

 AEROSPACE
 STANDARD

SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is
entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”
SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.
Copyright © 2004 SAE International
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of SAE.
TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: custsvc@sae.org
SAE WEB ADDRESS: http://www.sae.org

® AS5506

 Issued 2004-11

ARCHITECTURE ANALYSIS & DESIGN LANGUAGE (AADL)

This Architecture Analysis & Design Language (AADL) standard document was prepared by the SAE AS-
2C Architecture Description Language Subcommittee, Embedded Computing Systems Committee,
Aerospace Avionics Systems Division. This subcommittee is chaired by Bruce Lewis
(bruce.a.lewis@us.army.mil +1-256-876-3224), US Army Aviation and Missile Command (AMCOM)
Software Engineering Directorate (SED), Acquisition Technology Division.

The starting point for the AADL standard development was MetaH, an architecture description language
and non-commercialized supporting toolset, developed at Honeywell Technology Laboratories under the
sponsorship of the US Defense Advanced Research Projects Agency (DARPA) and US Army Aviation and
Missile Command (AMCOM).

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 2 -

TABLE OF CONTENTS

1 SCOPE...9
1.1 Purpose/Extent ...9
1.2 Field of Application ...11
1.3 Structure of Document..11

1.3.1 A Reader’s Guide ..11
1.3.2 Structure of Clauses and Subclauses ...13

1.4 Error, Exception, Anomaly and Compliance...14
1.5 Method of Description and Syntax Notation ...15
1.6 Method of Description for Discrete and Temporal Semantics..17

2 REFERENCES ..22
2.1 Normative References..22
2.2 Informative References ..22
2.3 Terms and Definitions...22

3 ARCHITECTURE ANALYSIS & DESIGN LANGUAGE SUMMARY ...23

4 COMPONENTS, PACKAGES, AND ANNEXES ...28
4.1 AADL Specifications ...28
4.2 Packages ..30
4.3 Component Types ..32
4.4 Component Implementations..36
4.5 Subcomponents..42
4.6 Annex Subclauses and Annex Libraries...46

5 SOFTWARE COMPONENTS..49
5.1 Data ..49
5.2 Subprograms and Subprogram Calls ...55
5.3 Threads...60
5.4 Thread Groups..74
5.5 Processes ...76
5.6 Predeclared Runtime Services ...79

6 EXECUTION PLATFORM COMPONENTS ..81
6.1 Processors..81
6.2 Memory...85
6.3 Buses..86
6.4 Devices ...89

7 SYSTEM COMPOSITION..92
7.1 Systems ..92

8 FEATURES AND SHARED ACCESS ...95
8.1 Ports ...96
8.2 Port Groups and Port Group Types..102
8.3 Subprograms As Features..106
8.4 Subprogram Parameters ..112
8.5 Subcomponent Access...113

9 CONNECTIONS AND FLOWS..117

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 3 -

9.1 Connections..117
9.1.1 Port Connections...117
9.1.2 Parameter Connections...128
9.1.3 Access Connections..131

9.2 Flows ..134
9.2.1 Flow Specifications..135
9.2.2 Flow Implementations ...138
9.2.3 End-To-End Flows...142

10 PROPERTIES ..146
10.1 Property Sets ..146

10.1.1 Property Types ..147
10.1.2 Property Names...151
10.1.3 Property Constants..153

10.2 Predeclared Property Sets..155
10.3 Property Associations ...156
10.4 Property Expressions..162

11 OPERATIONAL MODES ...169
11.1 Mode ...169

12 OPERATIONAL SYSTEM..177
12.1 System Instances..177
12.2 System Binding ...178
12.3 System Operation ...183

13 LEXICAL ELEMENTS ..189
13.1 Character Set ..189
13.2 Lexical Elements, Separators, and Delimiters ..190
13.3 Identifiers...192
13.4 Numerical Literals ...192

13.4.1 Decimal Literals ...193
13.4.2 Based Literals..193

13.5 String Literals ..194
13.6 Comments...194
13.7 Reserved Words ...195

APPENDIX A PREDECLARED PROPERTY SETS...197
A.1 Standard AADL Property Set..197
A.2 Project-Specific Property Set..218

APPENDIX B PROFILES AND EXTENSIONS...222
B.1 Allowed Subsets and Restrictions ..222

APPENDIX C GLOSSARY..223

APPENDIX D SYNTAX SUMMARY ...229

ANNEX A GRAPHICAL AADL NOTATION..254

ANNEX B UNIFIED MODELING LANGUAGE (UML) PROFILE ...254
Annex B.1 UML 1.4 Profile for AADL ..254
Annex B.2 UML 2.0 Profile for AADL ..254

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 4 -

ANNEX C AADL DATA INTERCHANGE FORMATS ..254
Annex C.1 AADL XML Specification..254

ANNEX D LANGUAGE COMPLIANCE AND APPLICATION PROGRAM INTERFACE.....................254
Annex D.1 Ada Language Compliance and Application Program Interface......................................254
Annex D.2 C Language Compliance and Application Program Interface ...254

ANNEX E ERROR MODEL..255

ANNEX F POSSIBLE TOOLS ...256

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 5 -

Table of Figures

Figure 1 Example Semantic Connections...27

Figure 2 Component Type Extension Hierarchy...33

Figure 3 Extension Hierarchy of Component Types and Implementations ..37

Figure 4 Component Containment Hierarchy ...42

Figure 5 Thread States and Actions ...66

Figure 6 Thread Scheduling and Execution States ..69

Figure 7 Performing Thread Execution with Recovery ...71

Figure 8 Process States and Actions..79

Figure 9 Processor States and Actions...85

Figure 10 Containment Hierarchy and Shared Access...114

Figure 11 Semantic Port Connection ..118

Figure 12 Timing of Immediate & Delayed Data Connections..124

Figure 13 Parameter Connections ..129

Figure 14 Semantic Access Connection ...131

Figure 15 Flow Specification & Flow Implementation ...135

Figure 16 Property Value Determination...161

Figure 17 System Instance States, Transitions, and Actions ...184

Figure 18 System Mode Switch Semantics ..186

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 6 -

Foreword

This standard was prepared by the Society of Automotive Engineers (SAE) Avionics Systems Division
(ASD) Embedded Computing Systems Committee (AS-2) Architecture Description Language (AS-2C)
subcommittee.

This standard addresses the requirements defined in SAE ARD 5296, Requirements for the Avionics
Architecture Description Language1.

The starting point for the AADL standard development was MetaH, an architecture description language
and supporting toolset, developed at Honeywell Technology Laboratories under DARPA and Army
AMCOM sponsorship.

The AADL standard has been designed to be compatible with real-time operating system standards such
as POSIX and ARINC 653.

The AADL standard provides explicit support for extensions to the core language through the property
extension mechanism for defining and integrating new properties and property sets. It also includes annex
subclauses for the definition and integration of complementary sublanguages.

The AADL standard is aligned with Object Management Group (OMG) Unified Modeling Language (UML)
through profiles for AADL as defined in the annexes.

The AADL standard includes a specification of an AADL-specific XML interchange format.

The AADL standard provides guidelines for users to transition between AADL models and program
source text written in Ada 95 (ISO/IEC 8652/1995 (E)) and C (ISO/IEC 9899:1999).

1 This was the original name of the SAE AADL.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 7 -

Introduction

The SAE Architecture Analysis & Design Language (referred to in this document as AADL) is a textual
and graphical language used to design and analyze the software and hardware architecture of
performance-critical real-time systems. These are systems whose operation strongly depends on
meeting non-functional system requirements such as reliability, availability, timing, responsiveness,
throughput, safety, and security. The AADL is used to describe the structure of such systems as an
assembly of software components mapped onto an execution platform. It can be used to describe
functional interfaces to components (such as data inputs and outputs) and performance-critical aspects of
components (such as timing). The AADL can also be used to describe how components interact, such as
how data inputs and outputs are connected or how application software components are allocated to
execution platform components. The language can also be used to describe the dynamic behavior of the
runtime architecture by providing support to model operational modes and mode transitions. The
language is designed to be extensible to accommodate analyses of the runtime architectures that the
core language does not completely support. Extensions can take the form of new properties and analysis
specific notations that can be associated with components.

The AADL was developed to meet the special needs of performance-critical real-time systems, including
embedded real-time systems such as avionics, automotive electronics, or robotics systems. The
language can describe important performance-critical aspects such as timing requirements, fault and
error behaviors, time and space partitioning, and safety and certification properties. Such a description
allows a system designer to perform analyses of the composed components and systems such as system
schedulability, sizing analysis, and safety analysis. From these analyses, the designer can evaluate
architectural tradeoffs and changes.

Since the AADL supports multiple and extensible analysis approaches, it provides the ability to analyze
the cross cutting impacts of change in the architecture in one specification using a variety of analysis
tools. The AADL specification language is designed to be used with analysis tools that support the
automatic generation of the source code needed to integrate the system components and build a system
executive. Since the models and the architecture specification drive the design and implementation, they
can be maintained to permit model driven architecture based changes throughout the system lifecycle.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 8 -

Information and Feedback

The website at http://www.aadl.info is an information source regarding the SAE AADL standard. It makes
available papers on the AADL, its benefits, and its use. Also available are papers on MetaH, the
technology that demonstrated the practicality of a model-based system engineering approach based on
architecture description languages for embedded real-time systems.

The website provides links to three SAE AADL related discussion forums:

1. The SAE AADL User Forum to ask questions and share experiences about modeling with SAE
AADL,

2. The AADL Toolset User Forum to ask questions and share experiences with the AADL Open
Source Toolset Environment, and

3. The SAE Standard Document Corrections & Improvements Forum that records errata,
corrections, and improvements to the current release of the SAE AADL standard.

The website provides information and a download site for the Open Source AADL Tool Environment. It
also provides links to other resources regarding the AADL standard and its use.

Questions and inquiries regarding working versions of annexes and future versions of the standard can
be addressed to info@aadl.info.

Informal comments on this standard may be sent via e-mail to errata@aadl.info. If appropriate, the defect
correction procedure will be initiated. Comments should use the following format:

 !topic Title summarizing comment
 !reference AADL-ss.ss(pp)
 !from Author Name yy-mm-dd
 !keywords keywords related to topic
 !discussion
 text of discussion
where ss.ss is the section, clause or subclause number, pp is the paragraph or line number where
applicable, and yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords
line.

Multiple comments per e-mail message are acceptable. Please use a descriptive “Subject” in your e-mail
message.

When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:

 !topic [c]{C}haracter
 !topic it[']s meaning is not defined

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 9 -

1 Scope

This standard defines a language for describing both the software architecture and the execution platform
architectures of performance-critical, embedded, real-time systems; the language is known as the SAE
Architecture Analysis & Design Language (AADL). An architecture model defined in AADL describes the
properties and interfaces of components. Components fall into two major categories: those that
represent the execution platform and those representing the application. The former is typified by
processors, buses, and memory, the latter by application software modules. The model describes how
these components interact and are integrated to form complete systems. It describes both functional
interfaces and aspects critical for performance of individual components and assemblies of components.
The changes to the runtime architecture are modeled as operational modes and mode transitions.

The language is applicable to systems that are:
• real-time,
• resource-constrained,
• safety-critical systems,
• and those that may include specialized device hardware.

This standard defines the core AADL that is designed to be extensible. While the core language provides
a number of modeling concepts with precise semantics including the mapping to execution platforms and
the specification of execution time behavior, it is not possible to foresee all possible architecture analyses.
Extensions to accommodate new analyses and unique hardware attributes take the form of new
properties and analysis specific notations that can be associated with components. Users or tool vendors
may define extension sets. Extension sets may be proposed for inclusion in this standard. Such
extensions will be defined as part of a new Annex appended to the standard.

This standard does not specify how the detailed design or implementation details of software and
hardware components are to be specified. Those details can be specified by a variety of software
programming and hardware description languages. The standard specifies relevant characteristics of the
detailed design and implementation descriptions, such as source text written in a programming language
or hardware description language, from an external (black box) perspective. These relevant
characteristics are specified as AADL component properties, and as rules of conformance between the
properties and the described components.

This standard does not prescribe any particular system integration technologies, such as operating
system or middleware application program interfaces or bus technologies or topologies. However,
specific system architecture topologies, such as the ARINC 653 RTOS, can be modeled through software
and execution platform components. The AADL can be used to describe a variety of hardware
architectures and software infrastructures. Integration technologies can be used to implement a specified
system. The standard specifies rules of conformance between AADL system architecture specifications
and physical systems implemented from those specifications.

The standard was not designed around a particular set of tools. It is anticipated that systems and
software tools will be provided to support the use of the AADL.

1.1 Purpose/Extent

The purpose of the AADL is to provide a standard and sufficiently precise (machine-processable) way of
modeling the architecture of an embedded, real-time system, such as an avionics system or automotive
control system, to permit analysis of its properties, and to support the predictable integration of its
implementation. Defining a standard way to describe system components, interfaces, and assemblies of
components facilitates the exchange of engineering data between the multiple organizations and

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 10 -

technical disciplines that are invariably involved in an embedded real-time system development effort. A
precise and machine-processable way to describe conceptual and runtime architectures provides a
framework for system modeling and analysis; facilitates the automation of code generation, system build,
and other development activities; and significantly reduces design and implementation defects.

The AADL describes application software and execution platform components of a system, and the way in
which components are assembled to form a complete system or subsystem. The language addresses
the needs of system developers in that it can describe common functional (control and data flow)
interfacing idioms as well as performance-critical aspects relating to timing, resource allocation, fault-
tolerance, safety and certification.

The AADL describes functional interfaces and non-functional properties of application software and
execution platform components. The language is not suited for detailed design or implementation of
components. AADL may be used in conjunction with existing standard languages in these areas. The
AADL describes interfaces and properties of execution platform components including processor,
memory, communication channels, and devices interfacing with the external environment. Detailed
designs for such hardware components may be specified by associating source text written in a hardware
description language such as VHDL2. The AADL can describe interfaces and properties of application
software components implemented in source text, such as threads, processes, and runtime
configurations. Detailed designs and implementations of algorithms for such components may be
specified by associating source text written in a software programming language such as Ada 95 or C, or
domain-specific modeling languages such as MatLab®/Simulink®3.

The AADL describes how components are composed together and how they interact to form complete
system architectures. Runtime semantics of these components are specified in this standard. Various
mechanisms are available to exchange control and data between components, including message
passing, event passing, synchronized access to shared components, and remote procedure calls.
Thread scheduling protocols and timing requirements may be specified. Dynamic reconfiguration of the
runtime architecture may be specified through operational modes and mode transitions. The language
does not require the use of any specific hardware architecture or any specific runtime software
infrastructure.

Rules of conformance are specified between specifications written in the AADL, source text and physical
components described by those specifications, and physical systems constructed from those
specifications. The AADL is not intended to describe all possible aspects of any possible component or
system; selected syntactic and semantic requirements are imposed on components and systems. Many
of the attributes of an AADL component are represented in an AADL model as properties of that
component. The conformance rules of the language include the characteristics described by these
properties as well as the syntactic and semantic requirements imposed on components and systems.
Compliance between AADL specifications and items described by specifications is determined through
analysis, e.g., by tools for source text processing and system integration.

The AADL can be used for multiple activities in multiple development phases, beginning with preliminary
system design. The language can be used by multiple tools to automate various levels of modeling,
analysis, implementation, integration, verification and certification.

2 VHDL is the “Very High Speed IC Hardware Description Language (Formerly Verilog Hardware Description
Language). See IEEE VHDL Analysis and Standardization Group for details and status.

3 MatLab and SimuLink are commercial tools available from The MathWorks.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 11 -

1.2 Field of Application

The AADL was developed to model embedded systems that have challenging resource (size, weight,
power) constraints and strict real-time response requirements. Such systems should tolerate faults and
may utilize specialized hardware such as I/O devices. These systems are often certified to high levels of
assurance. Intended fields of application include avionics systems, automotive systems, flight
management systems, engine and power train control systems, medical devices, industrial process
control equipment, robotics, and space applications. The AADL may be extended to support other
applications as the need arises.

1.3 Structure of Document

1.3.1 A Reader’s Guide

This standard contains a number of sections, appendices, and annexes. The sections define the core
AADL. The appendices provide additional information, both normative and informative about the core
language. Annexes define extensions to the core AADL and provide guidelines and an interchange format
to enable the transition of AADL models to other tools. Annexes may also provide information to clarify
some of the underlying concepts incorporated into the AADL model.

AADL concepts are introduced in section 3, Architecture Analysis & Design Language Summary. They
are defined with full syntactic and semantic descriptions as well as naming and legality rules in
succeeding sections. The vocabulary and symbols of the AADL are defined in Section 13. Appendix C ,
Glossary, provides informative definitions of terms used in this document. Other appendices include a
Syntax Summary and Predeclared Property Sets. The remainder of this section introduces notations used
in this document and discusses standard conformance.

The core of the Architecture Analysis & Design Language document consists of the following:

Section 2, References, provides normative and applicable references as well as terms and definitions.

Section 3, Architecture Analysis & Design Language Summary, introduces and defines the concepts of
the language.

Section 4, Components, Packages, and Annexes, defines the common aspects of components, which are
the design elements of the AADL. It also introduces the package, which allows organization of the design
elements in the design space. This section closes with a description of annex subclauses and libraries as
annex-specific notational extensions to the core AADL.

The next sections introduce the language elements for modeling application and execution platform
components in modeled systems or systems of systems.

Section 5, Software Components, defines those modeling elements of the AADL that represent
application system software components, i.e., data, subprogram, thread, thread group, and process.

Section 6, Execution Platform Components, defines those modeling elements of the AADL that model
execution platform components, i.e., processor, memory, bus, and device.

Section 7, System Composition, defines system as a compositional modeling element that combines
execution platform and application system software components.

Section 8, Features and Shared Access, defines the features of components that are connection points
with other components, i.e., ports, subprograms, and provided and required access to support modeling
of shared access to data and buses.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 12 -

Section 9, Connections and Flows, defines the constructs to express interaction between components in
terms of connections between component features and in terms of flows through a sequence of
components.

Section 10, Properties, defines the AADL concept of properties including property sets, property value
association, property type, and property declaration. Property associations and property expressions are
used to specify values. Property set, property type, and property name declarations are used to extend
the AADL with new properties.

Section 11, Operational Modes, defines modes and mode transitions to support modeling of operational
modes with mode-specific system configurations and property values.

Section 12, Operational System, defines the concepts of system instance and binding of application
software to execution platforms. This section defines the execution semantics of the operational system
including the semantics of system-wide mode switches.

Section 13, Lexical Elements, defines the basic vocabulary of the language. As defined in this section,
identifiers in AADL are case insensitive. Identifiers differing only in the use of corresponding upper and
lower case letters are considered as the same. Similarly, reserved words in AADL are case insensitive.

The following Appendix sections complete the definition of the core AADL.

Appendix A , Predeclared Property Sets, contains the standard AADL set of predeclared properties.

Appendix B , Profiles and Extensions, contains profiles and extensions that have been approved by the
standards body.

Appendix C , Glossary, contains a glossary of terms.

