

ts of application

e is completely instantiable if the system implementation being instantialed is completely

1 to a processor,

bking up process address spaces are beund to memory, connections ar¢ bound to buses

rogram calls are

ific to individual
properties may
actual execution
brty associations
ions.

nents.

subprograms. A

tem(instance must not contain incompletely specified subcompong

nts, ports, and
b thread.

In a complete system instance, the ports of all threads, devices, and processors must be the ultimate
source or destination of semantic connections. The Required_Connection property may be used to
indicate that a port connection is optional. In the case of the predeclared Error and Complete ports
(see Section 5.3), connections are optional.

In a completely instantiable system, the subprogram calls of all threads must either be local calls or be
bound to a server subprogram whose thread is part of the same mode.

In a completely instantiable system, for every mode that is the source of mode transitions, there must be
at least one mode transition that is the ultimate destination of a semantic connection whose ultimate
source is part of the mode.

-177 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

In a complete system instance, aperiodic and sporadic threads that are part of a given mode must
have at least one connection to one of their in event ports or in event data ports or their predeclared

Dispatch port.

The predeclared Dispatch port must not be connected if the thread has a
Dispatch_Protocol property value of periodic or background.

For instantiable systems, all threads must be bindable to processors and all components representing

source text must

be bindable to memory.

The source text associated with all contained components of the system instance must be compliant with
the specified component type, component implementation, and property associations.

A system instan
containment hiet
a processor with

A system instan
alone system or
platform compor]
topology of theg
known compone
alternative config

The physical syq
source text exis
compliant with th

to generate binayy images. The binary images.aré loaded into memory and made acce

in virtual addresq

In addition, there
images of proces

12.2 System Binding

This section defi
onto processor §
interconnect top
to combine the

ce _must contain at least one thread. one processor and one memaory
T Lt J

archy to represent an application system that is executable on an exeCulf
memory containing the application code and data.

Semantics

a system of systems. A system instance consists of@pplication softwa
ents. The component configuration, i.e., the hierarchical structure and
e components is statically known. The mode concept describes altg
nt configurations. The runtime behavior of the system allows for switchir]
urations according to a mode transition specification.

tem denoted by a system implementation can be built if the system is i
s for all components whose properties refer to source text. This sou
e AADL specification and the source text language semantics. Source

spaces of processes.

sor software and device software bound to the processor.

nd memory resources, taking into account requirements for component
plogy ‘between processors, memories and devices. The decisions and 1]

component in its
jon platform, i.e.,

ce represents an operational physical system. That physical system fnay be a stand-

fe and execution

interconnection
rnative statically
g between these

stantiable and if
ce text must be
ext is processed
ssible to threads

exists a kernel address space for every processor. This address spacg contains binary

hes how pinary images produced by compiling source units are assign¢d to and loaded

sharing and the
hethods required

components of a system to produce a physical system implementatiovlm are collectively

called bindings.

Naming Rules

The aAllowed_Processor_Binding property values evaluate to a processor, or a system that contains
a processor in its component containment hierarchy.

The Allowed_Memory_ Binding property values evaluate to a memory, a processor that contains
memory or a system that contains a memory or a processor containing memory in its component
containment hierarchy.

The first identifier of the property value for each element of a property value list must exist in the local
namespace of the containing component implementation or in one of its containing component

-178 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

implementations. The first containing component with a match must be an execution platform system,
i.e., must be a processor component or a system component containing a processor or memory in its
containment sub-hierarchy. Subsequent identifiers must exist in the local namespace of the component
implementation associated with the component identified by the preceding identifier. The final identifier
identifies the system, processor, or memory component that represents a legal candidate for processor or
memory binding.

Legality Rules

Every mode-specific configuration of a system instance must have a binding of every process component
to a (set of) memory component(s), and a binding of every thread component to a (set of) processor(s).

In the case of d

namic process loading. the actual binding may change at runtime. Int

coupled multi-pr
actual binding s
Multiple softwarg
be bound to my
threads can be b

All software com
every processor
access every meg

A shared data cq
sharing the data

For all threads
component type
process must al
reference value
Furthermore, all

The complete s¢
bound to memor

Each thread mu
Allowed_Proc
property may sp
a list of process

pcessor configurations, the actual thread binding may change betweer]
bt of processors as these processors service a common set of threa
components may be bound to a single memory component. A software
ltiple memory components. A thread must be bound to a sifigle prd
ound to a single processor.

ponents for a process must be bound to memory components that are al
to which any thread contained in the process is bound. That is, every
mory component into which the process containing:that thread is loaded

mponent must be bound to memory accessible by all processors to whi
component are bound.

in a process, all processors to which” those threads are bound mus
5 and component implementations; That is, all threads that are cont
be executing on the same kind of processor, as indicated by the prg
of the Allowed_ProcessofuBinding_Class property associated
hose processors must belable to access the memory to which the proce

t of software components making up the kernel address space of a pr
y that is accessible by that processor.

5t be bound t0ta processor satisfying the A11lowed_Processor_Bind]
bssor_Binding property values of the thread. The Allowed_Procq
peify a single processor, thus specifying the exact processor binding. It
Dr components or system components containing processor component

the thread is bintfable to any of those processor components.

e case of tightly
members of an
H ready queues.
component may
cessor. Multiple

accessible from
thread is able to

ch the processes

t have identical
bined in a given
cessor classifier
ith the process.
Ss is bound.

bcessor must be

ng_Class and
ssor_Binding
may also specify
S, indicating that

Each process must be bound to a memory satisfying the Allowed_Memory_Binding_Class and
Allowed_Memory_ Binding property values of the process. The Allowed_Memory_ Binding
property may specify a single memory component, thus specifying the exact memory binding. It may also
specify a list of memory components or system components containing memory components, indicating
that the process is bindable to any of those memory components.

The memory requirements of the binary images and the runtime memory requirements of threads and
processes bound to a memory component must not exceed that memory’s capacity. The execution time
requirements of all threads bound to a processor must not exceed the schedulable cycles required to
insure that all thread timing requirements are met. These two constraints may be checked statically or
dynamically. Runtime detection of such a memory capacity or timing requirements violation results in an
error that the application system can choose to recover from.

-179 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The memory requirements of ports and data components are specified as property values of their data
types. Those property associations can have binding-specific values.