Appendix D , Syntax Summary, contains a summary of the syntax as defined in the sections of this
document.

The Annex sections introduce additions and extensions to the core AADL. Annex F has been included in
this release of the standard. Other Annexes will be part of the next release of the standard.

Annex A, Graphical AADL Notation, defines a graphical representation of the AADL.

Annex B, Unified Modeling Language (UML) Profile, defines a profile for UML that extends and tailors
UML to support modeling in terms of AADL concepts. This profile introduces another graphical notation
for AADL concepts.

Annex C, AADL Data Interchange Formats, defines an XML-based interchange format in form of an XMI
meta model and an XML schema.

Annex D, Language Compliance and Application Program Interface, defines language-specific rules for
source text to be compliant with an architecture specification. The initial version of this annex defines the
language specific rules for Ada 95 and C and specifies the Ada 95 and C Application Program Interface to
runtime service calls. AADL specifications and tools that process specifications are not required to
support source text written in the Ada 95 or C language, but if they do so then they must comply with this
annex.

Annex E, Error Model, defines the component and system compliance rules and semantics for AADL
specifications that deal with safety and security aspects of a system. AADL specifications are not
required to address these aspects of a system, but if they do then they must comply with this annex.

Annex F, Possible Tools, contains a description of tool support for the AADL.

The core language and the Annexes are normative, except that the material in each of the items listed
below is informative:

Text under a NOTES or Examples heading.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 13 -

Each clause or subclause whose title starts with the word “Example'' or “Examples''.

All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Annexes that represent extensions to the core language.

The following appendices and annexes are informative and do not form a part of the formal specification
of the AADL:

Appendix C , Glossary

Appendix D , Syntax Summary

Annex F, Possible Tools.

1.3.2 Structure of Clauses and Subclauses

Each section of the core standard is divided into clauses and subclauses that have a common structure.
Each section, clause, and subclause first introduces its subject and then presents the remaining text in
the following format. Not all headings are required in a particular clause or subclause. Headings will be
centered and formatted as shown below.

Syntax

Syntax rules, concerned with the organization of the symbols in the AADL expressions, are given in a
variant of Backus-Naur-Form (BNF) that is described in detail in Section 1.5.

Naming Rules

Naming rules define rules for names that represent defining identifiers and references to previously
defined identifiers.

Legality Rules

Legality rules define restrictions on AADL specifications. Legality rules must be validated by AADL
processing tools.

Standard Properties

Standard properties define the properties that are defined within this standard for various categories of
components. The listed properties are fully described in Appendix A .

Semantics

Semantics describes the static and dynamic meanings of different AADL constructs with respect to the
system they model. The semantics are concerned with the effects of the execution of the constructs, not
how they would be specifically executed in a computational tool.

Processing Requirements and Permissions

AADL specifications may be processed manually or by tools for analysis and generation. This section
documents additional requirements and permissions for determining compliance. Providers of processing
method implementations must document a list of those capabilities they support and those they do not
support.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 14 -

NOTES:

Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is
informative.

Examples

Examples illustrate the possible forms of the constructs described. This material is informative.

1.4 Error, Exception, Anomaly and Compliance

The AADL can be used to specify dependable systems. A system can be compliant with its specification
and this standard even when that system contains failed components that no longer satisfy their
specifications. This section defines the terms fault, error, exception, anomaly and noncompliance [IFIP
WG10.4-1992]; and defines how those terms apply to AADL specifications, physical components
(implementations), models of components, and tools that accept AADL specifications as inputs.

A fault is defined to be an anomalous undesired change in thread execution behavior, possibly resulting
from an anomalous undesired change in data being accessed by that thread or from violation of a
compute time or deadline constraint. A fault in a physical component is a root cause that may eventually
lead to a component error or failure. A fault is often a specific event such as a transistor burning out or a
programmer making a coding mistake.

An error in a physical component occurs when an existing fault causes the internal state of the
component to deviate from its nominal or desired operation. For example, a component error may occur
when an add instruction produces an incorrect result because a transistor in the adding circuitry is faulty.

A failure in a physical component occurs when an error manifests itself at the component interface. A
component fails when it does not perform its nominal function for the other parts of the system that
depend on that component for their nominal operation.

A component failure may be a fault within a system that contains that component. Thus, the sequence of
fault, error, failure may repeat itself within a hierarchically structured system. Error propagation occurs
when a failed component causes the containing system or another dependent component to become
erroneous.

A component may persist in a faulty state for some period of time before an error occurs. This is called
fault latency. A component may persist in an erroneous state for some period of time before a failure
occurs. This is called error latency.

An exception represents a kind of exceptional situation; it may occur for an erroneous or failed component
when that error or failure is detected, either by the component itself or another component with which it
interfaces. For example, a fault in a software component that eventually results in a divide-by-zero may
be detected by the processor component on which it depends. An exception is always associated with a
specific component. This document defines a standard model for exceptions for certain kinds of
components (e.g. defines standard recovery sequences and standard exception events).

An anomaly occurs when a component is in an erroneous or failed state that does not result in a standard
exception. Undetected errors may occur in systems. A detected error may be handled using
mechanisms other than the standard exception mechanisms. For example, an error may propagate to
multiple components before it is detected and mitigated. This standard defines nominal and exceptional
behaviors for components. Anomalies are any other undefined erroneous component behaviors, which
are nevertheless considered compliant with this standard.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 15 -

An AADL specification is compliant with this standard if it satisfies all the syntactic and legality rules
defined herein.

A component or system is compliant with an AADL specification of that component or system if the
nominal and exceptional behaviors of that component or system satisfy the applicable semantics of the
AADL specification, as defined by the semantic rules in this standard. A component or system may be a
physical implementation (e.g. a piece of hardware), or may be a model (e.g. a simulation or analytic
model). A model component or system may exhibit only partial semantics (e.g. a schedulability model
only exhibits temporal semantics). Physical components and systems must exhibit all specified
semantics, except as permitted by this standard.

Noncompliance of a component with its specification is a kind of design fault. This may be handled by
run-time fault-tolerance in an implemented physical system. A developer is permitted to classify such
components as anomalous rather than noncompliant.

A tool that operates on AADL specifications is compliant with this standard if the tool checks for
compliance of input specifications with the syntactic and legality rules defined herein, except where
explicit permission is given to omit a check; and if all physical or model components or systems generated
by the tool are compliant with the specifications used to generate those components or systems. The
AADL standard allows profiles of language subsets to be defined and requires a minimum subset of the
language to be supported (see Appendix B.1). A tool must clearly specify any portion of the language
not supported and warn the user if a specification contains unsupported language constructs, when
appropriate.

Compliance of an AADL specification with the syntactic and legality rules can be automatically checked,
with the exception of a few legality rules that are not in general tractably checkable for all specifications.
Compliance of a component or system with its specification, and compliance of a tool with this standard,
cannot in general be fully automatically checked. A verification process that assures compliance to the
degree required for a particular purpose must be used to perform the latter two kinds of compliance
checking.

1.5 Method of Description and Syntax Notation

The language is described by means of a context-free syntax together with context-dependent
requirements expressed by narrative rules. The meaning of a construct in the language is defined by
means of narrative rules.

The context-free syntax of the language is described using the variant Backus-Naur Form (BNF) [BNF
1960] as defined herein.

Lower case words in courier new font, some containing embedded underlines, are used to denote
syntactic categories. A syntactic category is a nonterminal in the grammar. For example:

 component_feature_list

Boldface words are used to denote reserved words, for example:

 implementation

A vertical line separates alternative items.

 software_category ::= thread | process

Square brackets enclose optional items. Thus the two following rules are equivalent.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 16 -

 property_association ::= property_name => [constant] expression

 property_association ::=

 property_name => expression

 | property_name => constant expression

Curly brackets with a * symbol enclose a repeated item. The item may appear zero or more times; the
repetitions occur from left to right as with an equivalent left-recursive rule. Thus the two following rules
are equivalent.

 declaration_list ::= declaration { declaration }*

 declaration_list ::= declaration

 | declaration declaration_list

Curly brackets with a + symbol specify a repeated item with one or more occurrences. Thus the two
following rules are equivalent.

 declaration_list ::= { declaration }+

 declaration_list ::= declaration { declaration }*

Parentheses (round brackets) enclose several items to group terms. This capability reduces the number
of extra rules to be introduced. Thus, the first rule is equivalent with the latter two.

 property_association ::= identifier (=> | +=>) property_expression

 property_association ::= identifier assign property_expression

 assign::= => | +=>

Square brackets, curly brackets, and parentheses may appear as delimiters in the language as well as
meta-characters in the grammar. Square, curly, and parentheses that are delimiters in the language will
be written in bold face in grammar rules, for example:

 property_association_list ::=

 { property_association { ; property_association }* }

The syntax rules may preface the name of a nonterminal with an italicized name to add semantic
information. These italicized prefaces are to be treated as comments and not a part of the grammar
definition. Thus the two following rules are equivalent.

 component ::= identifier : component_classifier ;

 component ::= component_identifier : component_classifier ;

A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category, for example:

 My_GPS: thread GPS.dualmode ;

The syntax description has been developed with an emphasis on an abstract syntax representation to
provide clarity to the reader.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 17 -

1.6 Method of Description for Discrete and Temporal Semantics

Discrete and temporal semantics of the language are defined in sections that define AADL concepts using
a concurrent hierarchical hybrid automata notation, together with additional narrative rules about those
diagrams. This notation consists of a hierarchical finite state machine notation, augmented with real-
valued variables to denote time and time-varying values, and with edge guard and state invariant
predicates over those variables to define temporal constraints on when discrete state transitions may
occur.

A semantic diagram defines the nominal scheduling and reconfiguration behavior for a modeled system
as well as scheduling and reconfiguration behavior when failures are detected. A physical realization of a
specification may violate this definition, for example due to runtime errors. A violation of the defined
semantics is called an anomalous behavior. Certain kinds of anomalous behaviors are permitted by this
standard. Legal anomalous behaviors are defined in the narrative rules.

Semantics for individual components are defined using a sequential hierarchical hybrid automaton.
System semantics are defined as the concurrent composition of the hybrid automata of the system
components.

Ovals labeled with lower case phrases are used to denote discrete states. A component may remain in
one of its discrete states for an interval of time whose duration may be zero or greater. Every semantic
automaton for a component has a unique initial discrete state, indicated by a heavy border. For example,

Directed edges labeled with one or more comma-separated, lower case phrases are used to denote
possible transitions between the discrete states of a component. Transitions over an edge are logically
instantaneous, i.e., the time interval in which a transition from a discrete state (called the source discrete
state) to a discrete state (called the destination discrete state) has duration 0. During the instant of time
in which a transition occurs, it is undefined whether the component is in the source state or the
destination state. For example,

Permissions that allow a runtime implementation of a transition to occur over an interval of time are
expressed as narrative rules. However, all implemented transitions must be atomic with respect to each
other, all observable serializations must be admitted by the logical semantics, and all temporal predicates
as defined in subsequent paragraphs must be satisfied.

Oblong boxes labeled with lower case phrases denote abstract discrete states that are defined as sets of
other discrete states and edges. Wherever such an abstract discrete state appears in a hybrid semantics
diagram, there will always be another hybrid semantics diagram showing an identically labeled oblong
box that contains discrete states and edges to define that abstract discrete state. For example,

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 18 -

If there are multiple oblong boxes with the same label in a diagram, then multiple abstract discrete states
are denoted. That is, the behavior is as if every occurrence of an abstract discrete state were replaced by
a copy of its defining set of discrete states and transitions. In this standard, abstract states and edges
that connect them will always be labeled so that the defining diagram for an abstract state, and the
association between edges in the defining diagram and edges in the containing diagram, are
unambiguous. An abstract state label or an edge label may include italicized letters that are not a part of
the formal name but are used to distinguish multiple instances. For example, both abstract discrete
states below will be defined by a single diagram labeled executing.

If there is an external edge that enters or exits the containing oblong box in the defining diagram for an
abstract state, and there are no edges within that definition that connect any internal discrete state with
that external edge, then there implicitly exist edges from every contained discrete state in the defining
diagram to or from that external edge. That is, a transition over that external edge may occur for any
discrete state in the defining diagram. For example, in the following diagram there is an implicitly defined
halt edge out of both the ready and the running discrete states.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 19 -

Real-valued variables whose values are time-varying may appear in expressions that annotate discrete
states and edges of hybrid semantic diagrams. Specific forms of annotation are defined in subsequent
paragraphs. The set of real-valued variables associated with a semantic diagram are those that appear in
any expression in that diagram, or in any of the defining diagrams for abstract discrete states that appear
in that diagram. Real-valued time-varying variables will be named using an italicized front. The initial
values for the real-valued time-varying variables of a hybrid semantic diagram are undefined whenever
they are not explicitly defined in narrative rules.

In addition to standard rational literals and arithmetic operators, expressions may also contain functions of
discrete variables. The names of functions and discrete variables will begin with upper case letters. The
semantics for function symbols and discrete variables will be defined using narrative rules. For example,
the subexpression Max(Compute_Time) may appear in a semantic diagram, together with a narrative
rule stating that the value is the maximum value of a range-valued component property named
Compute_Time.

Edges may be annotated with assignments of values to variables associated with the semantic diagram.
When a transition occurs over an edge, the values of the variables are set to the assigned values. For
example, in the following diagram, the values of the variables c and t are set to 0 when the component
transitions into the ready discrete state.

Discrete states may be annotated with expressions that define the possible rates of change for real-
valued variables during the duration of time a component is in that discrete state. The rate of a variable is
denoted using the symbol δ, for example δx=[0,1] (the rate of the variable x may be any real value in the
range of 0 to 1). If, rates of change are not explicitly shown within a discrete state for a time-varying
variable, then the rate of change of that variable in that state is defined to be 1. For example, in the
following diagram the rate of change for the variable c is 1 while the component is in the discrete state
running, but its value remains fixed while the component is in the ready state, equal to the value that
existed when the component transitioned into the ready state.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 20 -

A discrete state may be annotated with Boolean-valued expressions called invariants of that discrete
state. In this standard, all semantic diagrams are defined so that the values of the variables will always
satisfy the invariants of a discrete state for every possible transition into that discrete state. A transition
must occur out of a discrete state before the values of any time-varying variables cause any invariant of
that discrete state to become false. Invariants are used to define bounds on the duration of time that a
component can remain in a discrete state. For example, in the following diagram the component must
transition out of the running state before the value of the variable c exceeds 10.

An edge may be annotated with Boolean-valued expressions called guards of that edge. A transition may
occur from a source discrete state to a destination discrete state only when the values of the variables
satisfy all guards for an edge between those discrete states. A guard on an edge is evaluated before any
assignments on that edge are performed. For example, in the following diagram the component may only
complete when the value of the variable c is 5 or greater (but must complete before c exceeds 10
because of the invariant).

A sequential semantic automaton defines semantics for a single component. A system may contain
multiple components. The semantics of a system are defined to be the concurrent composition of the
sequential semantic automata for each component. Except as described below, every component is
represented by a copy of its defined semantic automaton. All discrete states and labels, all edges and
labels, and all variables, are local to a component. The set of discrete states of the system is the cross-
product of the sets of discrete states for each of its cross product components. The set of transitions that
may occur for a system at any point in time is the union of the transitions that may occur at that instant for
any of its components.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 21 -

If an edge label appears in boldface, then a transition may occur over that edge only when a transition
occurs over all edges having that same boldface label within the synchronization scope for that label. The
synchronization scope for a boldface label is indicated in parentheses. For example, if a transition occurs
over an edge having a boldface label with a synchronization scope of process, then every thread
contained in that process in which that boldface label appears anywhere in its hybrid semantic diagram
must transition over some edge having that label. That is, transitions over edges with boldface labels
occur synchronously with all similarly labeled edge transitions in all components associated with the
component with the specified synchronization scope as described in the narrative. Furthermore, every
component in that synchronization scope that might participate in such a transition in any of its discrete
states must be in one of those discrete states and participate in that transition. For example, when the
synchronization scope for the edge label s is the same for all three of the following concurrent semantic
automata, a transition over the edge labeled s may only occur when all three components are in their
discrete states labeled a, and all three components simultaneously transition to their discrete states
labeled c.

If a variable appears in boldface, then there is a single instance of that variable that is shared by all
components in the synchronization scope of the variable. The synchronization scope for a boldface
variable will be defined in narrative rules.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 22 -

2 References

2.1 Normative References

The following normative documents contain provisions that, through reference in this text, constitute
provisions of this standard.

IEEE/ANSI 610.12-1990 [IEEE/ANSI 610.12-1990], IEEE Standard Glossary of Software Engineering
Terminology.

ISO/IEC 9945-1:1996 [IEEE/ANSI Std 1003.1, 1996 Edition], Information Technology – Portable
Operating System Interface (POSIX) – Part 1: System Application Program Interface (API) [C Language].

ISO/IEC 14519:1999 [IEEE/ANSI Std 1003.5b-1999], Information Technology – POSIX Ada Language
Interfaces – Binding for System Application Program Interface (API) – Real-time Extensions.

ISO/IEC 8652:1995, Information Technology – Programming Languages – Ada.

ISO/IEC 9899:1999, Information Technology – Programming Languages – C.

Unified Modeling Language Specification [UML 2004, version 1.4.2], July 2004, version 1.4.2.

2.2 Informative References

The following informative references contain background information about the items with the citation.

[BNF 1960] NAUR, Peter (ed.), "Revised Report on the Algorithmic Language ALGOL 60,"
Communications of the ACM, Vol. 3 No. 5, pp. 299-314, May 1960.

[IFIP WG10.4-1992] IFIP WG10.4 on Dependable Computing and Fault Tolerance, 1992, J.-C. Laprie,
editor, “Dependability: Basic Concepts and Terminology,” Dependable Computing and Fault Tolerance,
volume 5, Springer-Verlag, Wien, New York, 1992.

[Henz 96] “Theory of Hybrid Automata”, Thomas A. Henzinger, Electrical Engineering and Computer
Science, University of California at Berkley, Proceedings of the 11th Annual Symposium on Logic in
Computer Science (LICS), IEEE Computer Society Press, 1996, pp. 278-292

2.3 Terms and Definitions

Terms are introduced throughout this standard, indicated by italic type. Informational definitions of terms
are given in Appendix C , Glossary. Definitions of terms used from other standards, such as the IEEE
Standard Glossary of Software Engineering Terminology [IEEE Std. 610.12-1990], ISO/IEC 9945-1:1996
[IEEE/ANSI Std 1003.1, 1996 Edition], Information Technology – Portable Operating System Interface
(POSIX), or IFIP WG10.4 Dependability: Basic Concepts and Terminology [IFIP WG10.4-1992], are so
marked. Terms not defined in this standard are to be interpreted according to the Webster's Third New
International Dictionary of the English Language. Terms explicitly defined in this standard are not to be
presumed to refer implicitly to similar terms defined elsewhere. A full description of the syntax and
semantics of the concept represented by the terms is found in the respective document sections, clauses,
and subclauses.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 23 -

3 Architecture Analysis & Design Language Summary

This section provides an informative overview of AADL concepts, structure, and use. In this section the
first appearance of a term that has a specific meaning in this standard will be italicized.

An AADL specification consists of AADL global declarations and AADL declarations. The AADL global
declarations are comprised of package specifications and property set declarations. AADL declarations
include component types, component implementations, port group types, and annex libraries. AADL
component type and implementation declarations model kinds of physical system components, such as a
kind of hardware processor or a software program. This standard defines the following categories of
components: data, subprogram, thread, thread group, process, memory, bus, processor, device, and
system. They form the core of the AADL modeling vocabulary.

A component type specifies a functional interface in terms of features, flow specifications, and properties.
It represents a specification of the component against which other components can operate.
Implementations of the component are required to satisfy this specification.

A component implementation specifies an internal structure in terms of subcomponents, connections
between the features of those subcomponents, flows across a sequence of subcomponents, modes to
represent operational states, and properties. Unlike many other languages, the AADL allows multiple
implementations to be declared with the same functional interface.

Packages provide a library-like structure for organizing component type and component implementation
declarations into separate namespaces and combining them into a system specification.

Components may be hierarchically decomposed into collections or assemblies of interacting
subcomponents. A subcomponent declares a component that is contained in another component,
naming a component type and component implementation to specify an interface and implementation for
the subcomponent. Thus, component types and implementations act as component classifiers. The
hierarchy of a system instance is based upon the set of subcomponents of the top-level system
implementation. It is completed by iteratively traversing the tree of the component classifiers specified
starting at the top-level system implementation subcomponents.

A feature describes a functional interface of a component through which control and data may be
exchanged with other components. Features can be ports to support directional flow of control and data,
subprograms to represent synchronous procedure calls, and requires and provides access to
subcomponents to represent shared access to data and bus components. Required subcomponent
access specifies the need for a component to access components declared outside the component.
Provided subcomponent access specifies that a subcomponent contained in a component is made
externally accessible. Ports in an AADL specification may map to a variable in a piece of source code,
i.e., a storage location in a physical memory.

Subcomponents allow systems to be specified as a static and tree-like containment hierarchy. The AADL
also allows components to reference subcomponents that are not contained exclusively in the
component. This allows a component to be accessed or used in more than one component. In the
AADL, data and bus components can have shared access. For example, static data items contained in a
source text software package and represented in AADL as data components may be used by threads in
different processes (whose protected address spaces may otherwise be distinct).

Syntactically the terms component type declaration, component implementation declaration, and
subcomponent declaration refer to specific grammar rules for each component category. Semantically, a
component may have subcomponents while it itself is a subcomponent of some other component. The

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 24 -

terms component and subcomponent must be interpreted semantically as a relationship between two
components that are identified by context.

Components, features, modes, connections, flows, and subprogram calls can have properties. A property
has a name, a type and a value. Properties are used to represent attributes and other characteristics,
such as the period and deadline of threads. When properties are associated with declarations of
component types, component implementations, features, subcomponents, connections, flows, and
modes, they apply to all respective instances within a system instance. The AADL also supports the
specification of instance specific values of any unit in the containment hierarchy of a system instance.
AADL tools may record these values for use in the analysis of the system instance or for use in the
construction of new system instances. Properties can have mode-specific and binding-specific values.

This standard defines a set of predeclared properties and property types. Additional properties and
property types to support new forms of system analysis can be introduced through property sets.
Property values can be associated with component types, component implementations, subcomponents,
features, connections, flows, modes, and subprogram calls. For example, a property is used to identify
the source code files associated with a software component. Another example of the use of properties is
specifying hardware memory, i.e., the number of addressable storage units and their size.

AADL component type and component implementation declarations can be organized into packages.
Each package provides a separate namespace for component type and implementation declarations. A
component classifier in a package is referenced externally be qualifiing its name with the package name.
Packages can be nested and referenced externally utilizing qualified names.

Features and flow specifications of component types may be partially specified. Similarly,
subcomponents, connections, flows, and modes of component implementations may have incomplete
specifications. These specifications may be later refined in component type and component
implementation extensions with the completion of classifier references and property associations.
Component type extensions can also introduce additional features, flow specifications, and properties.
Such extensions can add new subcomponents, connections, flows, modes, and properties to component
implementations.

A system modeled in AADL consists of application software mapped to an execution platform. Data,
subprograms, threads, thread groups, and processes collectively represent application software. They are
called software components. Processor, memory, bus, and device collectively represent the execution
platform. They are called execution platform components. Execution platform components support the
execution of threads, the storage of data and code, and the communication between threads. Systems
are called compositional components. They permit software and execution platform components to be
organized into hierarchical structures with well-defined interfaces. Operating systems may be represented
through properties of the execution platform or, requiring significantly more detail, modeled as software
components.

Software components model source text, virtual address spaces, and units of concurrent execution.
Source text can be written in a programming language such as Ada 95, C, or Java, or domain-specific
modeling languages such as Simulink, SDL, ESTEREL, LUSTRE, and UML, for which executable code
may be generated. The source text modeled by a software component may represent a partial
application program or model (e.g., they form one or more independent compilation units as defined by
the applicable programming language standard). Rules and permissions governing the mapping between
AADL specification and source text depend on the applicable programming or modeling language
standard. Predeclared component properties identify the source text container and the mapping of AADL
concepts to source text declarations and statements. These properties also specify memory and
execution times requirements and other known characteristics of the component.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 25 -

AADL data components represent static data in source text. This data can be shared by threads and
processes; they do so by the indicating that they require access to the external data component.
Concurrent access to data is managed by the appropriate concurrency control protocol as specified by a
property. Realizations of such protocols are documented in an appropriate implementation Annex in this
standard.

Data types in the source text are modeled by the declarations: data component type and data component
implementation. Thus, a data component classifier represents the data type of data components, ports,
and subprogram parameters.

The subprogram component models source text that is executed sequentially. Subprograms are callable
from within threads and subprograms. Subprograms may require access to data components.

AADL thread components model units of concurrent execution, i.e., concurrent runtime threads of control
or threads of execution through source text (or more exactly, through binary images produced from the
compilation, linking and loading of source text). A scheduler manages the execution of a thread. The
dynamic semantics for a thread are defined in this standard using hybrid automata. The threads can be
in states such as suspended, ready, and running. State transitions occur as a result of dispatch requests,
faults, and runtime service calls. They can also occur if time constraints are exceeded. Error detection
and recovery semantics are specified. Dispatch semantics are given for standard dispatch protocols such
as periodic, sporadic, and aperiodic threads as well as background threads. Additional dispatch protocols
may be defined. Threads can contain subprogram and data components, and provide or require access
to data components.

AADL thread groups support structural grouping of threads within a process. A thread group may contain
data, thread, and thread group subcomponents. A thread group may require and provide access to data
components.

AADL process components model space partitions in terms of virtual address spaces containing source
text that forms complete programs as defined in the applicable programming language standard. Access
protection of the virtual address space is enforced at runtime if specified by the property
Runtime_Protection. The binary image produced by compiling and linking this source text must
execute properly when loaded into a unique virtual address space. As processes do not represent units
of concurrent execution, they must contain at least one thread. Processes can contain thread groups,
threads, and data components, and can access or share data components.

Execution platform components represent hardware and software that is capable of scheduling threads,
of enforcing specified address space protection at runtime, of storing source text code and data, of
interfacing with an external environment, and of performing communication for application system
connections.

AADL processor components are an abstraction of hardware and software that is responsible for
scheduling and executing threads. In other words, a processor may include functionality provided by
operating systems. Alternatively, operating systems can be modeled like application components.
Processors can contain memory and require access to buses. Processors can support different
scheduling protocols. Threads are bound to processors for scheduling and execution.

AADL memory components model randomly accessible physical storage such as RAM or ROM.
Memories have properties such as the number and size of addressable storage locations. Binary images
of source text are bound to memory. Memory can contain nested memory components. Memory
components require access to buses.

AADL bus components model communication channels that can exchange control and data between
processors, memories, and devices. A bus is typically hardware that supports specific communication

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 26 -

protocols, possibly implemented through software. Processors, memories, and devices communicate by
accessing a shared bus. Buses can be directly connected to other buses. Logical connections between
threads that are bound to different processors transmit their information across buses that provide the
physical connection between the processors. Buses can require access to other buses.

AADL device components model physical devices that interface with an external environment, e.g.
sensors and actuators providing an interface between a physical plant and a control system or a GPS
system. They may exhibit complex behaviors. Devices are logically connected to application software
components and physically connected to processors. They cannot store nor execute application software
source text themselves, but may include driver software executed on a connected processor. A device
requires access to buses.

AADL systems model hierarchical compositions of software and execution platform components. A
system may contain data, thread, thread group, process, memory, processor, bus, device, and system
subcomponents. A system may require and provide access to data and bus components.

AADL modes represent the operational states of software, execution platform, and compositional
components in the modeled physical system. A component can have mode-specific property values. A
component can also have mode-specific configurations of different subsets of subcomponents and
connections. In other words, a mode change can change the set of active components and connections.
Mode transitions model dynamic operational behavior that represents switching between configurations
and changes in component-internal characteristics, such as conditional execution source text sequences
or operational states of a device, that are reflected in property values. Other examples of mode-specific
property values include the period or the worst-case execution time of a thread. A change in operating
mode can have the effect of activating and deactivating threads for execution and changing the pattern of
connections between threads. A mode subclause in a component implementation specifies the mode
states and mode change behavior in terms of transitions; it specifies the events as transition triggers.
Subcomponent and connection declarations as well as property associations declare their applicability
(participation) in specific modes.

This standard defines several categories of features: data port, event port, event data port, port group,
data subprogram, server subprogram, and subprogram parameter, and provided and required
subcomponent access. Data ports represent connection points for transfer of state data such as sensor
data. Event ports represent connection points for transfer of control through raised events that can trigger
thread dispatch or mode transition. Event data ports represent connection points for transfer of events
with data, i.e., messages that may be queued. Ports groups support grouping of ports, such that they can
be connected to other components through a single connection. Data subprograms represent entrypoints
to code sequences in source text that are associated with a data type. Server subprograms represent
connection points for synchronous call/returns between threads; in some instances the call/return may be
remote. Subprogram parameters represent in and out parameters of a subprogram. Data component
access represents provided and required access to shared data. Bus component access represents
provided and required access to buses for processors, memory, and devices.

AADL connections specify patterns of control and data flow between individual components at runtime. A
semantic connection can be made between two threads, between a thread and a device or processor, or
between a thread, device, or processor and a mode transition. A mode transition is represented by a set
of one or more connection declarations that follow the component hierarchy from the ultimate connection
source to the ultimate connection destination. For example, in Figure 1 there is a connection declaration
from a thread out port in Thread1 to a containing process out port in Process3. This connection is
continued with a connection declaration within System1 from Process3’s out port to Process4’s in port.
The connection declaration continues within Process4 to the thread in port contained in Thread2.
Collectively, this sequence of connections defines a single semantic connection between Thread1 and

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 27 -

Thread2. Threads, processes, systems, and ports are shown in graphical AADL notation. For a full
description of the graphical AADL notation see Annex A.

Figure 1 Example Semantic Connections

Flow specifications describe externally observable flow of information in terms of application logic through
a component. Such logical flows may be realized through ports and connections of different data types
and a combination of data, event, and event data ports. Flow specifications represent flow sources, i.e.,
flows originating from within a component, flow sinks, i.e., flows ending within a component, and flow
paths, i.e., flows through a component from its incoming ports to its outgoing ports.

Flows describe actual flow sequences through components and sets of components across one or more
connections. They are declared in component implementations. Flow sequences take two forms: flow
implementation and end-to-end flow. A flow implementation describes how a flow specification of a
component is realized in its component implementation. An end-to-end flow specifies a flow that starts
within one subcomponent and ends within another subcomponent. Flow specifications, flow
implementations, and end-to-end flows can have expected and actual values for flow related properties,
e.g., latency or rounding error accumulation.

A physical system is modeled by instantiating a system implementation that consists of subcomponents
representing the application software and execution platform components used to execute the
application, including devices that interface with the external environment. A system instance represents
the complete component hierarchy as specified by the system classifier’s subcomponents and the
subcomponents of their component classifiers down to the lowest level defined in the architecture
specification.

An AADL specification may be used in a variety of ways by a variety of tools during a broad range of life-
cycle activities, e.g. for documentation during preliminary specification, for schedulability or reliability
analysis during design studies and during verification, for generation of system integration code during
implementation. Note that application software components must be bound to execution platform
components - ultimately threads to processors and binary images to memory in order for the system to be
analyzable for runtime properties and the physical system to be constructed from the AADL specification.
Many uses of an AADL specification need not be fully automated, e.g. some implementation steps may
be performed by hand.

The AADL core language is extensible through property sets, annex subclauses and annex libraries.
Annex subclauses consist of annex-specific sublanguages whose constructs can be added to component
types and component implementations. Annex libraries are declarations of reusable annex-specific
sublanguage elements that can be referenced in annex subclauses.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 28 -

4 Components, Packages, and Annexes

The AADL defines the following categories of components: data, subprogram, thread, thread group,
process, memory, bus, processor, device, and system. This section describes those aspects of
components that are common to all AADL component categories. This section also describes packages
as an organizing mechanism. This section closes with the definition of annex subclauses and annex
libraries.

A component represents some hardware or software entity that is part of a system being modeled in
AADL. A component has a component type, which defines a functional interface. The component type
acts as the specification of a component that other components can operate against. It consists of
features, flows, and property associations.

A feature models a characteristic of a component that is visible to other components. Features are
named, externally visible parts of the component type, and are used to exchange control and data via
connections with other components. Features include ports to support directional flow of data and
control, and subprograms including support for remote procedure call interactions (server subprograms).
Features define parameters that represent the data values that can be passed into and out of
subprograms. Features specify component access requirements for external data and bus components.

A component has zero or more component implementations. A component implementation specifies an
internal structure for a component as an assembly of subcomponents. Subcomponents are instantiations
of component classifiers, i.e., component types and implementations.

Components are named and have properties. These properties have associated expressions and values
that represent attributes and behaviors of a component.

Components can be declared in terms of other components by refining and extending existing component
types and component implementations. This permits partially complete component type and
implementation declarations to act as a common basis for the evolution of a family of related component
types and implementations.

This standard defines basic concepts and requirements for determining compliance between a
component specification and a physical component. Within this framework, annexes to this standard will
specify detailed compliance requirements for specific software programming, application modeling, and
hardware description languages. This standard does not restrict the lower-level representation(s) used
for software components, e.g. binary images, conventional programming languages, application modeling
languages, nor does it restrict the lower-level representation(s) used for physical hardware component
designs, e.g. circuit diagrams, hardware behavioral descriptions.

4.1 AADL Specifications

An AADL specification is a set of declarations: component classifier, port group classifier, annex library,
package, and property-set. Package and property set declarations are global declarations. The content
of global declarations can be referenced by any declaration. Component classifiers, port group types,
and annex libraries that are declared directly in an AADL specification are anonymous declarations. They
can only be referenced by another anonymous declaration.

Packages provide a way for organizing collections of component classifier, port group type, annex library
declarations along with relevant property associations.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 29 -

Property sets provide extensions to the core AADL that support additional modeling and analysis
capabilities.

System instances are identified to processing tools and methodologies by referencing a system
implementation component as the root of the system instance (see Section 12.1).

Syntax

AADL_specification ::=

 { AADL_global_declaration | AADL_declaration }+

AADL_global_declaration ::= package_spec | property_set

AADL_declaration ::=

 component_classifier

 | port_group_classifier

 | annex_library

component_classifier ::=

 component_type | component_type_extension |

 component_implementation | component_implementation_extension

port_group_classifier ::=

 port_group_type | port_group_type_extension

Naming Rules

The AADL has one global namespace. The package and property set identifiers comprising this space
must be unique. These identifiers qualify the names of individual elements when they are referenced
externally. They can be referenced from other declarations and anonymous declarations (see below).
Package declarations represent labeled namespaces for component type, component implementation,
port group type, and annex library declarations. Property sets represent labeled namespaces for
property type and property name declarations.

An AADL specification has one anonymous namespace. In this are found the identifiers of component
classifiers, port group classifiers, and annex libraries that are declared directly in an AADL specification.
These identifiers must be unique in the anonymous namespace. Declarations of component classifiers
and port group types can be referenced from other component classifier declarations in the anonymous
namespace. Any annex library items declared in the anonymous namespace are only accessible from
annex subclauses in component classifiers in the anonymous namespace.

AADL declarations in an AADL specification can refer to packages and property sets that may be
separately stored. Those packages and property sets are considered to be part of the global namespace.

Defining identifiers in AADL must not be one of the reserved words of the language (see Section 13.7).

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 30 -

The AADL identifiers and reserved words can be in upper or lower case (or a mixture of the two) (see
Section 13).

The AADL does not require that an identifier be declared before it is referenced.

Semantics

An AADL specification provides a global namespace for packages and property sets and an anonymous
namespace for component types, component implementations, annex libraries, and port group types.
Items in the global namespace and their content can be named by items in the global and in the
anonymous namespace. Items in the anonymous namespace can only be named by items in the
anonymous namespace.

Component type and component implementation declarations model execution platform and application
software components of a system. A component type denotes externally visible characteristics of a
component, i.e., its features and its properties. A component implementation denotes the internal
structure, operational modes, and properties of a component. A component type can have several
component implementations. This can be used for example to model product line architectures runing on
different execution platforms. Packages allow such declarations to be organized into separate
namespaces.

Port group types provide the definition of an interface to a component that represents a collection of ports
or port groups defined within the component implementation (see Section 8.2). This group of ports may
be accessed externally as a single unit.

A property set is used to introduce new property types and properties (see section 10.1). They extend the
predefined set of properties of the core AADL.

Declarations in an AADL specification can refer to packages and property sets declared in separately
stored AADL specifications. This allows packages and property sets to be stored separately and used by
multiple AADL specifications. Mechanisms for locating such separately declared packages and property
sets are tool specific.

Processing Requirements and Permissions

A method of processing must accept an AADL specification presented as a single string of text in which
declarations may appear in any order. An AADL specification may be stored as multiple pieces of
specification text that are named or indexed in a variety of ways, e.g. a set of source files, a database, a
project library. Preprocessors or other forms of automatic generation may be used to process AADL
specifications to produce the required specification text. This approach makes AADL scalable in handling
large models.

4.2 Packages

A package provides a way to organize component types, component implementations, port group types,
and annex libraries into related sets of declarations by introducing separate namespaces. Package
names built using identifiers separated by double colons (“::”). This avoids the problem of duplicate
names which might occur when packages are developed independently and then combined to model an
integrated system. In other words, complete_sys::first_independent::fuel_flow is distinct
from complete_sys::second_independent::fuel_flow. Packages cannot be declared inside
other packages.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 31 -

Syntax

package_spec ::=

 package defining_package_name

 (public package_declaration [private package_declaration]

 | private package_declaration)

 end defining_package_name ;

package_declaration ::= { aadl_declaration }+

 [properties ({ property_association }+ |

 none_statement)]

package_name ::=

 { package_identifier :: }* package_identifier

none_statement ::= none ;

NOTES:

The properties subclause of the package is optional, or requires an explicit empty subclause declaration. The latter
is provided to accommodate AADL modeling guidelines that require explicit documentation of empty subclauses. An
empty subclause declaration consists of the reserved word of the subclause and a none statement (none ;).