Semantics

A complete system instance is instantiated and bound by identifying the actual binding of all threads to
processors, all binary images reflected in processes and other components to memory, and all

connections to buses if they span multiple processors.

The actual binding can be recorded for each

component in the containment hierarchy by property associations declared with in the system

iimplementation.

The actual binding must be determined within specified binding constraints. Bindin

g constraints of

application com;bonents to execution platform components are expressed by the allo

allowed binding
property, the €
subcomponent
implementation
subcomponent
implementation f
representing the
instance propert
bound.

A method of buil

class properties for memory, processor, and bus. In the case of an
xecution platform component is identified by a sequence {of-‘’
names. This sequence starts with the subcomponent contained in
for which the property association is declared. Or the*sequence
contained in the component implementation of the““subcompor
or which the property association is declared. This means that the pro
binding constraint or the actual binding may have to be declared

Processing Requirements and Permissions

time, or to be fix¢d at the time of physical system construction. A method of building syst

to allow bindings
systems may r
construction, an
are possible and

A method of bu

of selected kinds to change dynamically at runtime. For example, a m
quire process to memory.binding and loading to be fixed during

permitted.

Iding systems must_check and enforce the semantics and legality rule

standard. Propgrty associations‘may impose constraints on allowed bindings. The a

impose a numb
systems, and ult

br of constraints on allowed bindings for processes and threads to e
mately to/precessors and memories. In general, the semantic constrain

particular softw
and operating

processor. Suc
method of buildi

e and. hardware architecture interconnect topologies. In particular, fo
stem/configurations all threads contained in a process must execu

may require thread to processor bindings to be fixed at mode changes.

ved binding and
allowed binding
(dot) separated
the component
begins with the
ent or system
berty association
S a component

y association of a component that represents a common root of the c¢gmponents to be

ing systems is permitted to require bindings of selected kinds to be fixed at development

ems is permitted
ethod of building
physical system
Other choices

s defined in this
Ccess semantics
ecution platform
s depend on the
I most hardware
te on the same
ding systems. A

additional restrictions must be taken into account by the method of buil

consistent with the semantics and legality rules of this standard.

choices that are

- 180 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

If multiple processes share a component, then the physical memory to which the shared component is bound will
appear in the virtual address space of all those processes. This physical memory is not necessarily addressed using
either the same virtual address in different processes or the same physical address from different processors. An
access property association may be used to specify different addresses used to access the same component from
different processors.

The AADL supports binding-specific property values. This allows different property values to be specified for a
component property whose values are sensitive to binding decisions.

Examples

system smp

end smp;

system implementation smp.sl

-- a multi-processor system

subcomponent
pl: procegsor cpu.ul;
p2: procegsor cpu.ul;
p3: procegsor cpu.ul;

end smp.sl;

process pl

end pl;

process implEmentation pl-.il
subcomponent
ta: thread tl . 11;

tb: thread t1.11;

end pl.il;

thread tl
end tl;

thread implementation tl.il

end tl.il;

processor cpu

- 181 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

end cpu;

processor implementation cpu.ul

end cpu.ul;

system S

end S;

system imple
-- a system

-- with exec

subcomponent
p_a: proc
p_b: proc
upl: proc
up2: proc
ssl: syst

properties
Allowed_

Allowed__

ta is

-- since

same p

Allowed_ P

entation S.I

ombining application components

tion platform components

ss pl.il;
ss pl.il;
ssor cpu.ul;
ssor cpu.ul;

m smp.sl;

rocessor in most

rOCessor_Binding

brocessor_Binding => (

Pbrocessor_Binding, => (

reference
applies
reference

applies

upl, reference up2
to p_a.ta;
upl, reference up?2

to p_a.tb;

hardware configurations

)

)

restricted \to a subset of processors that tb can be bg

fa and\tb are part of the same process they must be bd

=> reference ssl.p3 applies to p_b.t4

Allowed_Processor_Binding

end S.I;

=> reference ssl applies to p_b.tb;

und to;

und to the

-182 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

NOTES:

Binding properties are declared in the system implementation that contains in its containment hierarchy both the

components to be bound and the execution platform components that are the target of the binding.

Binding

properties can also be declared separately for each instance of such a system implementation, either as part of the

system instantiatio

n or as part of a subcomponent declaration.

12.3 System Operation

System operation is the execution of a completely instantiated and bound system. System operation
consists of different phases:

System startup:
Normal operatio

System operatig
transitions.

System-wide fau
System Startup

On system start
address space
execution platfor
e.g., PROM or fl
of processes bol

Process binary

software compoients are bound (see Figure 8);. In a static process loading scenario,

must be loaded
dynamic procesg
the current mods

The maximum
max(Load_Timg

All software com
every processor
access every m
loaded.

'lnltlahzanon of the execution platform and the application system.

: execution of threads and communication between threads and devices.

n mode transition: mode switching of one or more componenis with

t handling, shutdown, and restart.

bre loaded into memory of each processor, and execution is started
m software. Loading into memory may take-zero time, if the memory ¢
ash memory. Once initialized, each processor initiates the loading of th
nd to the specific processor into memory:(see Figure 17).

mages are loaded in the memaryycomponent to which the process 3
pefore execution of the application system starts, i.e., thread initializatio
loading scenario, binary images of all the processes that contain a thre
must be loaded.
bystem initializatien-time can be determined as Processor_Starty
ponents fora process must be bound to memory components that are al

to whiehxany thread contained in the process is bound. That is, every
bmorycomponent into which the binary image of the process containi

}

specified mode

Ip, the hardware of the execution platform is initialized, the binary images of the kernel

to initialize the
hn be preloaded,
e binary images

nd its contained
Il binary images
is initiated. In a
ad that is part of

ip_Deadline +

) of all systems.and processes + max(Initialize_Deadline) of all threads.

accessible from
thread is able to
ng that thread is

Data components shared across processes must be bound to memory accessible by all processors to
which the processes sharing the data component are bound.

Thread initialization must be completed by the next hyperperiod of the initial mode. Once all threads are
initialized, threads that are part of the initial mode enter the await dispatch state. If loaded, threads that
are not part of the initial mode enter the suspend awaiting mode state (see Figure 5). At their first
dispatch, the initial values of connected out or in out ports are made available to destination threads in
their in or in out ports.