Naming Rules

A defining package name consists of a sequence of one or more package identifiers separated by a
double colon (“::”). A defining package name must be unique in the global namespace. This means that
the first identifier in a package name must be unique in the global namespace. Succeeding identifiers in
the package name must be unique within the scope of the previous identifier. The public and private
section of a package may be declared in separate package declarations; these two declarations introduce
a single defining package name.

Associated with every package is a package namespace that contains the names for all the elements
defined within that package. This means that component types, port group types, and defining entities
declared in an annex library using an annex-specific sublanguage can be declared with the same name in
different packages.

The package namespace is divided into a public part and a private part. Items declared in the public part
of the package namespace can be referenced from outside the package as well as within the package.
Items declared in the private part of the package can only be referenced from within the public and private
part of the package.

The reference to an item declared in another package must be an item name qualified with a package
name separated by a double colon (“::”). Only the public package namespace is used to resolve these
references. If the qualifying package identifier is missing, the referenced component classifier, port group

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 32 -

type, or item in an annex library must exist in the same package, or in case of references from
declarations in the AADL specification itself the referenced item must exist in the anonymous namespace.
Component types, component implementations, port group types, and items in annex libraries declared
directly in the AADL specification, i.e., the anonymous namespace, can only be referenced by other
declarations in the AADL specification itself.

Legality Rules

The defining package name following the reserved word end must be identical to the defining package
name following the reserved word package.

For each package there may be at most one public section declaration and one private section
declaration. These two sections may be declared in a single package declaration or in two separate
package declarations.

Semantics

A package provides a way to organize component type declarations, component implementation
declarations, port group types, and annex libraries into related sets of declarations along with relevant
property associations. It provides a namespace for component types, port group types, and annex
libraries with the package name acting as a qualifier. Nested package names allow for unique package
naming conventions that address potential name conflicts in component type and implementation names
when independently developed AADL specifications are combined. Note that component
implementations are named relative to component types. Thus, qualified component type names act as
unique qualifier for component implemenation names. Packages can be organized hierarchically by
giving them nested package names. These package names represent absolute paths from the root of the
package hierarchy.

Packages have a public and a private section. Declarations in the public section are visible outside the
package, i.e., names declared in the public part can be referenced by declarations in other AADL
specifications. Declarations in the private part are visible only within the package, i.e., names declared in
the private part can only be referenced by declarations within the package.

4.3 Component Types

A component type specifies the external interface of a component that its implementations satisfy. It
contains declarations that represent features of a component and property associations. Features of a
component are ports, port groups, data components contained in the component that are made externally
accessible, required access to externally provided components, and subprograms that are execution
entrypoints to the component along with parameter declarations for the specification of the data values
that flow into and out of subprograms. The ports and subprograms of a component can be connected to
compatible ports or subprograms of other components through connections to represent control and data
interaction between those components. Required access to an external subcomponent, such as data or
bus, is resolved when subcomponents of this component type are declared.

Component types can declare flow specifications, i.e., logical flows of information from its incoming ports
to its outgoing ports that are realized by their implementations.

Component types can be declared in terms of other component types, i.e., a component type can extend
another component type – inheriting its declarations and property associations. If a component type
extends another component type, then features, flows, and property associations can be added to those
already inherited. A component type extending another component type can also refine the declaration of

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 33 -

inherited feature and flow declarations by more completely specifying partially declared component
classifiers and by associating new values with properties.

Component type extensions form an extension hierarchy, i.e., a component type that extends another
component type can also be extended. We use AADL graphical notation (see Annex A) to illustrate the
extension hierarchy in Figure 2. For example, component type GPS extends component type Position
System inheriting ports declared in Position System. It may add a port, refine the data type classifier of a
port incompletely declared in Position System, and overwrite the value of one or more properties.
Component types being extended are referred to as ancestors, while component types extending a
component type are referred to as descendents.

Figure 2 Component Type Extension Hierarchy

Component types may also be extended using an annex_subclause to specify additional characteristics
of the type that are not defined in the core of the AADL (see Section 4.6)

Syntax

component_type ::=

 component_category defining_component_type_identifier

 [features ({ feature }+ | none_statement)]

 [flows ({ flow_spec }+ | none_statement)]

 [properties ({ component_type_property_association }+ | none_statement)]

 { annex_subclause }*

 end defining_component_type_identifier ;

component_type_extension ::=

 component_category defining_component_type_identifier

 extends unique_component_type_identifier

 [features ({ feature | feature_refinement }+ | none_statement)]

 [flows ({ flow_spec | flow_spec_refinement }+ | none_statement)]

 [properties ({ component_type_property_association }+ | none_statement)]

 { annex_subclause }*

 end defining_component_type_identifier ;

component_category ::=

 software_category

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 34 -

 | execution_platform_category

 | composite_category

software_category ::= data | subprogram | thread | thread group | process

execution_platform_category ::= memory | processor | bus | device

composite_category ::= system

unique_component_type_identifier ::=

 [package_name ::] component_type_identifier

NOTES:

The above grammar rules characterize the common syntax for all component categories. The sections defining each
of the component categories will specify further restrictions on the syntax.

The features, flows, and properties subclauses of the component type are optional, or require an explicit empty
subclause declaration. The latter is provided to accommodate AADL modeling guidelines that require explicit
documentation of empty subclauses. An empty subclause declaration consists of the reserved word of the subclause
and a none statement (none ;).

The annex_subclause of the component type is optional.

Naming Rules

The defining identifier for a component type must be unique within the anonymous namespace or within
the package namespace of the package within which it is declared.

Each component type has an interface namespace for defining identifiers of features and flow
specifications. That is, defining feature and defining flow specification identifiers must be unique in the
interface namespace.

The component type identifier of the ancestor in a component type extension, i.e., that appears after the
reserved word extends, must be defined in the specified package namespace. If no package name is
specified, then the identifier must be defined in the namespace of the package the extension is declared
in, or in the anonymous namespace if the extension is declared in the AADL specification directly.

When a component type extends another component type, a component type interface namespace
includes all the identifiers in the interface namespaces of its ancestors.

A component type that extends another component type does not include the identifiers of the
implementations of its ancestors.

The defining identifier of a feature must be unique in the interface namespace of the component type.

The refinement identifier of a feature refinement refers to the closest refinement or the defining
declaration of the feature going up the component type ancestor hierarchy.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 35 -

Legality Rules

The defining identifier following the reserved word end must be identical to the defining identifier that
appears after the component category reserved word.

The features, flows, and properties subclauses are optional. If a subclause is present but empty, then
the reserved word none followed by a semi-colon must be present.

A component type declaration that does not extend another component type must not contain feature
refinement declarations.

The category of the component type being extended must match the category of the extending
component type.

Semantics

A component type represents the interface specification of a component, i.e., the component category,
the features of a component, and property values. A component implementation denotes a component,
existing or potential, that is compliant with the category, features and required subcomponents and
properties declared for components of that type. Component implementations are expected to satisfy
these externally visible characteristics of a component. The component type provides a contract for the
component interface that users of the component can depend on.

The component categories are: data, subprogram, thread, thread group, and process (software
categories); processor, bus, memory, and device (execution platform categories); system (compositional
category). The semantics of each category will be described in later sections.

Features of a component are interaction points with other components, i.e., ports and port groups; server
subprograms, subprograms and parameters; required subcomponent access; and provided
subcomponent access. Ports, port groups and subprograms specify both incoming and outgoing
interaction points. Required subcomponent access declarations represent references to components that
are not contained in the current component but must be accessed by the component. If accessed by
multiple components they become shared components. Ports, port groups, subprograms, provided and
required subcomponent access are described in Section 8.

Flow specifications indicate whether a flow of data or control originates within a component, terminates
within a component, or flows through a component from one of its incoming ports to one of its outgoing
ports.

A component type can contain incomplete feature declarations, i.e., declarations with no component
classifier references or just the component type name for a component type with more than one
component implementation. The component implementation may not exist yet or one of several
implementations may have not been selected yet. The use of incomplete declarations is particularly
useful during early design stages where details may not be known or decided.

A component type can be declared as an extension of another component type resulting in a component
type extension hierarchy, as illustrated in Figure 2. A component type extension can contain refinenment
declarations permit incomplete feature declarations to be completed and new property values to be
associated with features and flow specification declared in a component type being extended. In addition,
a type extension can add feature declarations, flow specifications, and property associations. This
supports evolutionary development and modeling of system families by declaring partially complete
component types that get refined in extensions.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 36 -

Properties are predefined for each of the component categories and will be described in the appropriate
sections. See Section 10.3 regarding rules for determining property values.

Examples

system File_System

features

 -- access to a data component

 root: requires data access FileSystem::Directory.hashed;

end File_System;

process Application

features

 -- a data out port

 result: out data port App::result_type;

 home: requires data access FileSystem::Directory.hashed;

end Application;

4.4 Component Implementations

A component implementation contains subcomponents and their connections, properties, and component
modes. Every component implementation is associated with a component type. A component type may
have zero or more component implementations declared.

A component implementation consists of a collection of zero or more subcomponent and subcomponent
refinements, connection and connection refinements, subprogram call sequences, component type
feature refinements, flow sequences, and mode declarations; and zero or more property associations.
Flow sequences represent implementations of flow specifications in the component type, or end-to-end
flows to be analyzed. Modes represent alternative operational modes that may manifest themselves as
alternate configurations of subcomponents, connections, call sequences, flow sequences, and property
values.

A component implementation can be declared as an extension of another component implementation. In
that case, the component implementation inherits the declarations of its ancestors as well as its
component type. A component implementation extension can refine inherited declarations, and add
subcomponents, connections, subprogram call sequences, flow sequences, mode declarations, and
property associations.

Component implementations build on the component type extension hierarchy in two ways. First, a
component implementation is a realization of a component type (shown as dashed arrows in Figure 3).
As such it inherits features and property associations of its component type and any component type
ancestor. Second, a component implementation declared as extension inherits subcomponents,
connections, subprogram call sequences, flow sequences, modes, property associations, and annex
subclauses from the component implementation being extended (shown as solid arrows in Figure 3). A
component implementation can extend a component implementation that in turn extends another
component implementation, e.g., in Figure 3 GPS.Handheld extends GPS.Basic and is extended by
GPS_Secure.Handheld. Component implementations higher in the extension hierarchy are called

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 37 -

ancestors and those lower in the hierarchy are called descendents. A component implementation can
extend another component implementation of its own component type, e.g., GPS.Handheld extends
GPS.Basic, or it can extend the component implementation of one of its ancestor component types, e.g.,
GPS_Secure.Handheld extends GPS.Handheld, which is an implementation of the ancestor component
type GPS. The component type and implementation extension hierarchy is illustrated in Figure 3.

Figure 3 Extension Hierarchy of Component Types and Implementations

A component implementation may also be extended using an annex_subclause to specify additional
characteristics of the type that are not defined in the core of the AADL (see Section 4.6).

Syntax

component_implementation ::=

 component_category implementation

 defining_component_implementation_name

 [refines type ({ feature_refinement }+ | none_statement)]

 [subcomponents ({ subcomponent }+ | none_statement)]

 [calls ({ subprogram_call_sequence }+ | none_statement)]

 [connections ({ connection }+ | none_statement)]

 [flows ({ flow_implementation |

 end_to_end_flow_spec }+ | none_statement)]

 [modes ({ mode }+ { mode_transition }* | none_statement)]

 [properties ({ property_association | contained_property_association }+

 | none_statement)]

 { annex_subclause }*

 end defining_component_implementation_name ;

component_implementation_name ::=

 component_type_identifier . component_implementation_identifier

component_implementation_extension ::=

 component_category implementation

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 38 -

 defining_component_implementation_name

 extends unique_component_implementation_name

 [refines type

 ({ feature_refinement }+ | none_statement)]

 [subcomponents

 ({ subcomponent | subcomponent_refinement }+ | none_statement)]

 [calls ({ subprogram_call_sequence }+ | none_statement)]

 [connections

 ({ connection | connection_refinement }+ | none_statement)]

 [flows ({ flow_implementation | flow_implementation_refinement |

 end_to_end_flow_spec | end_to_end_flow_spec_refinement }+

 | none_statement)]

 [modes ({ mode | mode_refinement | mode_transition }+ | none_statement)]

 [properties ({ property_association }+ | none_statement)]

 { annex_subclause }*

 end defining_component_implementation_name ;

unique_component_implementation_name ::=

 [package_name ::] component_implementation_name

NOTES:

The above grammar rules characterize the common syntax for all component categories. The sections defining each
of the component categories will specify further restrictions on the syntax.

The refines type, subcomponents, connections, calls, flows, modes, and properties subclauses of the
component implementation are optional or if used and empty, require an explicit empty declaration. The latter is
provided to accommodate AADL modeling guidelines that require explicit documentation of empty subclauses. An
empty subclause declaration consists of the reserved word of the subclause and a none statement (none ;).

The annex_subclause of the component implementation is optional.

Naming Rules

A component implementation name consists of a component type identifier and a component
implementation identifier separated by a dot (“.”). The first identifier of the defining component
implementation name must name a component type that is declared in the same package or anonymous
namespace as the component implementation.

The defining name of the component implementation must be unique within the anonymous namespace
or within the package namespace of the package within which it is declared.

Every component implementation defines a local namespace for all defining identifiers of subcomponents,
subprogram calls, connections, flows, and modes declared within the component implementation. The

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 39 -

defining identifier of a subcomponent, subprogram call, connection, flow, or mode must be unique within
this namespace. For example, a subcomponent and a mode cannot have the same defining identifier
within the same component implementation.

This local namespace inherits the interface namespace of the associated component type, i.e., defining
identifiers must be unique within the local namespace and also within the interface namespace.

Refinement identifiers of features must exist in the interface namespace of the associated component
type or one of the component type’s ancestors. Refinement identifiers of subcomponent and connection
refinements must exist in the local namespace of an ancestor component implementation.

In a component implementation extension, the component type identifier of the component
implementation being extended, which appears after the reserved word extends, must be the same as or
an ancestor of the component type of the extension. The component implementation being extended
may exist in another package. In this case the component implementation name is qualified with the
package name.

When a component implementation extends another component implementation, the local namespace of
the extension is a superset of the local namespace of the ancestor. That is, the local namespace of a
component implementation inherits all the identifiers in the local namespaces of its ancestors (including
the identifiers of their respective component type interface namespaces).

Within the scope of the component implementation, subcomponent declarations, connections,
subprogram call sequences, mode transitions, and property associations can refer directly to identifiers in
the local namespace, i.e., to declared subcomponents, connections, and modes, as well as to required
subcomponents and features declared in the associated component type.

Legality Rules

The pair of identifiers separated by a dot (“.”) following the reserved word end must be identical to the pair
of identifiers following the reserved word implementation.

The refines type, subcomponents, connections, calls, flows, modes, and properties subclauses are
optional. If they are present and the set of feature or required subcomponent declarations or property
associations is empty, none followed by a semi-colon must be present in that subclause.

The category of the component implementation must match the category of the component type for which
the component implementation is declared.

If the component implementation extends another component implementation, the category of both must
match.

The refines type subclause must only contain refinement declarations of features in the component type
and those refinements are limited to property associations. Specifically, the refines type subclause of a
component implementation may not alter the component classifiers of inherited features.

Semantics

A component implementation represents the internal structure of a component through subcomponent
declarations. Interaction between subcomponents is expressed by the connections, flows, and
subprogram call sequences. Mode declarations represent alternative runtime configurations (internal
structure) and alternative execution behavior (interaction between subcomponents).. A component
implementation also has property values to express its non-functional attributes such as safety level or
execution time which can also vary by mode.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 40 -

Each component implementation is associated with a component type and provides a realization of its
features (interface). A component type can have multiple implementations.

The physical system being modeled by component types and component implementations may contain
subcomponents, some of which may contain subcomponents themselves. The subcomponent
containment hierarchy reflects the physical system structure.

A component implementation that is an extension of another inherits all subcomponents, connections,
subprogram call sequences, flow sequences (flow implementations and end-to-end flows), modes,
property associations, and annex subclauses from its ancestors as well as features, property
associations, and annex subclauses from its associated component type (and that component type’s
ancestors).

A component implementation extension can also refine subcomponents previously declared in ancestor
component implementations by completing component classifiers, and by associating new property
values. A component implementation extension can refine connections, flows, and modes of its ancestor
component implementations by associating new property values. A component implementation extension
can refine features of its associated component type (and that component type’s ancestors) by
associating new property values to them.

A component implementation extension can also add subcomponents, connections, subprogram call
sequences, flow sequences, modes, property associations, and annex subclauses. This extension
capability supports evolutionary development and modeling of system families by declaring partially
complete component implementations that get refined in extensions.

A descendent component implementation is said to contain all subcomponents whose identifiers appear
in its local namespace, i.e., subcomponents declared in the component implementation and any of its
ancestors. In other words, an instance of a component implementation extension contains instances of
declared and inherited subcomponents, features, connections, subprogram call sequences, flow
sequences, and modes.

The refines type subclause of a component implementation can refine the property associations of
features of its associated component type and of that component’s ancestor component types. The
example given in the section below illustrates the use of refines type to provide mappings of ports to
source text variable names in different component implementations.

Properties are predefined for each of the component categories and will be described in the appropriate
sections. See Section 10.3 regarding rules for determining property values.

NOTES:

Component implementation declarations can only refer to component types residing in the same package
namespace. In order to add an implementation to a component type declared in another package, the component
type can be created in the current namespace (package) by referencing the original package in a type extension in
the current namespace. In the following example, LM::GPS is a reference to the original type defined in the package
LM.

 system GPS extends LM::GPS end GPS;

Processing Requirements and Permissions

A component implementation denotes a set of physical system components, existing or potential, that are
compliant with the component implementation declaration as well as the associated component type.
That is, the physical components denoted by a component implementation declaration are always

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 41 -

compliant with the functional interface specified by the associated component type declaration. Physical
components denoted by different implementations for the same component type differ in additional details
such as internal structure or behaviors; these differences may be specified using properties.

In general, two physical components that comply with the same component type and component
implementation are not necessarily substitutable for each other in a physical system. This is because an
AADL specification may be legal but not specify all of the characteristics that are required to insure total
correctness of a final assembled system. For example, two different versions of a piece of source text
might both comply with the same AADL specification, yet one of them may contain a programming defect
that results in unacceptable runtime behavior. Compliance with this standard alone is not sufficient to
guarantee overall correctness of a physical system.

Examples

thread DriverModeLogic

features

 BreakPedalPressed : in data port Bool_Type;

 ClutchPedalPressed : in data port Bool_Type;

 Activate : in data port Bool_Type;

 Cancel : in data port Bool_Type;

 OnNotOff : in data port Bool_Type;

 CruiseActive : out data port Bool_Type;

end DriverModeLogic;

-- Two implementations whose source texts use different variable names for

-- their cruise active port

thread implementation DriverModeLogic.Simulink

refines type

 CruiseActive: refined to out data port Bool_Type

 { Source_Name => “CruiseControlActive”; };

properties

 Dispatch_Protocol=>Periodic;

 Period=> 10 ms;

end DriverModeLogic.Simulink;

thread implementation DriverModeLogic.C

refines type

 CruiseActive: refined to out data port Bool_Type

 { Source_Name => “CCActive”; };

properties

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 42 -

 Dispatch_Protocol=>Periodic;

 Period=> 10 ms;

end DriverModeLogic.C;

4.5 Subcomponents

A subcomponent represents a component contained within another component, i.e., declared within a
component implementation. Subcomponents contained in a component implementation may be
instantiations of component implementations that contain subcomponents themselves. This results in a
component containment hierarchy that ultimately describes the whole physical system as a system
instance. Figure 4 provides an illustration of a containment hierarchy using the graphical AADL notation
(see Annex A). In this example, Sys1 represents a system. The implementation of the system contains
subcomponents named C3 and C4. Component C3, a subcomponent in Sys1’s implementation, contains
subcomponents named C1 and C2. Component C4, another subcomponent in Sys1’s implementation,
contains a second set of subcomponents named C1 and C2. The two subcomponents named C1 and
those named C2 do not violate the unique name requirement. They are unique with respect to the local
namespace of their containing component’s local namespace.

 Figure 4 Component Containment Hierarchy

A subcomponent declaration may resolve required subcomponent access declared in the component type
of the subcomponent. For details on required subcomponent access see Section 8.4.

A subcomponent can be declared to apply to specific modes (rather than all modes) defined within the
component implementation.

Subcomponents can be refined as part of component implementation extensions. Refinement allows
classifier references to be completed, and subcomponent property values to be associated. The resulting
refined subcomponents can be refined themselves.

Syntax

subcomponent ::=

 defining_subcomponent_identifier :

 component_category [component_classifier_reference]

 [{ { subcomponent_property_association

 | contained_property_association }+ }]

 [in_modes] ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 43 -

subcomponent_refinement ::=

 defining_subcomponent_identifier : refined to

 component_category [component_classifier_reference]

 [{ { subcomponent_property_association

 | contained_property_association }+ }]

 [in_modes] ;

component_classifier_reference ::=

 unique_component_type_name [. component_implementation_name]

NOTES:

The above grammar rules characterize the common syntax for subcomponent of all component categories. The
sections defining each of the component categories will specify further restrictions on the syntax.

Naming Rules

The defining identifier of a subcomponent declaration placed in a component implementation must be
unique within the local namespace of the component implementation that contains the subcomponent.

The defining identifier of a subcomponent refinement must exist as a defining subcomponent identifier in
the local namespace of an ancestor component implementation.

The component type identifier or the component implementation name of a component classifier
reference must exist in the specified (package or anonymous) namespace.

NOTES:

The Sample_Manager in the example section below illustrates each kind of resolution.

Legality Rules

The category of the subcomponent declaration must be identical to the category its corresponding
component classifier reference.

The component type named in the component classifier reference of a subcomponent refinement must be
the component type of the subcomponent being refined if the subcomponent being refined has a
component type declared. The component implementation named in the component classifier reference
of a subcomponent refinement must be the component implementation of the subcomponent being
refined if the subcomponent being refined has a component type declared.

If the subcomponent declaration contains an in_modes statement and any of its property associations
also contains an in_modes statement, then the modes named in the property association must be a
subset of those named in the subcomponent declaration. For more detail on the semantics of in_modes
statements see Section 11.1.

Semantics

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 44 -

Subcomponents declared in a component implementation are considered to be contained in the
component implementation. Contained subcomponents are instantiated when the containing component
implementation is instantiated. Thus, the component containment hierarchy describes the hierarchical
structure of the physical system.

A component implementation can contain incomplete subcomponent declarations, i.e., subcomponent
declarations with no component classifier references or the component classifier reference only consists
of a component type name for a component type with more than one component implementation. This is
particularly useful during early design stages where details may not be known or decided. Such
incomplete subcomponent declarations can be refined in component implementation extensions.

The optional in_modes subclause specifies the modes in which the subcomponent is active.

A subcomponent can have property associations for its own properties, or a contained property
association for the properties of its subcomponents and their subcomponents, as well as those
subcomponents’ features, modes, subprogram call sequences, connections, and flows (see Section
10.3). Subcomponent refinements may declare property associations – that override the property values
declared in the subcomponent being refined.

NOTES:

The example below illustrates the use of component type only as data component classifier. This is sufficient for
implementation methods to perform analysis and to generate a physical system implementation from the AADL
specification. In case of process components, the process component classifier reference must refer to a process
implementation if the implementation method must process the complete system instance, e.g., performs scheduling
analysis. In other words, some implementation methods and component categories require component classifier
references to component implementations, while for others the component type reference is sufficient.

Examples

The example illustrates modeling of source text data types as data component types without any
implementation details. It illustrates the use of package to group data component type declarations. It
illustrates both component classifier references to component types and to component implementations.
It illustrates the use of ports as well as required and provided data access. In that context it illustrates the
ways of resolving required access.

package Sampling

public

 data Sample

 properties

 Source_Data_Size => 16 B;

 end Sample;

 data Sample_Set

 properties

 Source_Data_Size => 1 MB;

 end Sample_Set;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 45 -

 data Dynamic_Sample_Set extends Sample_Set

 end Dynamic_Sample_Set;

end Sampling;

thread Init_Samples

features

 OrigSet : requires data access Sampling::Sample_Set;

 SampleSet : requires data access Sampling::Sample_Set;

end Init_Samples;

thread Collect_Samples

features

 Input_Sample : in event data port Sampling::Sample;

 SampleSet : requires data access Sampling::Sample_Set;

end Collect_Samples;

thread implementation Collect_Samples.Batch_Update

refines type

 Input_Sample: refined to

 in event data port Sampling::Sample {Source_Name => ″InSample″; };
end Collect_Samples.Batch_Update;

thread Distribute_Samples

features

 SampleSet : requires data access Sampling::Sample_Set;

 UpdatedSamples : out event data port Sampling::Sample;

end Distribute_Samples;

process Sample_Manager

features

 Input_Sample: in event data port Sampling::Sample;

 External_Samples: requires data access Sampling::Sample_Set;

 Result_Sample: out event data port Sampling::Sample;

end Sample_Manager;

process implementation Sample_Manager.Slow_Update

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 46 -

subcomponents

 Samples: data Sampling::Sample_Set;

 Init_Samples : thread Init_Samples;

 -- the required access is resolved to a subcomponent declaration

 Collect_Samples: thread Collect_Samples.Batch_Update;

 Distribute: thread Distribute_Samples;

connections

 data access Samples -> Init_Samples.SampleSet;

 data access External_Samples -> Init_Samples.OrigSet;

 data access Samples -> Collect_Samples.SampleSet;

 event data port Input_Sample -> Collect_Samples.Input_Sample;

 data access Samples -> Distribute.SampleSet;

 event data port Distribute.UpdatedSamples -> Result_Sample;

end Sample_Manager.Slow_Update;

4.6 Annex Subclauses and Annex Libraries

Annex subclauses contain declarations expressed in a sublanguage that can be added to component
types and component implementations through annexes. Examples of annex subclauses are assertions.

Annex libraries are reusable declarations expressed in a sublanguage that are declared in packages.
Those reusable declarations can be referenced by annex subclauses.

A major use of these annex declarations is to accommodate new analysis methods through analysis
specific notations or sublanguages.

The AADL standard consists of a core language and a set of approved annexes. An AADL specification
is compliant with the standard if it restricts itself to the core language and the approved annexes.
Individual projects can introduce additional annexes to support project-specific analysis needs. Use of
such annexes results in AADL models that are not fully compliant with the standard. Standard compliant
AADL tools are however required to accept such AADL specifications (see Processing Requirements and
Permissions).

Examples of annex libraries are constraint functions that can be referenced in assertions.

Syntax

annex_subclause ::=

 annex annex_identifier {**

 annex_specific_language_constructs

 **} ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 47 -

annex_library ::=

 annex annex_identifier {**

 annex_specific_reusable_constructs

 **} ;

Naming Rules

The annex identifier must be the name of an approved annex or a project-specific identifier different from
the approved annex identifiers.

Legality Rules

Annex subclauses can only be declared in component types and component implementations.

A component type or component implementation declaration may contain at most one annex subclause
for each annex.

Annex libraries can only be declared in packages.

A package declaration may contain at most one annex library declaration for each annex.

Semantics

An annex subclause provides additional specification information about a component to be interpreted by
analysis methods. Annex subclauses apply to component types and component implementations. Such
annex subclauses can introduce analysis specific notations such as constraints and assertions expressed
in predicate logic or behavioral descriptions expressed in temporal logic. Such notation can refer to
subcomponents, connections, modes, and transitions as well as features and subcomponent access.

An annex library provides reusable specifications expressed in an annex specific notation. Users can
place multiple reusable annex specific constructs inside an annex library declaration. An example of a
reusable annex specification is a predicate function expressed in a constraint language such as the
Object Constraint Language (OCL) notation.

Processing Requirements and Permissions

Annex specific languages can use any vocabulary word except for the symbol **} representing the end of
the annex subclause or specification.

Processing methods compliant with the core AADL standard must accept AADL specifications with
approved and project-specific annex subclauses and specifications, but are not required to process the
content of annex subclauses and annex library declarations. An AADL analysis tool must provide the
option to report the use of project-specific annexes. Processing methods compliant with a given annex
must process specifications as defined in that annex.

Annex-specific sublanguages may choose not to support inheritance of sublanguage declarations
contained in annex libraries of ancestor component type or component implementation declarations by
their extensions.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 48 -

Examples

thread Collect_Samples

features

 Input_Sample : in data port Sampling::Sample;

 Output_Average : out data port Sampling::Sample;

annex OCL {**

 pre: 0 < Input_Sample < maxValue;

 post: 0 < Output_Sample < maxValue;

**};

end Collect_Samples;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 49 -

5 Software Components

This section defines the following categories of software components: data, subprogram, thread, thread
group, and process.

Software components may have associated source text specified using property associations. Software
source text can be processed by source text tools to obtain a binary executable image consisting of code
and data to be loaded onto a memory component and executed by a processor component. Source text
may be written in a traditional programming language, a very-high-level or domain-specific language, or
may be an intermediate product of processing such representations, e.g., an object file.

Data components represent data types and static data in source text. Data components are sharable
between threads within the same thread group or process, and across processes and systems.

The subprogram component models callable source text that is executed sequentially. Subprograms are
callable from within threads and subprograms.

Threads represent sequential sequences of instructions in loaded binary images produced from source
text. Threads model schedulable units of control that can execute concurrently. Threads can interact
with each other through exchanges of control and data as specified by port connections, through server
subprogram calls, and through shared data components.

A thread group is a compositional component that permits organization of threads within processes into
groups with relevant property associations.

A process represents a virtual address space. Access protection of the virtual address space is enforced
at runtime if specified by the property Runtime_Protection. The source text associated with a
process forms a complete program as defined in the applicable programming language standard. A
complete process specification must contain at least one thread declaration. Processes may share a data
component as specified by the required subcomponent resolved to an actual subcomponent and
accessed through port connections.

5.1 Data

A data component type represents a data type in source text. The internal structure of a source text data
type, e.g., the instance variables of a class or the fields of a record, is represented by data
subcomponents in a data component implementation. Subprogram features of a data component type
can model the concept of methods on a class or operations on an abstract data type. If subprogram
features are declared, the data component may only be accessed through the subprograms. A source
text data type can be modeled by a data component type declaration with relevant properties without
providing internal details in a data component implementation.

A data component classifier, i.e., a data component type name or a data component type and
implementation name pair (separated by a dot “.”), is used as data type indicator in port declarations,
subprogram parameter declarations, and data subcomponent declarations.

A data subcomponent represents static data in the source text. Components can have shared access to
data subcomponents. Only those components that explicitly declare required data access can access
such sharable data subcomponents according to a specified concurrency control protocol property.
Concurrency control is assured either through the subprogram features of the data component type or by
the component requiring access. Data subcomponents can be shared within the same process and, if
supported by the runtime system, across processes.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 50 -

NOTES:

Support for shared data is not intended to be a substitute for data flow communication through ports. It is provided to
support modeling of systems whose application logic requires them to manipulate data concurrently in a non-
deterministic order that cannot be represented as data flow, such as database access. It is also provided for
modeling source text that does not use port-based communication.

Legality Rules

Category Type Implementation

Data

Features:
• subprogram
• provides data access

Flow specifications: no
Properties: yes

Subcomponents:
• data

Subprogram calls: no
Connections: access
Flows: no
Modes: yes
Properties: yes

A data type declaration can contain subprogram declarations, provides data access declarations as well
as property associations.

A data type declaration must not contain a flow specification.

A data implementation can contain data subcomponents, a modes subclause, access connections, and
data property associations.

A data implementation must not contain a flow implementation or an end-to-end flow specification.

Each requires data access reference may have its own Required_Access property value. This
property value must not conflict with the Provided_Access property value associated with the data
component or the corresponding provides access declaration.

The data classifier references of two data ports, event data ports, data access, or parameters to be
identical. When a data type has zero or one implementation, then the referenced data types must match.
When a data type has more than one implementation, both the data type and the appropriate
implementation must be present in the data classifier reference of a data port, event data port, data
access, or parameter declaration.

Standard Properties

Source_Data_Size: Size

Type_Source_Name: aadlstring

Source_Name: aadlstring

Source_Text: inherit list of aadlstring

-- Data sharing properties

Concurrency_Control_Protocol: Supported_Concurrency_Control_Protocols =>

 NoneSpecified

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 51 -

The value of the Type_Source_Name property identifies the name of the data type declaration in the
source text. The value of the Source_Name property identifies the name of the static data variable in the
source text.

Semantics

The data component type represents a data type in the source text that defines a representation and
interpretation for instances of data in the source text. This includes data transferred through data and
event data ports, and parameter values transferred to subprograms. This data type (class) may have
associated access functions (called methods in an Object-Oriented context) that are represented by
subprogram declarations in the features subclause of the data type declaration. In this case, the data
may be accessed through the subprograms.

A data component implementation represents the internal structure of a data component type. It can
contain data subcomponents. This is used to model source language concepts such as fields in a record
and instance variables in a class.

A data component type can have zero data component implementations. This allows source text data
types to be modeled without having to represent implementation details.

A data component type declaration can provide access to its data subcomponents. This allows other
components to directly access specific parts of the data component represented by the data
subcomponent for which access is provided. This can be used to model source language concepts such
as direct access to fields of a record or public access to instance variables in a class.

A data component type declaration can require access to data components external to the data
component type and its implementations. This can be used to model references to other data in the
source language.

Data component types can be extended through component type extension declarations. This permits
modeling of subclasses and type inheritance in source text.

A data subcomponent represents a data instance, i.e., static data in the source text that is potentially
sharable between threads and persists across thread dispatches. Each declared data subcomponent
represents a separate instance of source text data.

When declaring data subcomponents, it is sufficient for the component classifier reference of data
subcomponent declarations to only refer to the data component type. An implementation method can
even generate a system instance and perform memory usage analysis if a Source_Data_Size property
value is specified in the data component type.

Static data is sharable between threads. This is expressed by requires data access declarations in the
component type declarations of subprograms, threads, thread groups, processes, and systems. The
access is resolved to data subcomponents or provides data access declarations. Each required
reference to shared data may have its own Required_Access property value. Its value must be
consistent with the value of the Provided_Access property.

Concurrent access to shared data is coordinated according to the concurrency control protocol specified
by the Concurrency_Control_Protocol property value associated with the data component. A
thread is considered to be in a critical region when it is accessing a shared data component. When a
thread enters a critical region a Get_Resource operation is performed on the shared data component.
Upon exit from a critical region a Release_Resource operation is performed. If multiple data
components with concurrency control protocols are accessed by a thread, the critical regions may be

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 52 -

nested, i.e., the Get_Resource and Release_Resource operations are pair-wise nested for each data
component. Furthermore, deadlock avoidance among threads accessing the same set of shared data
components is assured by proper nesting of the critical regions across all of the threads.

Data component classifier references are also used to specify the data type for data and event data ports
as well as subprogram parameters. When ports are connected or when required data access and
subprogram parameters are resolved, the data component classifier references representing the data
types must be compatible. This means that the data type of an out port must be compatible with the data
type of an in port, the data type of a provided data access declaration or a declared data component must
be compatible with the data type of a required data component, and the data type of an actual parameter
must be compatible with that of the formal parameter of a subprogram. Data component classifier
references are considered to be compatible if they are identical, and if the represented source text data
types are compatible according to source language rules.

Data implementation property associations allow mode-specific property values to be associated with the
data component.

NOTES:

The property types aadlboolean, aadlstring, aadlinteger, and aadlreal cannot be used as predeclared component
data types. Instead data component types with the names Boolean, string, integer, and real can be declared in a
package and used throughout AADL specifications.

Processing Requirements and Permissions

If any source text is associated with a data component type, then a corresponding source text data type
declaration must be visible in the outermost scope of that source text, as defined by the scope and
visibility rules of the applicable source language standard. The name of the data component type
determines the source name of the data type. Supported mappings of the identifier to a source type
name for specific source languages are defined in the source language annex of this standard. Such
mapping can also be explicitly specified through the Type_Source_Name property.

The applicable source language standard may allow a data type to be declared using a type constructor
or type modifier that references other source text data types. A source text data type name defined by a
source type constructor may, but is not required to, be modeled as a data component type with the
referenced type features explicitly named in a corresponding data component implementation declaration.

A method of implementation may disallow assignments that might result in a runtime error depending on
the actual value being assigned. If a method of implementation employs a runtime check to determine if a
specific value may be legally assigned, then any runtime fault is associated with the thread that contains
the source of the data assignment.

If two static data declarations refer to the same source text data, then that data must be replicated in
binary images. If this replication occurs within the same virtual address space, a method for resolving
name conflicts must be in place. Alternatively the processing method may require that each source text
data be represented by only one data component declaration per process address space.

The concurrency control protocol can be implemented through a number of concurrency control
mechanisms such as mutex, lock, semaphore, or priority ceiling protocol. Appropriate concurrency control
state is associated with the shared data component to maintain concurrency control. The protocol
implementation must provide appropriate implementations of the Get_Resource and
Release_Resource operations.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 53 -

A method of implementation may choose to generate the Get_Resource and Release_Resource calls
as part of the AADL runtime system generation, or it may choose to require the application programmer to
place those calls into the application code. In the latter case, implementation methods may validate the
sequencing of those calls to assure compliance with the AADL specification.

Examples

data Person

end Person;

data Personnel_record

-- Methods are not required, but when provided act as access methods

features

 -- a subprogram feature with reference to a

 -- subprogram type for signature

 update_address: subprogram update_address;

end Personnel_record;

data implementation Personnel_record.others

subcomponents

 -- here we declare the internal structure of the data type

 -- One field is defined in terms of another type;

 -- the type name is sufficient, it defaults to others.