- 183 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

_,Caystem offlin e>

Iy

abort(system)

start{system)
$T—10

stop(system]
abort{system)

System starting
8T £ startup_deadline

Normal System

Normal operatio
according to corf
section we focus

A system instang
system instance
clock drift.

This version of t
implementing a
coordination prof

In a synchronize]
The hyperperiod
those threads.

In a synchronize

startedisystem)

v
=ystem operating

Figure 17 System Instance States, Transitions, and Actions

Operation

n, i.e., the execution semantics of individual“threads and transfer of
nection and shared access semantics, have been covered in previous
on the coordination of such execution semantics throughout a system in

is called asynchronous if different components use separate clocks with

he standard defines the 'semantics of execution for synchronous systen
system may provide asynchronous system semantics as long 2
ocols are in place:

d system, periodic threads are dispatched simultaneously with respect
of a set of\periodic threads is defined to be the least common multiple

d system a ralsed event Ioglcally arrives S|multaneously at the ultlmate

Hata and control
sections. In this
stance.

e is called synchronized if all components use a globally synchronized feference time. A

the potential for

ns. A method of
ls system wide

0 a global clock.
of the periods of

destination of all

semantic conned

, two events are

considered to be ralsed Ioglcally S|multaneously if they occur W|th|n the granulanty of the globally
synchronized reference time. If several events are logically raised simultaneously and arrive at the same
port or at different transitions out of the current mode in the same or different components, the order of
arrival is implementation-dependent.

System Operation Modes

The set of all mode transitions specified for all components of a system instance form a set of concurrent

mode transitions,
of the sets of modes for each component.

called system operation modes (SOM).

The set of possible SOMs is the cross product
That is, a SOM is a set of component modes, one mode for

each component of the system. The initial SOM is the set of initial modes for each component.

-184 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

The discrete variable Mode denotes a SOM. That is, the variable Mode denotes a possible discrete state
that is defined by the mode hybrid semantic diagrams. Note that the value of Mode will in general change
at various instants of time during system operation, although not in a continuous time-varying way.

The SOM transition is requested whenever a mode transition in any component in the system instance is
requested by the arrival of an event. A single event can trigger a mode switch request in one or more
components. In a synchronized system, this event occurs logically simultaneously for all components,
i.e., the resulting component mode switch requests are treated as a single SOM transition request.

If several events occur logically simultaneously and are semantically connected to transitions in different
components that lead out of the|r current mode or to different transmons out of the same mode in one
component, the at determines the
mode transition

r the mode switch —

resulting in the other events being ignored.

After a SOM transition request has occurred, the actual SOM transition occurs in{zero time, if no periodic
threads are part pf the old mode, otherwise, it occurs at the hyperperiod boundasy’of the pld SOM. This is

indicated in Fig
state to the mod
in the old SOM
ignored.

The rational-val
hyperperiod is d
property is true,

whose connectﬁ

transition is initi

At the time of 4
destination modsd

System Operati

A runtime transit
to be in transitio
instants of time
declarations are

At the instant of

re 18 by the guard on the transition from the current_“system_og
b_transition_in_progress state. During that time,the“system con
and additional events that would result in a SOM transition from the (

hed function Hyper(Mode) in Figure 18 denotés the hyperperiod o
btermined by the periods of those periodic thteads whose Synchronzj
and that will deactivate or activate as part of the mode switch, or that 1
ns may change during the mode switch. If this set of threads is ¢
ed immediately.

ctual SOM transition, the transition is performed to the new SOM t
s of the requested component-mode switch(es).

pn Mode Transition

on between SOMS requires a non-zero interval of time, during which th
N between two system modes of operation. While a system is in transiti
at the start_and ‘end of a transition, all arriving events that appear ir
gnored andwill not cause any mode change.

eration_mode
inues to operate
urrent SOM are

a SOM. The
ed_Component
emain active but
mpty, the mode

hat contains the

e system is said
bn, excluding the
transition edge

lime the mode-transition-in-progress state is entered, connections that

SOM and not p
not transferred i

to-the in data port variable of the newly disabled thread.

re part of the old
rt of.the new SOM are disabled. For data connections, this means thatarhe data value is

At the instant of time the mode-transition-in-progress state is entered, data is transferred
logically simultaneously for all connections that are declared to be part of any of the component mode
transitions making up the SOM transition. For data connections, this means that the data is transferred
from the out data port such that its value becomes available at the first dispatch of the receiving thread.

At the instant of time the mode-transition-in-progress state is entered, connections that are not
part of the old SOM and part of the new SOM are enabled. For data connections, this means that the data
value of a transition connection is transferred into the in data port variable of the newly enabled thread. If
the in data port of the destination thread is not the destination of a transition connection, the data value of
the out data port of the source thread is transferred into the in data port variable of the newly enabled
thread. If the source thread is also activated as part of the mode transition, its out data port value is
transferred after the thread completes its activate entrypoint execution.

-185 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

When the mode-transition-in-progress state is entered, thread exit(Mode) is triggered for all threads that
are part of the old thread and not part of the new thread. This results in the execution of deactivation
entrypoints for those threads (see Figure 5) as described in Section 11.

In addition, at the time the mode-transition-in-progress state is entered, thread enter(Mode) is
triggered for threads that are part of the new mode and not part of the old mode. This permits those
threads to execute their activation entrypoints (see Figure 5). In addition, for periodic threads this is
immediately followed by their first compute entrypoint dispatch as described in Section 11.

At the instant of time the mode-transition-in-progress state is entered, connections that are not

part of the old SOM and are part of the new SOM are enabled, i.e., connection transmission occurs
according to the connections-that-are. part of the new SOM

While the systenp is in the mode-transition-in-progress state, threads that.are)part of the old and
new SOM continue to operate normally. SOM transition requests as resulting_ffom fraise events are
ignored while thg system instance is in the mode-transition-in-progressjstate.

The system instdnce remains in the mode-transition-in-progressg state until the next hyperperiod.
This hyperperiodl is determined by the rules stated earlier. At thatitime, the system|instance enters
current_system_operation_mode state and starts responding.toinew requests for JOM transition.