 Name : data basic::string;

 Home_address : data sei::aadl::relief::Address;

end Personnel_record.others;

subprogram update_address

features

 person: in out parameter Personnel_record;

 street :in parameter basic::string;

 city: in parameter basic::string;

end update_address;

package basic

public

 -- string as type

 data string

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 54 -

 end string;

 -- int as type

 data int

 properties

 Source_Data_Size => 64 bits;

 end int;

end basic;

-- use of a data type as port type.

thread SEI_Personnel_addition

features

 new_person: in event data port Personnel_record;

 SEI_personnel: requires data access Personnel_database.oracle;

properties

 Dispatch_Protocol => aperiodic;

end SEI_Personnel_addition;

package sei::aadl::relief

public

 data Address

 features

 -- a subprogram feature without parameter detail

 getStreet : subprogram;

 getCity : subprogram;

 end Address;

end sei::aadl::relief;

-- The implementation is shown as a private declaration

-- The public and the private part of a package are separate AADL spec’s

package sei::aadl::relief

private

 data implementation Address.others

 subcomponents

 street : data basic::string;

 streetnumber: data basic::int;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 55 -

 city: data basic::string;

 zipcode: data basic::int;

 end Address.others;

end sei::aadl::relief;

5.2 Subprograms and Subprogram Calls

A subprogram component represents an execution entrypoint in source text. A subprogram may not have
any internal state (static data). All parameters and required access to external data must be explicitly
declared as part of the subprogram type declaration. In addition, any events raised within a subprogram
must be specified as part of its type declaration.

Subprograms can be called from threads and from other subprograms. These calls are sequential calls
local to the virtual address space of the thread. Subprograms can also be called remotely from threads in
other virtual address spaces through server subprograms (see Section 8.3). A subprogram call
sequence is declared in a subprogram or thread implementation and may be mode-specific.

Syntax

subprogram_call_sequence ::=

 [defining_call_sequence_identifier :]

 { { subprogram_call }+ } [in_modes] ;

subprogram_call ::=

 defining_call_identifier : subprogram called_subprogram

 [{ { subcomponent_call_property_association }+ }] ;

called_subprogram ::=

 subprogram_classifier_reference

 | data_unique_type_reference . data_subprogram_identifier

NOTES:

Subprogram type and implementation declarations follow the syntax rules for component types and implementations.
Subprograms are not instantiated as subcomponents. Instead subprogram calls represent their instantiation (use)
with a specific set of parameter values. The syntax for specifying call sequences is shown here.

Naming Rules

The defining identifier of a subprogram call sequence declaration, if present in a component
implementation, must be unique within the local namespace of the component implementation that
contains the subprogram call.

The defining identifier of a subprogram call declaration must be unique within the local namespace of the
component implementation that contains the subprogram call.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 56 -

If the called subprogram name is a subprogram classifier reference, its component type identifier or
component implementation name must exist in the specified (package or anonymous) namespace.

If the called subprogram name is a subprogram feature reference in a data component, the data
component type identifier must refer to a data component type, or it must refer to a requires data access
declaration in the component type of the component containing the subprogram call declaration.

Legality Rules

Category Type Implementation

subprogram

Features:
• out event port
• out event data port
• port group
• requires data access
• parameter

Flow specifications: yes
Properties: yes

Subcomponents:
• None

Subprogram calls: yes
Connections: yes
Flows: yes
Modes: yes
Properties: yes

A subprogram type declaration can contain parameter, out event port, out event data port, and port group
declarations as well as required data access declarations. It can also contain a flow specification
subclause as well as property associations.

A subprogram implementation can contain a connections subclause, a subprogram calls subclause, a
flows subclause, a modes subclause and subprogram property associations.

A subprogram implementation must not contain a subcomponent subclause.

Only one subprogram call sequence can apply to a given mode. In other words, a mode identifier can be
specified in the in_modes subclause of at most one subprogram call sequence.

Standard Properties

-- Properties related to source text

Source_Name: aadlstring

Source_Text: inherit list of aadlstring

Source_Language: Supported_Source_Languages

-- Properties specifying memory requirements of subprograms

Source_Code_Size: Size

Source_Data_Size: Size

Source_Stack_Size: Size

Source_Heap_Size: Size

Allowed_Memory_Binding_Class:

 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

-- execution related properties

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 57 -

Compute_Execution_Time: Time_Range

Compute_Deadline: Time

-- remote subprogram call related properties

Actual_Subprogram_Call: reference (server subprogram)

Allowed_Subprogram_Call: list of reference (server subprogram)

Actual_Subprogram_Call_Binding: reference (bus, processor, memory)

Allowed_Subprogram_Call_Binding:

 inherit list of reference (bus, processor, device)

Queue_Processing_Protocol: Supported_Queue_Processing_Protocols => FIFO

Semantics

A subprogram component represents sequentially executable source text that is called with parameters.
A subprogram type declaration specifies all interactions of the subprogram with other parts of the
application source text. Subprogram parameters are specified as features of a subprogram type (see
Section 8.4). This includes in and in out parameters passed into a subprogram and out and in out
parameters returned from a subprogram on a call In addition, events being raised from within the
subprogram through its out event port and out event data port, and required access to static data by
the subprogram are specified as part of the features subclause of a subprogram type declaration.

A subprogram implementation represents implementation details that are relevant to architecture
modeling. It specifies calls to other subprograms and the mode in which the call sequence occurs.

If required data access is declared for a subprogram type, access to the data subcomponent is performed
in a critical region to assure concurrency control for calls from different threads (for more on concurrency
control see Sections 5.1 and 5.3).

Subprogram source text can contain Raise_Event service calls to cause the transmission of events and
event data through its out event ports. The fact that events may emit from a subprogram call is
documented by the declaration of out event ports and out event data ports as features of the
subprogram.

Subprogram implementations and thread implementations can contain subprogram calls. The flow of
parameter values between subprogram calls as well as to and from ports of enclosing threads is specified
through parameter connection declarations (see Section 9.1.2).

A thread or subprogram can contain multiple calls to the same subprogram - with the same parameters or
with different parameters.

Ordering of subprogram calls is by default determined by the order of the subprogram call declarations.
Annex-specific notations can be introduced to allow for other call order specifications, such as conditional
calls and iterations.

Declaration of subprogram calls in thread and subprogram implementations implies that an instance of
the subprogram executable binaries exists in the load image of the process that contains the thread
performing the subprogram calls. For subprograms, whose source text implementation is reentrant, it is
assumed that a single instance of the subprogram binaries exist in the process virtual address space. In
the case of remote subprogram calls a proxy may be loaded for the calling thread and the actual
subprogram is part of the load image of the process with the thread servicing the remote subprogram call.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 58 -

Subprogram calls can be calls to server subprograms provided in other threads. Such calls model
synchronous remote subprogram calls. An Allowed_Subprogram_Call property, if present, identifies
the server subprogram(s) that are allowed to be used in a call binding. An Actual_Call_Binding
property records the actual binding to a server subprogram. Constraints on the buses and processors
over which such calls can be routed can be specified with the Allowed_Subprogram_Call_Bindings
property.

Subprogram call sequences can be declared to apply to specific modes. In this case a call sequence is
only executed if one of the specified modes is the current mode.

Modeling of subprograms is not required and the level of detail is not prescribed by the standard. Instead
it is determined by the level of detail necessary for performing architecture analyses.

Processing Requirements and Permissions

The subprogram call order defines a default execution order for the subprogram calls. Alternate call
orders can be modeled in an annex subclause introduced for that purpose.

Examples

data Matrix

end Matrix;

subprogram Matrix_delta

features

 A: in parameter matrix;

 B: in parameter matrix;

 result: out parameter matrix;

end Matrix_delta;

subprogram Interpret_result

features

 A: in parameter matrix;

 result: out parameter weather_forecast;

end Interpret_result;

data weather_DB

features

 getCurrent: subprogram getCurrent;

 getFuture: subprogram getFuture;

end weather_DB;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 59 -

subprogram getCurrent

features

 result: out parameter Matrix;

end getCurrent;

subprogram getFuture

-- a subprogram whose source text contains a raise_event service call

-- the subprogram also has access to shared data

features

 date: in parameter date;

 result: out parameter Matrix;

 bad_date: out event port;

 wdb: requires data access weather_DB;

end getFuture;

thread Predict_Weather

features

 target_date: in event data port date;

 prediction: out event data port weather_forecast;

 past_date: out event port;

 weather_database: requires data access weather_DB;

end Predict_Weather;

thread implementation Predict_Weather.others

calls {

 -- subprogram call on a data component subprogram feature

 -- out parameter is not resolved, but will be identified by user of value

 current: subprogram weather_DB.getCurrent;

 -- subprogram call on a data component subprogram feature with port value

 -- as additional parameter. Event is mapped to thread event

 future: subprogram weather_DB.getFuture;

 -- in parameter actuals are out parameter values of previous calls

 -- they are identified by the call name and the out parameter name

 diff: subprogram Matrix_delta;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 60 -

 -- call with out parameter value resolved to be passed on through a port

 interpret: subprogram Interpret_result;

 };

connections

 parameter target_date -> future.date;

 event port future.bad_date -> past_date;

 parameter current.result -> diff.A;

 parameter future.result -> diff.B;

 parameter diff.result -> interpret.A;

 parameter interpret.result -> prediction;

 data access weather_database -> future.wdb;

end Predict_Weather.others;

5.3 Threads

A thread represents a sequential flow of control that executes instructions within a binary image produced
from source text. A thread models a schedulable unit that transitions between various scheduling states.
A thread always executes within the virtual address space of a process, i.e., the binary images making up
the virtual address space must be loaded before any thread can execute in that virtual address space.

Systems modeled in AADL can have operational modes (see Section 11). A thread can be active in a
particular mode and inactive in another mode. As a result a thread may transition between an active and
inactive state as part of a mode switch. Only active threads can be dispatched and scheduled for
execution. Threads can be dispatched periodically or as the result of explicitly modeled events that arrive
at event ports, event data ports, or at a predeclared in event port called Dispatch. Completion of the
execution of a thread dispatch will result in an event being delivered through the predeclared Complete
event out port if it is connected.

If the thread execution results in a fault that is detected, the source text may handle the error. If the error
is not handled in the source text, the thread is requested to recover and prepare for the next dispatch. If
an error is considered thread unrecoverable, its occurrence is propagated as an event through the
predeclared Error out event data port.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 61 -

Legality Rules

Category Type Implementation

thread

Features:
• server subprogram
• port
• port group
• provides data access
• requires data access

Flow specifications: yes
Properties: yes

Subcomponents:
• data

Subprogram calls: yes
Connections: yes
Flows: yes
Modes: yes
Properties: yes

A thread type declaration can contain port, port group, server subprogram declarations as well as requires
and provides data access declarations. It can also contain a flow specifications and property
associations.

A thread component implementation can contain data declarations, a calls subclause, a flows subclause,
a modes subclause, and thread property associations.

A thread or any of its features may not contain an explicit Dispatch in event or event data port
declaration, nor a Complete or Error out event or event data port declaration.

The Compute_Entrypoint property must have a value that indicates the source code to execute after a
thread has been dispatched. Other entrypoint properties are optional, i.e., if a property value is not
defined, then the entrypoint is not called.

The Period property must have a value if the Dispatch_Protocol property value is periodic or
sporadic.

Standard Properties

-- Properties related to source text

Source_Text: inherit list of aadlstring

Source_Language: Supported_Source_Languages

-- Properties specifying memory requirements of threads

Source_Code_Size: Size

Source_Data_Size: Size

Source_Stack_Size: Size

Source_Heap_Size: Size

-- Properties specifying thread dispatch properties

Dispatch_Protocol: Supported_Dispatch_Protocols

Period: inherit Time

-- the default value of the deadline is that of the period

Deadline: Time => inherit value(Period)

-- Properties specifying execution entrypoints and timing constraints

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 62 -

Initialize_Execution_Time: Time_Range

Initialize_Deadline: Time

Initialize_Entrypoint: aadlstring

Compute_Execution_Time: Time_Range

Compute_Deadline: Time

Compute_Entrypoint: aadlstring

Activate_Execution_Time: Time_Range

Activate_Deadline: Time

Activate_Entrypoint: aadlstring

Deactivate_Execution_Time: Time_Range

Deactivate_Deadline: Time

Deactivate_Entrypoint: aadlstring

Recover_Execution_Time: Time_Range

Recover_Deadline: Time

Recover_Entrypoint: aadlstring

Finalize_Execution_Time: Time_Range

Finalize_Deadline: Time

Finalize_Entrypoint: aadlstring

-- Properties specifying constraints for processor and memory binding

Allowed_Processor_Binding_Class:

 inherit list of classifier (processor, system)

Allowed_Processor_Binding: inherit list of reference (processor, system)

Allowed_Memory_Binding_Class:

 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

Not_Collocated: list of reference (data, thread, process, system, connections)

Allowed_Connection_Binding_Class:

 inherit list of classifier(processor, bus, device)

Allowed_Connection_Binding: inherit list of reference (bus, processor, device)

Actual_Connection_Binding: inherit reference (bus, processor, device)

-- Binding value filled in by binding tool

Actual_Processor_Binding: inherit reference (processor)

Actual_Memory_Binding: inherit reference (memory)

-- property indicating whether the thread affects the hyperperiod

-- for mode switching

Synchronized_Component: inherit aadlboolean => true

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 63 -

-- property specifying the action for executing thread at actual mode switch

Active_Thread_Handling_Protocol:

 inherit Supported_Active_Thread_Handling_Protocols

 => value(Default_Active_Thread_Handling_Protocol)

Active_Thread_Queue_Handling_Protocol:

 inherit enumeration (flush, hold) => flush

Semantics

Thread semantics are described in terms of thread states, thread dispatching, thread scheduling and
execution, and fault handling. Thread execution semantics apply once the appropriate binary images
have been loaded into the respective virtual address space (see Section 5.5).

Threads may be part of modes of containing components. In that case a thread is active, i.e., eligible for
dispatch and scheduling, only if the thread is part of the current mode.

Threads can contain mode subclauses that define thread-internal operational modes. Threads can have
property values that are different for different thread-internal modes.

Every thread has a predeclared in event port named Dispatch. If this port is connected, i.e., named as
the destination in a connection declaration, then the arrival of an event results in the dispatch of the
thread. If the Dispatch port is connected, then the arrival of an event on an explicitly declared event
ports or event data ports will result in the queuing of the event or event data without causing a thread
dispatch. When the Dispatch port is connected, only events arriving at this port will cause a thread to be
dispatched.

Periodic threads ignore any events arriving through explicitly declared event or event data connections or
through an event connection to the Dispatch port. Periodic thread dispatches are solely determined by
the clock according to the time interval specified through the Period property value.

Every thread has a predeclared out event port named Complete. If this port is connected, i.e., named
as the source in a connection declaration, then an event is raised implicitly on this port when the
execution of a thread dispatch completes.

Every thread has a predeclared out event data port named Error. If this port is connected, i.e., named
as the source in a connection declaration, then an event is raised implicitly on this port when a thread
unrecoverable error is detected. This supports the propagation of thread unrecoverable errors as event
data for fault handling by a thread. The source text implementing the fault handling thread may map the
error represented by event data into an event that can trigger a mode switch through a Raise_Event call
in its source text.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 64 -

NOTES:

Mode transitions can only refer to event ports as their trigger. This means that Error ports cannot be directly
connected to mode transitions. Instead, they have to be connected to a thread whose source text interprets the data
portion to identify the error type and then raise an appropriate event through an out event port that triggers the
appropriate mode transition. Such a thread typically plays the role of a system health monitor that makes system
reconfiguration decisions based on the nature and frequency of detected faults.

Thread States and Actions

A thread executes a code sequence in the associated source text when dispatched and scheduled to
execute. This code sequence is part of a binary image accessible in the virtual address space of the
containing process. It is assumed that the process is bound to the memory that contains the binary image
(see Section 5.5).

A thread goes through several states. Thread state transitions under normal operation are described
here and illustrated in Figure 5. Thread state transitions under fault conditions are described in the
Execution Fault Handling section below.

The initial state is thread halted. When the loading of the virtual address space as declared by the
enclosing process completes (see Section 5.5), a thread is initialized by performing an initialization code
sequence in the source text. Once initialization is completed the thread enters the suspended awaiting
dispatch state if the thread is part of the initial mode, otherwise it enters the suspended awaiting mode
state. When a thread is in the suspended awaiting mode state it cannot be dispatched for execution.

When a mode switch is initiated, a thread that is part of the old mode and not part of the new mode exits
the mode by transitioning to the suspended awaiting mode state after performing thread deactivation
during the mode change in progress system state (see Figure 18). If the thread is periodic and its
Synchronized_Component property is true, then its period is taken into consideration to determine the
actual mode switch time (see Sections 11 and 12.3 for detailed timing semantics of a mode switch). If an
aperiodic or a sporadic thread is executing a dispatch when the mode switch is initiated, its execution is
handled according to the Active_Thread_Handling_Protocol property. A thread that is not part of
the old mode and part of the new mode enters the mode by transitioning to the suspended awaiting
dispatch state after performing thread activation.

When in the suspended awaiting dispatch state, a thread is awaiting a dispatch request for performing the
execution of a compute source text code sequence as specified by the Compute_Entrypoint property.
When a dispatch request is received for a thread, data, event information, and event data is made
available to the thread through its port variables (see Sections 8.1 and 9.1.1). The thread is then handed
to the scheduler to perform the computation. Upon successful completion of the computation, the thread
returns to the suspended awaiting dispatch state. If a dispatch request is received for a thread while the
thread is in the compute state, this dispatch request is handled according to the specified
Overflow_Handling_Protocol for the event or event data port of the thread.

A thread may enter the thread halted state, i.e., will not be available for future dispatches and will not be
included in future mode switches. If re-initialization is requested for a thread in the thread halted state
(see Section 5.5), then its virtual address space is reloaded, the processor to which the thread is bound is
restarted, or the system instance is restarted.

A thread may be requested to enter its thread halted state through a stop request after completing the
execution of a dispatch or while not part of the active mode. In this case, the thread may execute a
finalize entrypoint before entering the thread halted state. A thread may also enter the thread halted state
immediately through an abort request.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 65 -

Figure 5 presents the top-level hybrid automaton (using the notation defined in Section 1.6) to describe
the dynamic semantics of a thread. Two succeeding figures elaborate on the Performing substate
(Figure 6 and Figure 7). The bold faced edge labels in Figure 5 indicate that the transitions marked by
the label are coordinated across multiple hybrid automata. The scope of the labels is indicated in
parentheses, i.e., interaction with the process hybrid automaton (Figure 8) and with system wide mode
switching (see Section 12.1). The hybrid automata contain assertions. In a time-partitioned system these
assertions will be satisfied. In other systems they will be treated as anomalous behavior.