.
Current system operation mode
— (3 Sowrce_Event_Port Event_Arrival)
7 =T mod HyperMode)

? 5T mod Hyper(Mode)
thread exitiMode)

Mode transition in progress
thread enter{Mode) Rrog

>

Figure18 System Mode Switch Semantics

The synchronizgtion scope{Jor enter(Mode) consists of all threads that are contained in the system
instance that wefre inactive and are about to become active. The synchronization scopg for exit(Mode)
contains all thrdads that are contained in the system instance that were active and are to become
inactive. The efigeslabéls enter(Mode) and exit(Mode) also appear in the set of confurrent semantic
automata derivef “from the mode declarations in a specification. That is, enter(Mode)| and exit(Mode)
transitions for threads occur synchronously with a fransition from the
current_system operation_mode state to the mode-transition-in-progress state.

System-wide Fault Handling, Shutdown, and Restart

Thread unrecoverable errors result in transmission of event data on the Error port of the appropriate
thread, processor, or device. The ultimate destination of this semantic connection can be a thread or set
of threads whose role is that of a system health monitor and system configuration manager. Such
threads make decisions about appropriate fault handling actions to take. Such actions include raising of
events to trigger mode switches, e.g., to request SOM transitions.

- 186 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Processing Requirements and Permissions

This standard does not require that source text be associated with a software or execution platform
category. However, a method of implementing systems may impose this requirement as a precondition
for constructing a physical system from a specification.

A system instance represents the runtime architecture of an application system that is to be analyzed and
processed. A system instance is identified to a tool by a component classifier reference to an instantiable
system implementation. For example, a tool may allow a system classifier reference to be supplied as a
command line parameter. Any such externally identified component specification must satisfy all the rules
defined in this specification for system instances.

A method of builfling systems is permitted to only support static process loading.

A method of bu
semantics and le
processor that
associated with
created for each
addition to the ke

A process may d
address space,
permitted to sef

separate programs, followed by a secondary linking to combine the process binary imag

image.

A method of buil
That is, a metho
source text for

programming lar

If two software
component type
units is non-emp

A method of bu
processor kerne
that software.

ding systems is permitted to create any set of loadable binary(image
gality rules of this standard. For example, a single load image‘may be
contains all processes and threads executed by that précessor and
devices and buses accessible by that processor. Or,a separate loa
process to be loaded into memory to make up thesprecess virtual a
rnel address space created for each processor.

efine a source namespace for the purpose of compiling source program
hnd define a binary image for the purpose, ofdoading. A method of bu
arate these functions. For example, processes may be compiled a

ling systems is permitted to compile, link and load a process as a single

hil threads contained in & process form a legal program as defined
guage standard.

components that-are’ compiled and linked within the same namespag
5 and implementations, or the intersection of their associated source
y, then this must be detected and reported.

ding systems is permitted to omit loading of processor, device, and b
address space if none of the threads bound to that processor need to a

5 that satisfy the
created for each

all source text
l image may be
dress space, in

5, define a virtual
Iding systems is
nd pre-linked as
bs to form a load

source program.

i of building systems is permitfed to impose the additional requirement that all associated

n the applicable

e have identical
text compilation

us software in a
Ccess or execute

This standard supports static virtual memory management, i.e., permits the construction of systems in
which binary images of processes are loaded during system initialization, before a system begins
operation.

Also permitted are methods of dynamic virtual memory management or dynamic library linking after
process loading has completed and thread execution has started. However, any method for
implementing a system must assure that all deadline properties will be satisfied for each thread.

An alternative implementation of the process and thread state transition sequences is permitted in which
a process is loaded and initialized each time the system changes to a mode of operation in which any of
the containing threads in that process are active. This process load and initialize replaces the perform
thread activate action in the thread state transition sequence as well as the process load action in the
process state transition sequence. These alternative semantics may be adopted for any designated

- 187 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

subset of the processes in a system. All threads contained in a process must obey the same thread
semantics.

-188 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

13 Lexical

Elements

The text of an AADL description consists of a sequence of lexical elements, each composed of

characters. The

rules of composition are given in this section.

13.1 Character Set

The only characters allowed outside of comments are the graphic_characters and format_effectors.

charact

graphic

The character r¢pertoire for the text of an AADL specification consists of the collecti

called the Basic
Set, plus a set
representation fq

within 1SO-10646-1).

The description
Basic Latin and
symbols of ISO
Row 00 of the
representation o

The categories g

identi

Syntax
Sha = graphic_character | format_effector
| other_control_function
| character = identifier_ letter | digit] gpace_chargcter

| special_character

Semantics

Multilingual Plane (BMP) of the ISO #0646 Universal Multiple-Octet (
pf format_effectors and, in comments ‘only, a set of other_control_fund
r these characters is implementdtion defined (it need not be a repres

bf the language definition in/this standard uses the graphic symbols def
Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspor
B859-1 (Latin-1); ne~graphic symbols are used in this standard for char
BMP. The actual;set of graphic symbols used by an implementatic
the text of an AADL specification is not specified.

f characters are defined as follows:

fier{etter

1

.

bn of characters
Coded Character
tions; the coded
entation defined

ned for Row 00:
d to the graphic
pcters outside of
n for the visual

ITeher —cac 1 dantl £1
T = e —

upper_case_identifier letter

Any character of Row 00

Capital Letter”.

lower case_identifier letter

Any character of Row 00

Small Letter”.

digit

One of the characters 0,

8, or 9.

of ISO 10646 BMP whose name begins

of ISO 10646 BMP whose name begins

etter

“Latin

“Latin

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

space_character
The character of ISO 10646 BMP named “Space".
special_character

Any character of the ISO 10646 BMP that is not reserved for a control function, and is not
the space_character, an identifier_letter, or a digit.

format_effector

The control functions of ISO 6429 called character tabulation (HT), line tabulation (VT),
carriage return (CR), line feed (LF), and form feed (FF).

other fontrol_function

Any control function, other than a format_effector, that is allowed in a cohnment; the set of
bther_control_functions allowed in comments is implementdtion defined.

The following names are used when referring to certain special_characters:

Symbol| Name Symbol Name
" quotation mark : celon
number sign ; semicolon
= equals sign (left parenthesis
) Right parenthesis Ny underline
+ plus sign [left square bracket
, Comma] right square bracket
- Minus { left curly bracket
Dot } right curly bracket

Implementation Permissions

In a nonstandard made,the implementation may support a different character repertoire;|in particular, the
set of characterg that are considered identifier_letters can be extended or changed to [conform to local
conventions.

NOTES:

Every code position of ISO 10646 BMP that is not reserved for a control function is defined to be a graphic_character
by this standard. This includes all code positions other than 0000 - 001F, 007F - 009F, and FFFE - FFFF.

13.2 Lexical Elements, Separators, and Delimiters
Semantics
The text of an AADL specification consists of a sequence of separate lexical elements. Each lexical

element is formed from a sequence of characters, and is either a delimiter, an identifier, a reserved word,
a numeric_literal, a character_literal, a string_literal, or a comment. The meaning of an AADL

-190 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

specification depends only on the particular sequences of lexical elements that form its compilations,
excluding comments.

The text of an AADL specification is divided into lines. In general, the representation for an end of line is
implementation defined. However, a sequence of one or more format_effectors other than character

tabulation (HT) s

ignifies at least one end of line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any
of a space character, a format_effector, or the end of a line, as follows:

A space character is a separator except within a comment, a string_literal, or a character_literal.

Character tabulatien{HH-is-a—separatorexceptwithinracomment—————

The end of a line

One or more separators are allowed between any two adjacent lexical elements,vbéfore

the last. At leas
and an adjacent

A delimiter is eith
() I

or one of the foll
=>>

Each of the sp¢g

character is use

character_literal,

The following na

is always a separator.

t one separator is required between an identifier, a reserved word, or
dentifier, reserved word, or numeric_literal.

er one of the following special characters

1{} . ;= + -
bwing compound delimiters each composed.oftwo or three adjacent spe
+=> -> ->> - - & *}

cial characters listed for single character delimiters is a single delimi
| as a character of a compound.delimiter, or as a character of a comm
or numeric_literal.

mes are used when referring to compound delimiters:

the first, or after
A numeric_literal
cial characters

ler except if that
nt, string_literal,

Delimiter Name
HE qualified name separator
=> association
=> additive association
= Immediate connection
->> delayed connection

interval

-[left step bracket
]-> right step bracket
{** begin annex
*x3 end annex

Processing Requirements and Permissions

An implementation shall support lines of at least 200 characters in length, not counting any characters

used to signify the end of a line.

An implementation shall support lexical elements of at least 200

191 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

characters in length. The maximum supported line length and lexical element length are implementation
defined.

13.3 Identifiers

Identifiers are used as names. ldentifiers are case insensitive.

Syntax
identifier ::= identifier_letter {[underline] letter_or_digit}*
letter_or_digit ::= identifier_letter | digit

An identifier shall not be a reserved word.
For the lexical rples of identifiers, the rule of whitespace as token separator-does not| apply. In other

words, identifierd do not contain spaces or other whitespace characters.
Semantics

All characters of|an identifier are significant, including any undefline character. Identifiers differing only in
the use of corregponding upper and lower case letters are considered the same.

Legality Rules
An identifier must be distinct from the reserved words of the AADL.
Processing Requirements and Permissions

In a nonstandarf mode, an implementation may support other upper/lower case equiyalence rules for
identifiers, to acqgommodate local conventions.

In non-standard|mode, a method_of implementation may accept identifier syntax of gny programming
language that cap be used forssaftware component source text.

Examples
Count X Get_Symbol Ethelyn Gargor
Snobol_4 X1 Dnrja_(‘r\nﬂi— Qi—r\v'a_'l\Ta t—Ttem Merrliakt

13.4 Numerical Literals

There are two kinds of numeric literals, real and integer. A real_literal is a numeric_literal that includes a
point; an integer_literal is a numeric_literal without a point.

Syntax
numeric_literal ::= integer_literal | real_literal
integer_literal ::= decimal_integer_literal | based_integer_literal
real_literal ::= decimal_real_ literal

192 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

13.4.1 Decimal Literals

A decimal literal

is a numeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax
decimal_integer_literal = numeral [positive_exponent]
decimal_real literal = numeral . numeral [exponent]

decimal_integer_literal

numeral

*

numera v = \:u_gJ_t {[uudc;liuc] \,_‘u_gJ_t}

exponent = E [+] numeral | E - numeral

positiye_exponent = E [+] numeral
Semantics

An underline ch
written either in |

An exponent ind
be multiplied to ¢

12
12.

13.4.2 Based Lliterals

A based literal is|

based_

base

hracter in a numeral does not affect its meaning. Fhe’ letter E of an ¢xponent can be
bwer case or in upper case, with the same meaning.

cates the power of ten by which the value of the 'decimal literal without the exponent is to
btain the value of the decimal literal with thelexponent.

Examples
0 1E6 123_456 -- integer literals
0.0 0.456 3.14159_26 -- real litgrals

a numeric_literalhexpressed in a form that specifies the base explicitly.

Syntax

intedgerx_literal base # based_numeral # [positive]

]

lexponent

£-digit [digit]

based_numeral

extended_digit

extended_digit {[underline] extended_digit}

digit | A | B| C | D|E|F|la]|]b|lc]|]adal|lel]ltHt

Legality Rules

The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at
most sixteen. The extended_digits A through F represent the digits ten through fifteen respectively. The
value of each extended_digit of a based_literal shall be less than the base.

- 1983 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base
by which the value of the based literal without the exponent is to be multiplied to obtain the value of the
based literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples
2#1111_1111# 16#FF# OL6#OEEH# -- integer literals of value 255
2#1110_p000# 16#E#E1L 8#240%# -- Iinteger literals(of value 224

13.5 String Literals

A string_literal i ed between two

quotation marks

5 formed by a sequence of graphic characters (possibly none) enclog
used as string brackets.

Syntax
string|literal = "{string element}"
string|element = "" | non_quotati@n_mark_graphic_charactes

A string_elemen ter other than a

quotation mark.

t is either a pair of quotation marks ("), or a single graphic_charac

Semantics

ements between

The sequence o
the bracketing g
quotation mark

f characters of a string:literal is formed from the sequence of string_el
uotation marks, in‘the given order, with a string_element that is " be
n the sequence ‘of characters, and any other string_element being rg

coming a single
produced in the

sequence.
A null string literal is a string’ literal with no string_elements between the quotation marks

NOTES:

An end of line cannot appear in a string_literal.