For each of the states representing a performing thread action such as initialize, compute, recover,
activate, deactivate, and finalize, an execution entrypoint to a code sequence in the source text can be
specified. Each entrypoint may refer to a different source text code sequence which contains the
entrypoint, or all entrypoints of a thread may be contained in the same source text code sequence. In the
latter case, the source text code sequence can determine the context of the execution through a
Dispatch_Status runtime service call (see Runtime Support). The execution semantics for these
entrypoints is described in the Thread Scheduling and Execution section that follows.

An initialize entrypoint is executed once during system initialization and allows threads to perform
application specific initialization, such as insuring the correct initial value of its out and in out ports.

The activate and deactivate entrypoints are executed during mode transitions and allow threads to take
user-specified actions to save and restore application state for continued execution between mode
switches.These entrypoints may be used to reinitialize application state due to a mode transition. Activate
entrypoints can also ensure that out and in out ports contain correct values for operation in the new
mode.

The compute entrypoint represents the code sequence to be executed on every thread dispatch. Each
server subprogram represents a separate compute entrypoint of the thread. Server subprogram calls are
thread dispatches to the respective entrypoint. Event ports and event data ports can have port specific
compute entrypoints to be executed when the corresponding event or event data dispatches a thread.

A recover entrypoint is executed when a fault in the execution of a thread requires recovery activity to
continue execution. This entrypoint allows the thread to perform fault recovery actions (for a detailed
description see the Execution Fault Handling section below).

A finalize entrypoint is executed when a thread is asked to terminate as part of a process unload or
process stop.

If no value is specified for any of the entrypoints, execution is considered as immediately completed
without consumption of execution time. SAENORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 as

55
06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 66 -

Figure 5 Thread States and Actions

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 67 -

Thread Dispatching

The Dispatch_Protocol property of a thread determines the characteristics of dispatch requests to the
thread. This is modeled in the hybrid automaton in Figure 5 by the Enabled(t) function and the
Wait_For_Dispatch invariant. The Enabled function determines when a transition to performing
thread computation will occur. The Wait_For_Dispatch invariant captures the condition under which
the Enabled function is evaluated. The consequence of a dispatch is the execution of the entrypoint
source text code sequence at its current execution position. This position is set to the first step in the
code sequence and reset upon completion (see Thread Scheduling and Execution below).

For a thread whose dispatch protocol is periodic, a dispatch request is issued at time intervals of the
specified Period property value. The Enabled function is t = Period. The Wait_For_Dispatch
invariant is t ≤ Period. The dispatch occurs at t = Period.

For a thread whose dispatch protocol is sporadic, a dispatch request is the result of an event or event
data arriving at an event or event data port of the thread, or a remote subprogram call arriving at a server
subprogram feature of the thread. The time interval between successive dispatch requests will never be
less than the associated Period property value. The Overflow_Handling_Protocol property for
event ports specifies the action to take when events arrive too frequently, i.e., the time between
successive events is less than what is specified in the associated Period property. These events are
either ignored, queued until the end of the period (and then dispatched), or are treated as an error. The
Enabled function is t ≥ Period. The Wait_For_Dispatch invariant is true. The dispatch actually
occurs when the guard on the dispatch transition is true and a dispatch request arrives in the form of an
event at an event port with an empty queue, or an event is already queued when the guard becomes true,
or a remote subprogram call arrives when the guard is true.

For a thread whose dispatch protocol is aperiodic, a dispatch request is the result of an event or event
data arriving at an event or event data port of the thread, or a remote subprogram call arriving at a server
subprogram feature of the thread. There is no constraint on the inter-arrival time of events, event data or
remote subprogram calls. The Enabled function is true. The Wait_For_Dispatch invariant is true.
The dispatch actually occurs immediately when a dispatch request arrives in the form of an event at an
event port with an empty queue, or if an event is already queued when a dispatch execution completes,
or a remote subprogram call arrives.

If several events or event data occur logically simultaneously and are routed to the same port of an
aperiodic or sporadic thread, the order of arrival for the purpose of event handling according the
above rules is implementation-dependent. If several events or event data occur logically simultaneously
and are routed to the different ports of the same aperiodic or sporadic thread, the order of event
handling is determined by the Urgency property associated with the ports.

For a thread whose dispatch protocol is background, the thread is dispatched immediately upon
completion of its initialization entrypoint execution. The Enabled function is true. The
Wait_For_Dispatch invariant is t = 0. The dispatch occurs immediately. Note that background
threads do not have their current execution position reset on a mode switch. In other words, the
background thread will resume execution from where it was previously suspended due to a mode switch.
A background thread is scheduled to execute such that all other threads’ timing requirements are met. If
more than one background thread is dispatched, the processor’s scheduling protocol determines how
such background threads are scheduled. For example, a FIFO protocol for background threads means
that one background thread at a time is executed, while fair share means that all background threads will
make progress in their execution.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 68 -

Thread Scheduling and Execution

When a thread action is computation, the execution of the thread’s entrypoint source text code sequence
is managed by a scheduler. This scheduler coordinates all thread executions on one processor as well
as concurrent access to shared resources. While performing the execution of an entrypoint the thread
can execute nominally or execute recovery (see Figure 7). While executing an entrypoint a thread can be
in one of five substates: ready, running, awaiting resource, awaiting return, and awaiting resume (see
Figure 6).

A thread initially enters the ready state. A scheduler selects one thread from the set of threads in the
ready state to run on one processor according to a specified scheduling protocol. It ensures that only one
thread is in the running state on a particular processor. If no thread is in the ready state, the processor is
idle until a thread enters the ready state. A thread will remain in the running state until it completes
execution of the dispatch, until a thread entering the ready state preempts it if the specified scheduling
protocol prescribes preemption, until it blocks on a shared resource, or until an error occurs. In the case
of completion, the thread transitions to the suspended awaiting dispatch state, ready to service another
dispatch request. In the case of preemption, the thread returns to the ready state. In the case of
resource blocking, it transitions to the awaiting resource state.

Resource blocking can occur when two threads attempt to access shared data. Such access is
performed in a critical region. When a thread enters a critical region a Get_Resource operation is
performed on the shared data component. Upon exit from a critical region a Release_Resource
operation is performed. A Concurrency_Control_Protocol property value associated with the
shared data component determines the particular concurrency control mechanism to be used (see
Section 5.1).

A running thread may require access to shared resources such as shared data components through a
critical region. Such access is coordinated through a concurrency control mechanism that implements the
specified concurrency control protocol. These mechanisms may be blocking such as the use of a
semaphore or non-blocking such as non-preemption through priority ceiling protocol. In the case of a
blocking mechanism, a thread entering a critical region (via Get_Resource) may be blocked and enter
the awaiting resource state. The thread transitions out of the awaiting resource state into the ready state
when another thread exits the critical region (via Release_Resource). Multiple threads may block
trying to gain access to the same resource; such access is mediated by the specified concurrency
coordination protocol (see Section 5.1).

The time a thread resides in a critical region, i.e., the time it may block other threads from entering the
critical region, in worst case is the duration of executing one thread dispatch. This time may be reduced
by specifying a call sequence within a thread and indicating the subprogram(s) that require access to
shared data, i.e., have to execute in a critical region.

When a thread completes execution it is assumed that all critical regions have been exited, i.e., access
control to shared data has been released. Otherwise, the execution of the thread is considered
erroneous.

Subprogram calls to server subprograms are synchronous. A thread in the running state enters the
awaiting return state when performing a call to a subprogram whose service is performed by a server
subprogram in another thread. The service request for the execution of the subprogram is transferred to
the server subprogram request queue of a thread as specified by the Actual_Subprogram_Call
property that specifies the binding of the subprogram call to a server subprogram feature in another
thread. When the thread executing the corresponding server subprogram completes and the result is
available to the caller, the thread with the calling subprogram transitions to the ready state.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 69 -

A background thread may be temporarily suspended by a mode switch in which the thread is not part of
the new mode, as indicated by the exit(Mode) in Figure 6. In this case, the thread transitions to the
awaiting resume state. If the thread was in a critical region, it will be suspended once it exits the critical
region. A background thread resumes execution when it becomes part of the current mode again in a
later mode switch. It then transitions from the awaiting resume state into the ready state. A background
thread must be allowed to exit any critical region before it can be suspended as result of a mode switch.

Figure 6 Thread Scheduling and Execution States

Execution of any of these entrypoints is characterized by actual execution time (c) and by elapsed time
(t). Actual execution time is the time accumulating while a thread actually runs on a processor. Elapsed
time is the time accumulating as real time since the arrival of the dispatch request. Accumulation of time
for c and t is indicated by their first derivatives δc and δt. A derivative value of 1 indicates time
accumulation and a value of 0 no accumulation. Figure 6 shows the derivative values for each of the
scheduling states. A thread accumulates actual execution time only while it is in the running state. The
processor time, if any, required to switch a thread between the running state and any of the other states,
which is specified in the Thread_Swap_Execution_Time property of the processor, is not accounted
for in the Compute_Execution_Time property, but must be accounted for by an analysis tool.

The execution time and elapsed time for each of the entrypoints are constrained by the entrypoint-specific
<entrypoint>_Execution_Time and entrypoint-specific <entrypoint>_Deadline properties
specified for the thread. If no entrypoint specific execution time or deadline is specified, those of the
containing thread apply. There are three timing constraints:

Actual execution time, c, will not exceed the maximum entrypoint-specific execution time.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 70 -

Upon execution completion the actual execution time, c, will have reached at least the minimum
entrypoint-specific execution time.

Elapsed time, t, will not exceed the entrypoint-specific deadline.

Execution of a thread is considered anomalous when the timing constraints are violated. Each timing
constraint may be enforced and reported as an error at the time, or it may be detected after the violation
has occurred and reported at that time. An implementation must document its handling of timing
constraints.

Execution Fault Handling

A fault is defined to be an anomalous undesired change in thread execution behavior, possibly resulting
from an anomalous undesired change in data being accessed by that thread or from violation of a
compute time or deadline constraint. An error is a fault that is detected during operation and is not
handled as part of normal execution by that thread.

Detectable errors may be classified as thread recoverable errors, or thread unrecoverable errors. In the
case of a thread recoverable error, the thread can recover and continue with the next dispatch. Thread
unrecoverable errors can be communicated as events and handled as thread dispatches or mode
changes. Alternatively, these errors may be reported as event data and communicated to an error
handling thread for further analysis and recovery actions.

For thread recoverable errors, the thread affected by the error is given a chance to recover through the
invocation of the thread’s recover entrypoint. The recover entrypoint source text sequence has the
opportunity to update the thread’s application state. Upon completion of the recover entrypoint execution,
the performance of the thread’s dispatch is considered complete. In the case of performing thread
computation, this means that the thread transitions to the suspended await dispatch state (see Figure 5),
ready to perform additional dispatches. Concurrency control on any shared resources must be released.
This thread-level fault handling behavior is illustrated in Figure 7.

In the presence of a thread recoverable error, the maximum interval of time between the dispatch of a
thread and its returning to the suspensed awaiting dispatch state is the sum of the thread’s compute
deadline and its recover deadline. The maximum execution time consumed is the sum of the compute
execution time and the recover execution time. In the case when an error is encountered during recovery,
the same numbers apply.

A thread unrecoverable error causes the execution of a thread to be terminated prematurely without
undergoing recovery. The thread unrecoverable error is reported as an error event through the
predeclared Error event data port, if that port is connected. If this implicit error port is not connected,
the error is not propagated and other parts of the system will have to recognize the fault through their own
observations. In the case of a thread unrecoverable error, the maximum interval between the dispatch of
the thread and its returning to the suspensed awaiting dispatch state is the compute deadline, and the
maximum execution time consumed is the compute execution time.

For errors detected by the runtime system, error details are recorded in the data portion of the event as
specified by the implementation. For errors detected by the source text, the application can choose its
encoding of error detail and can raise an event in the source text. If the propagated error will be used to
directly dispatch another thread or trigger a mode change, only an event needs to be raised. If the
recovery action requires interpretation external to the raising thread, then an event with data must be
raised. The receiving thread that is triggered by the event with data can interpret the error data portion
and raise events that trigger the intended mode transition.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 71 -

Figure 7 Performing Thread Execution with Recovery

A fault may be detected by the source text runtime system or by the application itself. Detection of a fault
in the source text runtime system can result in an exception that is caught and handled within the source
text. The source text exception handler may propagate the error to an external handler by raising an
event or an event with data.

For errors encountered by the source text runtime system, the error class is defined by the developer.

A timing fault during initialize, compute, activation, and deactivation entrypoint executions is considered to
be a thread recoverable error. A timing fault during recover entrypoint execution is considered to be a
thread unrecoverable error.

If any error is encountered while a thread is executing a recover entrypoint, it is treated as a thread
unrecoverable error, as predefined for the runtime system. In other words, an error during recovery must
not cause the thread to recursively re-enter the executing recovery state.

If a fault is encountered by the application source text itself, it may explicitly raise an error through a
Raise_Error service call on the Error port with the error class as parameter. This service call may
be performed in the source text of any entrypoint. In the case of recovery entrypoints, the error class
must be thread unrecoverable.

Faults may also occur in the execution platform. They may be detected by the execution platform
components themselves and reported through an event or event data port, as defined by the execution
platform component. They may go undetected until an application component such as a health

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 72 -

monitoring thread detects missing health pulse events, or a periodic thread detects missing input. Once
detected, such errors can be handled locally or reported as event data.

System Synchronization Requirements

An application system may consist of multiple threads. Each thread has its own hybrid automaton state
with its own c and t variables. This results in a set of concurrent hybrid automata. In the concurrent
hybrid automata model for the complete system, ST is a single real-valued variable shared by all threads
that is never reset and whose rate is 1 in all states. ST is called the global real time.

Two periodic threads are said to be synchronized if, whenever they are both active in the current system
mode of operation, they are logically dispatched simultaneously at every global real time ST that is a
nonnegative integral multiple of the least common multiple of their periods, i.e., their hyperperiod. Two
threads are logically dispatched simultaneously if the order in which all exchanges of control and data at
that dispatch event are identical to the order that would occur if those dispatches were exactly dispatched
simultaneously in true and perfect real time. If all periodic threads contained in an application system are
synchronized, then that application system is said to be synchronized. In this version of the standard,
system instances are synchronized. By default, all application system instances are synchronized, i.e., all
periodic threads contained in an application system must be synchronized.

Runtime Support

The following paragraphs define standard runtime services that are to be provided. The application
program interface for these services is defined in the applicable source language annex of this standard.
They are callable from within the source text.

A Raise_Event runtime service shall be provided that allows a thread to explicitly raise an event if the
executing thread has the named port specified as out event port or an out event data port.

A Raise_Error runtime service shall be provided that allows a thread to explicitly raise a thread
recoverable or thread unrecoverable error as specified by a runtime parameter.

If a local subprogram calls Raise_Event, the event is routed according to the event connection
declaration associated with the subprogram call’s event port. If a server subprogram calls
Raise_Event, the event is transferred to the subprogram call and routed according to the event
connection declaration associated with the subprogram call’s event port.

Subprograms have event ports but do not have an error port. If a Raise_Error is called, it is passed to
the error port of the enclosing thread. If a Raise_Error is called by a server subprogram, the error is
passed to the error port of the thread executing the server subprogram.

Processing Requirements and Permissions

Multiple models of implementation are permitted for the dispatching of threads. One such model is that a
runtime executive contains the logic reflected in Figure 5 and calls on the different entrypoints associated
with a thread. This model naturally supports source text in a higher level domain language.

An alternative model is that the code in the source text includes a code pattern that reflects the logic of
Figure 5 through explicitly programmed calls to the standard Await_Dispatch runtime service,
including a repeated call (while loop) to reflect repeated dispatch of the compute entrypoint code
sequence.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 73 -

Multiple models of implementation are permitted for the implementation of thread entrypoints. One such
model is that each entrypoint is a possibly separate function in the source text that is called by the runtime
executive. In this case, the logic to determine the context of an error is included in the runtime system.

A second model of implementation is that a single function in the source text is called for all entrypoints.
This function then invokes an implementer-provided Dispatch_Status runtime service call to identify
the context of the call and to branch to the appropriate code sequence. This alternative is typically used
in conjunction with the source text implementation of the dispatch loop for the compute entrypoint
execution.

A method of implementing a system is permitted to choose how executing threads will be scheduled. A
method of implementation is required to verify to the required level of assurance that the resulting
schedule satisfies the period and deadline properties. That is, a method of implementing a system should
schedule all threads so that the specified timing constraints are always satisfied.

The use of the term “preempt” to name a scheduling state transition in Figure 6 does not imply that
preemptive scheduling disciplines must be used; non-preemptive disciplines are permitted.

Execution times associated with transitions between thread scheduling states, for example context swap
times (specified as properties of the hosting processor), are not billed to the thread’s actual execution
time, i.e., are not reflected in the Compute_Time property value. However, these times must be included
in a detailed schedulability model for a system. These times must either be apportioned to individual
threads, or to anonymous threads that are introduced into the schedulability model to account for these
overheads. A method of processing specifications is permitted to use larger compute time values than
those specified for a thread in order to account for these overheads when constructing or analyzing a
system.

A method of implementing a system must support the periodic dispatch protocol. A method of
implementation may support only a subset of the other standard dispatch protocols. A method of
implementation may support additional dispatch protocols not defined in this standard.

A method of implementing the Raise_Event service call may provide an optional parameter that permits
the assignment of an Urgency value to the event. Such an Urgency value provides control over the
implementation-dependent ordering of events or event data. This is the case for logically simultaneous
events or event data arriving at the same event or event data port, and for logically simultaneous events
resulting in different mode transitions. This capability also allows priority-based
Queue_Processing_Protocols to be supported for event and event data ports.

A method of implementing the Raise_Event service call may provide a status return value indicating
whether the raised event or event data connected to an event or event data port is ignored on delivery to
an event or event data port, or whether a raised event that triggers a mode transition is ignored.

A method of implementation may choose to generate the Get_Resource and Release_Resource calls
in support of critical regions for shared data access as part of the AADL runtime system generation, or it
may choose to require the application programmer to place those calls into the application code.

A method of implementing a system may perform loading and initialization activities prior to the start of
system operation. For example, binary images of processes and initial data values may be loaded by
permanently storing them in programmable memory prior to system operation.

A method of implementing a system must specify the set of errors that may be detected at runtime. This
set must be exhaustively and exclusively divided into those errors that are thread recoverable or thread
unrecoverable, and those that are exceptions to be handled by language constructs defined in the

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 74 -

applicable programming language standard. The set of errors classified as source language exceptions
may be a subset of the exceptions defined in the applicable source language standard. That is, a method
of implementation may dictate that a language-defined exceptional condition should not cause a runtime
source language exception but instead immediately result in an error. For each error that is treated as a
source language exception, if the source text associated with that thread fails to properly catch and
handle that exception, a method of implementation must specify whether such unhandled exceptions are
thread recoverable or thread unrecoverable errors.

A consequence of the above permissions is that a method of implementing a system may classify all
errors as thread unrecoverable, and may not provide an executing recovery scheduling state and
transitions to and from it.

A method of implementing a system may enforce, at runtime, a minimum time interval between
dispatches of sporadic threads. A method of implementing a system may enforce, at runtime, the
minimum and maximum specified execution times. A method of implementing a system may detect at
runtime timing violations.