Examples

"Message of the day:"

a null string literal

"o "A" o -—- three string literals of length 1
"Characters such as $, %, and } are allowed in string literals"
13.6 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line.

-194 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

commen

A comment may

The presence or absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the

Syntax
t ::= --{non _end of line character}
appear on any line of a program.
Semantics

enlightenment of the human reader.

-- th

end;

13.7 Reserved

Examples

s 1s a comment

-- processing of Line is complete

| ong comment may be split onto

b or more consecutive lines

the first two hyphens start the comment

Words

The following arg the AADL reserved words. yReserved words are case insensitive.

aadlbodlean aadlinteger aadlreal aadlstring
access all and annex

applies binding bus calls

classifigr connections constant data

delta deviee end entmeration—
event extends false features

flow flows group implementation
In inherit initial inverse

Is list memory mode

modes none not of

or out package parameter

-195 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

path port private process
processor properties property provides
public range reference refined
refines requires server set
sink source subcomponents | subprogram
system thread to true
type units value

NOTES:

The reserved words appear in lower case boldface in this standard. Lower case)boldface is also |
word in a string_literal used as an operator_symbol.

written in whatever typeface is desired and available.

This is merely a convention — AADL spe

sed for a reserved
cifications may be

- 196 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Appendix A Predeclared Property Sets

Normative

The property set AADL_Properties is a part of every AADL specification. It defines properties for AADL
model elements that are defined in the core of the AADL. This property set may not be modified by the
modeler.

The property set AADL_Project is a part of every AADL specification. It defines property enumeration
types and propefty constants that can be tailored for different AADL projects and site ingtallations. These
definitions allow for tailoring of the predeclared properties.

The property tydes, property names, and property constants of these predeclared property sets can be
named without pyoperty set name qualification.

A.1 Standard|AADL Property Set

There is a standgrd predeclared property set named AADI,_Propexties. This property et declaration is
a part of every AADL specification.

NOTES:

In accordance witl] the naming rules for references to itemsdefined in the predeclared property sefs, the declarations
in this property sqt refer to enumeration types and property constants declared in the AADL_Pfoject property set
without a qualifying property set name.

property_ set|AADI, Properties is

Activate_Deaflline: Time
applies to (thread);

Activafe_Deadling-specifies the maximum amount of time allowed for th¢ execution of a
thread’s [activation-sequence. The numeric value of time must be positive.

The property type is Time. The standard units are ps (picoseconds), ns (ngnoseconds), us
(microseconds); ms (milliseconds), sec (seconds), min (minutes) and hr (hours).

Activate_ExecCUtion_Time: Time_Range

applies to (thread);

Activate_Execution_Time specifies the minimum and maximum execution time, in the
absence of runtime errors, that a thread will use to execute its activation sequence, i.e., when a
thread becomes active as part of a mode switch. The specified execution time includes all time
required to execute any service calls that are executed by a thread, but excludes any time spent
by another thread executing remote procedure calls in response to a remote subprogram call
made by this thread.

Activate_Entrypoint: aadlstring

applies to (thread);

The Activate_Entrypoint property specifies the name of a source text code sequence that

-197 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

will execute when a thread is activated. This property may have an unspecified value.

The named code sequence in the source text must be visible in and callable from the outermost

program

scope, as defined by the scope and visibility rules of the applicable source language.

The source language annex of this standard defines acceptable parameter and result signatures
for the entrypoint subprogram.

Active_Thread_Handling Protocol:
inherit Supported_Active_Thread Handling_Protocols
=> wvalue (Default_Active_Thread Handling_Protocol)

applies to

(thread, thread group, process, system);

The Active_Thread_Handling_Protocol property specifies the protocol o use to handle
execution at the time instant of an actual mode switch. The available choices’lare implementer
defined. [One of the available choices must be the default value.
This profocol specifies the activation order of threads become active as7part of a hew mode.
Active_Threadl_Queue_Handling Protocol:
inherit epumeration (flush, hold) => flush
applies t¢ (thread, thread group, process, system);
The Act{ive_Thread_Queue_Handling_Protocol, property specifies the protocol to use to
handle the content of any event port or event data part queue of a thread at the §ime instant of an
actual mpde switch. The available choices are £lush and hold. Flush empties the queue. Hold
keeps the content in the queue of the thread being deactiveated until it is reactivgted.
Actual_Conne¢tion_Binding: inherit reference (bus, processor, device)
applies to (port connections, .thread, thread group, process, system);
Connectjons are bound to. “the bus, processor, or device spegified by the
Actual| Connection_Bindinhg property.
Actual_Laten¢y: Time
applies to (flow) ;
The Adtual_Latency property specifies the actual latency as detgrmined by the
implementation. of the end-to-end flow through semantic connections. Its numeijic value must be
positive.
The pro crty typc ts—Fime—TFhe—standard—units—arens (llalluccuw |C|'o), oS (lll;urOSGCOHdS), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours).
Actual_Memory_Binding: inherit reference (memory)
applies to (thread, thread group, process, system, processor,

Code and data

data port, event data port, subprogram) ;

from source text is bound to the memory specified by the

Actual_Memory_ Binding property.

-198 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Actual_Processor_Binding: inherit reference (processor)
applies to (thread, thread group, process, system);

A thread is bound to the processor specified by the Actual_Processor_Binding property.
The process of binding threads to processors determines the value of this property.

Actual_Subprogram_Call: reference (server subprogram)
applies to (subprogram) ;

The Actual_Subprogram_Call property specifies the server subprogram that is servicing the
subprogram call as a remote call. If no value is specified, the subprogram call is a local call.

Actual_Subpregram Call_Binding: reference (bus, processor, memory
applies t¢ (subprogram) ;

The Actjual_Subprogram_Call_Binding property specifies the bu§)processor, or memory to
which a fremote subprogram call is bound. If no value is specified, the subprogram call is a local
call.

Actual_Throu@gghput: Data_Volume
applies to (flow) ;

The Actual_Throughput property specifies the “actual throughput as determined by an
analysis [of the semantic flows representing the end-to-end flow.

Aggregate_Dafa_Port: aadlboolean => false
applies to (port group) ;

The aggregate_Data_Port propetty specifies whether the port group acts s an aggregate
data port for ports that contain data:

Allowed_Accegs_Protocol: list of enumeration (Memory Access,
Device_Access)

applies to (bus);

The Allowed_aAccess_Protocol property specifies the categories of hardware components
that can|be connected to the processor via the bus. The Memory_ Access value specifies that
threads fexecuting on a processor may access portions of their binary image| that have been

bound ta_a-memory over that bus, The Device Access value specifies that tiireads executing

on the processor can communicate with devices via that bus.

If a list of allowed connection protocols is not specified for a bus, then the bus may be used to
connect both devices and memory to the processor.

Allowed_Connection_Binding: inherit list of reference (bus, processor, device)
applies to (port connections, thread group, process, system);

The Allowed_Connection_Binding property specifies the execution platform resources that
are to be used to perform a communication. The property type is a list of component names.
The list must contain an odd number of component names. The named components must belong
to a processor, device or bus category.

The first component named in the list must be either the processor to which the thread containing

-199 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

the ultimate source feature is bound, or else the processor or device containing the ultimate
hardware source feature. The last component named in the list must be either the processor to
which the thread containing the ultimate destination feature is bound, or else the processor or
device containing the ultimate hardware destination feature. The intermediate component names
must alternate between a bus, and a processor or a device. Each pair of names for processor or
device components that are separated by the name of a bus component must share that bus
component. That is, the sequence of processors, devices and buses must form a connected path
through the specified hardware architecture.

Allowed_Connection_Binding Class:

inherit list of classifier (processor, bus,

applies t

device)

resources that
The property type is list\of component classifier
The ngmed component

The A1l
areto b
names.

classifie

The first
thread ¢
the ultim
either th
bound, g

owed_Connection_Binding_Class property specifies the hardwa

b used to perform a communication.
The list must contain an odd number of component names;
s must belong to a processor, device or bus category.

component classifier named in the list must be eitherthat of the procegsor to which the
bntaining the ultimate source feature is bound, or elsé the processor or device containing
ate hardware source feature. The last component classifier named in| the list must be
at of the processor to which the thread containing the ultimate destipation feature is
r else the processor or device containing the @ltimate hardware destinafion feature. The

intermed
device.
a bus cl

and busés must form a connected path through the specified hardware architecty

iate component classifier names must alternate between a bus, and
Each pair of names for processor or device classifiers that are separate
hssifier must share that bus component. That is, the sequence of prog

processor or a
by the name of
essors, devices,
re.

Allowed_Conn

applies
The A1l

supportd.

category
The Eve

If alist o

list. of enumeration
(Data_Connection,
Event_Connection)

bction_Protocol:

o (bus) ;

owed_Connection_Protocol property specifies the categories of cg

That is, a‘connection may only be legally bound to a bus if the b
of connection. The Data_Connection value means data connection
nt_Connection value means event connections are supported.

f allowed connection protocols is not specified for a bus, then any categ

canbeb

nnections a bus
Us supports that
s are supported.

bry of connection

ound to the bus.

Allowed_Dispatch_Protocol:

applies to

list of Supported_Dispatch_Protocols

(processor) ;

The Allowed_Dispatch_Protocol property specifies the thread dispatch protocols are
supported by a processor. That is, a thread may only be legally bound to the processor if the
specified thread dispatch protocol of the processor corresponds to the dispatch protocol required
by the thread.

If a list of allowed scheduling protocols is not specified for a processor, then a thread with any
dispatch protocol can be bound to and executed by the processor.

Allowed_Memory_Binding:

applies to

inherit list of reference (memory, system, processor)

(thread, thread group, process, system, device, data port,

- 200 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

event data port, subprogram, processor) ;

Code and data produced from source text can be bound to the set of memory components that is
specified by the A11owed_Memory_Binding property. The set is specified by a list of memory
and system component names. System names represent the memories contained in them. The
Allowed_Memory_Binding property may specify a single memory, thus specifying the exact
memory binding.

The allowed binding may be further constrained by the memory classifier specified in the
Allowed_Memory_Binding_ Class.

The value of the Allowed_Memory_Binding property may be inherited from the component
that contains the component or feature.

If this p
specifica

operty has no associated value, then all memory components decIaLed in an AADL
tion are acceptable candidates.

Allowed_Memo
inherit 1

applies t

v_Binding Class:

ist of classifier (memory, system, processorn)

process, system;“device, datg port,

processor) ;

(thread, thread group,
event data port, subprogram,

D

| owed_Memory_Binding_Class property spegifies a set of memdgry, device, and
classifiers. These classifiers constrain the set of memory conjponents in the
i_Memory_Binding property to the subset'that satisfies the componeni classifier.

The Al
system
Allowe

e of the Allowed_Memory_Binding> property may be inherited fromp the component
ains the component or feature.

The vall
that cont

If this property has no associated value, then all memory components ppecified in the

Allowefl_Memory_Binding are acceptable candidates.
Allowed_Messfge_Size: Size_Range
applies t¢o (bus);
The Allfowed_Message “Size property specifies the allowed range of sizes for a block of data
that carl be transmitted by the bus hardware in a single transmission (in |the absence of
packetization).

The exp
overhea

ression defines the range of data message sizes, excluding any headet

Messaggs-whose sizes fall below this range will be padded. Messages whose

is added due to bus protocols, that can be sent in a single transmis

or packetization
Sion over a bus.

sizes fall above

this range must be broken into two or more separately fransmitted packets.

Allowed_Period: list of Time_Range

applies to

(processor, system) ;

The Allowed_Period property specifies a set of allowed periods for periodic tasks bound to a
processor.

The period of every thread bound to the processor must fall within one of the specified ranges.

If an allowed period is not specified for a processor, then there are no restrictions on the periods
of threads bound to that processor.

- 201 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Allowed_Processor_Binding: inherit list of reference (processor, system)

applies to (thread, thread group, process, system, device);

The Allowed_Processor_Binding property specifies the set of processors that are available
for binding. The set is specified by a list of processor and system component names. System
names represent the processors contained in them.

If the property is specified for a thread, the thread can be bound to one of the specified set of
processors for execution. If the property is specified for a thread group, process or system, then it
applies to all contained threads, i.e., the contained threads inherit the property association unless
overridden. If this property is specified for a device, then it the thread associated with the device
driver code can be bound to oe of the set of processors for execution. The
Allowefl_Processor_Binding property may specify a single processor, thls specifying the
exact prpcessor binding.

The allo
the a11

ved binding may be further constrained by the processor classifiep refer
wed_Processor_Binding_Class property.

bnce specified in

If this prpperty has no associated value, then all processors declared in n AADL
acceptable candidates.

specification are

Allowed_Proc
inherit 1

bssor_Binding Class:

st of classifier (processor, system)

applies to (thread, thread group, process;(‘system, device);

The Alllowed_Processor_Binding_Class property specifies a set of processor and system

classifiefs. These component classifiers™ constrain the set of progessors in the
Allowedl_Processor_Binding propertycto the subset that satisfies the compohent classifier.
The defdult value is inherited from the containing process or system component.

If this | property has no assotiated value, then all processors specified in the
Allowefl_Processor_Bindimg-are acceptable candidates.

Allowed_Subp

applies t

rogram_Call: Adist of reference (server subprogram)

b (subprogram) ;

A subprepgram call ¢an be bound to any member of the set of server subprograms specified by

the a11

pwed_Subprogram_Call property. If no value is specified, then subp

ogram call must

be a local call,

Allowed_Subpi
inherit list of reference

rograll_Call BINdling:

(bus, processor, device)

applies to (subprogram, thread, thread group, process, system);

Server subprogram calls can be bound to the physical connection of an execution platform that is
specified by the A11lowed_Subprogram_Call_Binding property. If no value is specified, then
subprogram call must be a local call.

Assign_Time: Time

applies to (processor, bus);

The Assign_Time property specifies a time unit value used in a linear estimation of the
execution time required to move a block of bytes on a particular processor or bus. The time
required is assumed to be the number of bytes times the Assign_Byte_Time plus

- 202 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Assign_Fixed_Time.

Assign_Time (Number_of_Bytes * Assign_Byte_ Time) + Assign_Fixed_Time

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours). The numeric value must be a
positive number.

Assign_Byte_Time: Time

applies to (processor, bus);

The Assign_Byte_Time property specifies a time unit value which reflects the time required to
move a § ixed Time.

abhvio

on-a-batictlarprocaccoror-biia—not neludina th
oyt o

oy mn P
oo ppartoorar ProttosoTOT Oy O ICToTT gt

H=v=1 o2 : i)
Tt TS ST

The pro
(millisec
positive

berty type is Time. The standard units are ns (nanoseconds), us. (imi
bnds), sec (seconds), min (minutes) and hr (hours). The nutneric
number.

croseconds), ms
alue must be a

Assign_Fixed|Time: Time

applies tp (processor, bus);

The Asgign_Fixed_Time property specifies a time unit value which refle

cts the fixed or

overhead time required for assignment of any number of‘bytes on a particular prqcessor or bus .
The property type is Time. The standard units are ns (hanoseconds), us (microseconds), ms
(millisecpnds), sec (seconds), min (minutes) and hr (hours). The numeric jalue must be a
positive humber.
Available_Memory Binding: inherit list of reference (memory, system)
applies t¢o (system);
The Avjailable_Memory_ Binding property specifies the set of corftained memory

compongnts that are made available for binding outside the system. The set is $pecified by a list

of memdry and system component names. System names represent the memdries contained in
them.
Available_Prpcessor_Binding: inherit list of reference (processor, system)
applies to (sysStem) ;
The Av nined processor

iAable_Processor_Binding property specifies the set of cont
componwumhmmgmﬂuh&sys&mﬂm,peciﬁed by a list

of processor and system component names. System names represent the processors contained
in them.

Base_Address: access aadlinteger 0 .. value (Max_ Base_Address)

applies to (data);

The Base_aAddress property specifies the address of the first word in the memory. The
addresses used to access successive words of memory are Base_Address, Base_Address +
Word_Space, ...Base_Address + (Word_Count-1) * Word_Space.

The property expression must be preceded by the reserved word access, in which case the
property specifies the address associated with the access to a subcomponent rather than the
data component itself.

- 208 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

Client_Subprogram_Execution_Time:

applies to

Time

(subprogram) ;

The Client_Subprogram_Execution_Time property specifies the length of time it takes to
execute the client portion of a remote subprogram call.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms

(milliseconds), sec (seconds), min (minutes) and hr (hours).

positive number.

The numeric value must be a

Clock_Jitter
applies t¢

The c1d
the start

Time

A

o> (processor —system

ck_Jitter property specifies a time unit value that gives the maximt
of clock interrupt handling on any two processors in a multi-processeor sy

7T

m time between
stem.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(millisecpnds), sec (seconds), min (minutes) and hr (hours). The*numeric jalue must be a
positive humber.
Clock_Periodf Time
applies to (processor, system) ;
The c1dck_Period property specifies a time unitwalue that gives the time intefval between two
clock interrupts.
The property type is Time. The standard uhits are ns (nanoseconds), us (miproseconds), ms
(millisecpnds), sec (seconds), min (minutes) and hr (hours). The numeric jalue must be a
positive humber.
Clock_Period] Range: Time_Range
applies t¢ (processor, system);
The Ccldck_Period_Rarige property specifies a time range value that represepts the minimum

and max

imum value asSignable to the Clock_Period property.

Compute_Dead
applies t
The Com

| ine: Time

b (thread, subprogram, event port, event data port);

pute_Deadline specifies the maximum amount of time allowed for th

e execution of a

thread’s

compute sequence.

[T the property is specitied for a subprogram, event port, or event

data port feature, then this compute execution time applies to the dispatched thread when the
corresponding call, event, or event data arrives. When specified for a server subprogram, the
Compute_Deadline applies to the thread executing the remote procedure call in response to
the server subprogram call. The Compute_Deadline specified for a feature must not exceed
the Compute_Deadline of the associated thread. The numeric value of time must be positive.

The values specified for this property for a thread are bounds on the values specified for specific
features.

The Deadline property places a limit on Compute_Deadline and Recover_Deadline:
Compute_Deadline + Recover_Deadline < Deadline.

The property type is Time. The standard units are ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), sec (seconds), min (minutes) and hr (hours).

- 204 -

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