A method of implementing a system may support handling of errors that are detected while a thread is in
the suspended, ready, or blocked state. For example, a method of implementation may detect event
arrivals for a sporadic thread that violate the specified period. Such errors are to be kept pending until the
thread enters the executing state, at which instant the errors are raised for that thread and cause it to
immediately enter the recover state.

If alternative thread scheduling semantics are used, a thread unrecoverable error that occurs in the
perform thread initialization state may result in a transition to the perform thread recovery state and
thence to the suspended awaiting mode state, rather than to the thread halted state. The deadline for this
sequence is the sum of the initialization deadline and the recovery deadline.

If alternative thread scheduling semantics are used, a method of implementation may prematurely
terminate threads when a system mode change occurs that does not contain them, instead of entering
suspended awaiting mode. Any blocking resources acquired by the thread must be released.

If alternative thread scheduling semantics are used, the load deadline and initialize deadline may be
greater than the period for a thread. In this case, dispatches of periodic threads shall not occur at any
dispatch point prior to the initialization deadline for that periodic thread.

This standard does not specify which thread or threads perform virtual address space loading. This may
be a thread in the runtime system or one of the application threads.

NOTES:

The deadline of a calling thread will impose an end-to-end deadline on all activities performed by or on behalf of that
thread, including the time required to perform any server subprogram calls made by that thread. The deadline
property of a server subprogram may be useful for scheduling methods that assign intermediate deadlines in the
course of producing an overall end-to-end system schedule.

5.4 Thread Groups

A thread group represents an organizational component to logically group threads contained in
processes. The type of a thread group component specifies the features and required subcomponent
access through which threads contained in a thread group interact with components outside the thread
group. Thread group implementations represent the contained threads and their connectivity. Thread
groups can have multiple modes, each representing a possibly different configuration of subcomponents,
their connections, and mode-specific property associations. Thread groups can be hierarchically nested.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 75 -

A thread group does not represent a virtual address space nor does it represent a unit of execution.
Therefore, a thread group must be contained within a process.

Legality Rules

Category Type Implementation

thread
group

Features:
• server subprogram
• port
• port group
• provides data access
• requires data access

Flow specifications: yes
Properties: yes

Subcomponents:
• data
• thread
• thread group

Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties: yes

A thread group component type can contain provides and requires data access, as well as port, port
group, and server subprogram declarations. It can also contain flow specifications and property
associations.

A thread group component implementation can contain data, thread, and thread group declarations.

An instantiable thread group component implementation must contain at least one thread subcomponent
or one thread group subcomponent.

A thread group implementation can contain a connections subclause, a flows subclause, a modes
subclause, and properties subclause.

A thread group must not contain a subprogram calls subclause.

Standard Properties

-- Properties related to source text

Source_Text: inherit list of aadlstring

-- Inhertable thread properties

Synchronized_Component: inherit aadlboolean => true

Active_Thread_Handling_Protocol:
 inherit Supported_Active_Thread_Handling_Protocols
 => value(Default_Active_Thread_Handling_Protocol)

Period: inherit Time

Deadline: Time => inherit value(Period)

-- Properties specifying constraints for processor and memory binding

Allowed_Processor_Binding_Class:

 inherit list of classifier (processor, system)

Allowed_Processor_Binding: inherit list of reference (processor, system)

Actual_Processor_Binding: inherit reference (processor)

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 76 -

Allowed_Memory_Binding_Class:

 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

Actual_Memory_Binding: inherit reference (memory)

Allowed_Connection_Binding_Class:

 inherit list of classifier(processor, bus, device)

Allowed_Connection_Binding: inherit list of reference (bus, processor, device)

Actual_Connection_Binding: inherit reference (bus, processor, device)

NOTES:

Property associations of thread groups are inheritable (see Section 10.3) by contained subcomponents. This means if
a contained thread does not have a property value defined for a particular property, then the corresponding property
value for the thread group is used.

Semantics

A thread group allows threads contained in processes to be logically organized into a hierarchy. A thread
group type declares the features and required subcomponent access through which threads contained in
a thread group can interact with components declared outside the thread group.

A thread group implementation contains threads, data components, and thread groups. Thread group
nesting permits threads to be organized hierarchically. A thread group implementation also contains
connections to specify the interactions between the contained subcomponents and modes to represent
different configurations of subsets of subcomponents and connections as well as mode-specific property
associations.

5.5 Processes

A process represents a virtual address space. The Runtime_Protection process property indicates
whether this virtual address space is runtime protected, i.e., it represents a space partition unit whose
boundaries are enforced at runtime. The virtual address space contains the program formed by the
source text associated with the process and its subcomponents. A complete implemenation of a process
must contain at least one thread or thread group subcomponent.

Legality Rules

Category Type Implementation

Process

Features:
• server subprogram
• port
• port group
• provides data access
• requires data access

Flow specifications: yes
Properties: yes

Subcomponents:
• data
• thread
• thread group

Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties: yes

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 77 -

A process component type can contain port, port group, provides and requires data access, and server
subprogram declarations. It can also contain flow specifications and property associations.

A process component implementation can contain data, thread, and thread group declarations.

A complete process component implementation must contain at least one thread subcomponent or one
thread group subcomponent.

A process implementation can contain a connections subclause, a flows subclause, a modes subclause,
and a properties subclause.

The complete source text associated with a process component must form a complete and legal program
as defined in the applicable source language standard. This source text shall include the source text that
corresponds to the complete set of subcomponents in the process’s containment hierarchy along wth the
data and subprograms that are referenced by required subcomponent declarations.

Standard Properties

-- Runtime enforcement of virtual address space boundary

Scheduling_Protocol: list of Supported_Scheduling_Protocols

-- Properties related to source text

Source_Text: inherit list of aadlstring

Source_Language: Supported_Source_Languages

-- Properties related to virtual address space loading

Load_Time: Time_Range

Load_Deadline: Time

-- Inhertable thread properties

Synchronized_Component: inherit aadlboolean => true

Active_Thread_Handling_Protocol:
 inherit Supported_Active_Thread_Handling_Protocols
 => value(Default_Active_Thread_Handling_Protocol)

Period: inherit Time

Deadline: Time => inherit value(Period)

-- Properties specifying constraints memory binding

Allowed_Processor_Binding_Class:

 inherit list of classifier (processor, system)

Allowed_Processor_Binding: inherit list of reference (processor, system)

Actual_Processor_Binding: inherit reference (processor)

Allowed_Connection_Binding_Class:

 inherit list of classifier(processor, bus, device)

Allowed_Connection_Binding: inherit list of reference (bus, processor, device)

Actual_Connection_Binding: inherit reference (bus, processor, device)

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 78 -

Allowed_Memory_Binding_Class:

 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

Not_Collocated: list of reference (data, thread, process, system, connections)

Actual_Memory_Binding: inherit reference (memory)

Semantics

Every process has its own virtual address space. This address space provides access to source code
and data associated with the process and all its contained components.

Threads contained in a process execute within the virtual address space of the process. If the
Runtime_Protection property value is true, the virtual address space boundaries of the process are
enforced for all contained threads at runtime.

A process may contain mode declarations. In this case, each mode can represent a different configuration
of contained threads, their connections, and mode-specific property associations. The transition between
modes is determined by the mode transition declarations and is triggered by the arrival of events.

The associated source text for each process is compiled and linked to form binary images in accordance
with the applicable source language standard. These binary images must be loaded into memory before
any thread contained in a process can execute, i.e., enter its perform thread initialization state.

The time to load binary images into the virtual address space of a process is bounded by the
Load_Deadline and Load_Time properties. The failure to meet these timing requirements is
considered an error.

The process states, transitions, and actions are illustrated in Figure 8. Once processors of an execution
platform are started, binary images making up the virtual address space of processes bound to the
processor are ready to be loaded. Loading may take zero time for binary images that have been
preloaded in ROM, PROM, or EPROM. Completion of loading, which is indicated by loaded(process),
triggers threads to be initialized (see Figure 5).

A process, i.e., its contained threads, can be stopped (also known as a deferred abort), which is indicated
by stop(process). A process is considered stopped when all threads of the process are halted, are
awaiting a dispatch, or are not part of the current mode. When a process is stopped, each of its threads
is given a chance to execute its finalize entrypoint.

A process, i.e., its contained threads, can be aborted, which is indicated by abort(process). In this case,
all contained threads terminate their execution immediately and release any resources (see Figure 5,
Figure 6, and Figure 7).

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 79 -

Figure 8 Process States and Actions

Processing Requirements and Permissions

A method of implementation must link all associated source text for the complete set of subcomponents of
a process, including the process component itself and all actual subcomponents specified for required
subcomponents. This set of source compilation units must form a single complete and legal program as
defined by the applicable source language standard. Linking of this set of source compilation units is
performed in accordance with the applicable source language standard for the process.

If the applicable source language standard permits a mixture of source languages, then subcomponents
may have different source language property values.

This standard permits dynamic virtual memory management or dynamic library linking after process
loading has completed and thread execution has started. However, a method for implementing a system
must assure that all deadline properties will be satisfied to the required level of assurance for each thread.

NOTES:

An AADL process represents only a virtual address space and requires at least one explicitly declared thread
subcomponent in order to be executable. The explicitly declared thread in AADL allows for unambiguous specification
of port connections to threads. In contrast, a POSIX process represents both a protected address space and an
implicit thread.

5.6 Predeclared Runtime Services

Language-specific annexes to this standard will define predeclared subprograms that are included with
every thread, and process implementation. Names used for explicitly declared components, features,
connections and behaviors must be distinct from the names of all standard predeclared components.

Every language-specific annex will define a source language application program interface for the
predeclared subprograms, shown below.

The following subprograms can be called by any application thread from its source text:

 Raise_Event : subprogram ;

 Raise_Error : subprogram ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 80 -

The following are subprograms, whose calls are only necessary in application source text, if the particular
implementation method does not perform those functions as part of its AADL runtime support.

 Await_Dispatch : subprogram ;

 Get_Resource : subprogram ;

 Release_Resource : subprogram ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 81 -

6 Execution Platform Components

This section describes the four categories of execution platform components: processor, device, memory
and bus.

Processors can execute threads. Processors can contain memory subcomponents. Processors and
devices can access memories over buses.

Memories represent randomly addressable storage capable of storing binary images in the form of data
and code. Memories can be accessed by executing threads.

Buses provide access between processors, devices, and memories. A bus provides the resources
necessary to perform exchanges of control and data as specified by connections. A connection may be
bound to a sequence of buses and intermediate processors and devices in a manner that is analogous to
the binding of threads to processors.

Devices represent entities that interface with the external environment of an application system and may
have complex behaviors. A device can interact with application software components through their port
and subprogram features. A device may achieve its functionality through device internal software or may
require device driver software to be executed by a processor. Binary images or threads cannot be bound
to devices.

Processors may contain software subcomponents, where the associated source text and data in the form
of binary images will be bound to memories accessible from that processor. These software components
implement the capability of the processor to schedule and execute threads bound to that processor.

Execution platform components can be assembled into execution platform systems, i.e., into systems of
execution platform components to model complex physical computing hardware components and
software/hardware computing systems, through the use of system components (see Section 7.1). The
execution platform systems and their components may denote physical computing hardware for example,
memory to represent a hard disk or RAM. Execution platform systems may also model abstracted
storage, for example, a device or memory to represent a database, depending on the purpose of the
modeler.

The hardware represented by the execution platform components may be modeled by a hardware
description or simulation language. Alternatively, they may be represented using configuration data for
programmable logic devices. Or a simulation may be used to characterize the components. Such
descriptions are also viewed as associated source text.

Execution platform components can be used to model a layered system architecture. Processors, buses,
memory, and devices may represent abstractions of a virtual machine layer. Those abstractions can be
modeled as systems in terms of software components and of execution platform components of the next
virtual machine layer; eventually a system architecture layer representing physical hardware. The
mapping between different layers of a multi-layer architecture may be represented by an appropriate
property for each of the execution platform categories. For example, a Maps_To property may be defined
to specify the mapping of an execution platform component classifier to a system classifier that
represents the implementation of the abstraction in the virtual machine layer.

6.1 Processors

A processor is an abstraction of hardware and software that is responsible for scheduling and executing
threads. Processors execute threads declared in application software systems and in devices that can be

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 82 -

accessed from those processors. Processors may contain memories and may access memories and
devices via buses.

Legality Rules

Category Type Implementation

processor

Features:
• server subprogram
• port
• port group
• requires bus access

Flow specifications: yes
Properties: yes

Subcomponents:
• memory

Subprogram calls: no
Connections: no
Flows: yes
Modes: yes
Properties: yes

A processor component type can contain port, port group, server subprogram, and required bus access
declarations. It may contain flow specifications as well as property associations.

A processor component implementation can contain declarations of memory subcomponents.

A processor implementation can contain a modes subclause, flows subclause, and a properties
subclause.

A processor implementation must not contain a connection subclause or a subprogram calls subclause.

A processor component must contain at least one memory component or require at least one bus access.

Standard Properties

-- Hardware description properties

Hardware_Description_Source_Text: inherit list of aadlstring

Hardware_Source_Language: Supported_Hardware_Source_Languages

-- Properties related to source text that provides thread scheduling services

Source_Text: inherit list of aadlstring

Source_Language: Supported_Source_Languages

Source_Code_Size: Size

Source_Data_Size: Size

Source_Stack_Size: Size

Allowed_Memory_Binding_Class:
 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

Actual_Memory_Binding: inherit reference (memory)

-- Processor initialization properties

Startup_Deadline: inherit Time

-- Properties specifying provided thread execution support

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 83 -

Thread_Limit: aadlinteger 0 .. value(Max_Thread_Limit)

 => value(Max_Thread_Limit)

Allowed_Dispatch_Protocol: list of Supported_Dispatch_Protocols

Allowed_Period: list of Time_Range

Server_Subprogram_Call_Binding: inherit list of reference (thread, processor)

Process_Swap_Execution_Time: Time_Range

Thread_Swap_Execution_Time: Time_Range

Supported_Source_Language: list of Supported_Source_Languages

-- Proeprties related to data movement in memory

Assign_Time: Time

Assign_Byte_Time: Time

Assign_Fixed_Time: Time

-- Properties related to the hardware clock

Clock_Jitter: Time

Clock_Period: Time

Clock_Period_Range: Time_Range

NOTES:

The above is list of the predefined processor properties. Additional processor properties may be declared in user-
defined property sets. Candidates include properties that describe capabilities and accuracy of a synchronized clock,
e.g. drift rates, differences across processors.

Semantics

A processor is the execution platform component that is capable of scheduling and executing threads.
Threads will be bound to a processor for their execution that supports the dispatch protocol required by
the thread. The Allowed_Dispatch_Protocol property specifies the dispatch protocols that a
processor supplies.

A processor to which threads are bound must have a Scheduling_Protocol property value.

Support for thread execution may be embedded in the processor hardware or it may require software that
implements processor functionality such as thread scheduling, e.g., an operating system kernel or other
software virtual machine. Such software must be bound to a memory component that is accessible to the
processor.

The code that threads execute and the data they access must be bound to a memory component that is
accessible to the processor on which the thread executes.

If a processor executes device driver software associated with a device, then the processor must have
access to the corresponding device component.

Flow specifications model logical flow through processors. For example, they may represent requests for
operating system services through server subprograms or ports.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 84 -

The source text property may include a reference to source text that is a model of the hardware in a
hardware description language. This provides support for the simulation of hardware.

Modes allow processor components to have different property values under different operational
processor modes. Modes may be used to specify different runtime selectable configurations of processor
implementations.

Processor states and transitions are illustrated in the hybrid automaton shown in Figure 9. The labels in
this hybrid automaton interact with labels in the system hybrid automaton (see Figure 17) and the process
hybrid automaton (see Figure 8). The initial state of a processor is stopped. When a processor is started,
it enters the processor starting state. In this state, the processor hardware is initialized and any processor
software that provides thread scheduling functionality is loaded into memory and initialized. Once a
processor is initialized it is operational and ready to load virtual address spaces of the processes whose
threads are bound to the processor. Note that the virtual address space load images of processes may
already have been loaded as part of a single load image that includes the processor software. After
process virtual address spaces are loaded, process initialization entrypoints are executed, if they have
been specified. At this point, the started(system) and started(processor) transitions have completed
and the processor is in the processor operating state.

While operational, a processor may be in different modes with different processing characteristics
reflected in appropriate property values.

As a result of a processor abort, any threads bound to the processor are aborted, as indicated by
abort(processor) in the hybrid automaton in Figure 9 and in the hybrid automata figures in Sections 5.3
and 5.5. A stop processor request results in a transition to the processor stopping state at the next
hyperperiod. The length of the hyperperiod can be reduced by using the Synchronized_Components
property to minimize the number of periodic threads that must be synchronized within the hyperperiod
(see Section 11). When the next hyperperiod begins, the processes with threads bound to the processor
are informed about the stoppage request, as indicated by stop(processor) in the hybrid automaton in
Figure 9. The process hybrid automaton (see Figure 8) in turn causes the thread hybrid automaton to
respond, as indicated with stop(process) in the hybrid automata figures in Section 5.3. In this case, any
threads bound to the processor are permitted to complete their dispatch executions and perform any
finalization before the processor is stopped.

The synchronization scope for start(processor) and stop(processor) in Figure 9 consists of all
processes whose threads that are bound to the processor. The edge labels start(processor) and
stop(processor) also appear in the set of concurrent semantic automata for processes.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 85 -

Figure 9 Processor States and Actions

Processing Requirements and Permissions

A method of implementation is not required to monitor the startup deadline and report an overflow as an
error.

6.2 Memory

A memory component represents an execution platform component that stores binary images. This
execution platform component consists of hardware such as randomly accessible physical storage, e.g.,
RAM, ROM, or more complex permanent storage such as disks, reflective memory, or logical storage.
Memories have properties such as the number and size of addressable storage locations. Subprograms,
data, and processes – reflected in binary images - are bound to memory components for access by
processors when executing threads. A memory component may be contained in a processor or may be
accessible from a processor via a bus.

Legality Rules

Category Type Implementation

memory

Features
• requires bus access

Flow specifications: no
Properties: yes

Subcomponents:
• memory

Subprogram calls: no
Connections: no
Flows: no
Modes: yes
Properties: yes

A memory type can contain requires bus access declarations and property associations. It must not
contain flow specifications.

A memory implementation can contain memory subcomponent declarations.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 86 -

A memory implementation can contain a modes subclause and property associations.

A memory implementation must not contain a connections subclause, flows subclause, or subprogram
calls subclause.

Standard Properties

-- Properties related memory as a resource and its access

Memory_Protocol: enumeration (read_only, write_only, read_write) => read_write

Word_Size: Size => 8 bits

Word_Count: aadlinteger 0 .. value(Max_Word_Count)

Word_Space: aadlinteger 1 .. value(Max_Word_Space) => 1

Base_Address: access aadlinteger 0 .. value(Max_Base_Address)

Read_Time: list of Time_Range

Write_Time: list of Time_Range

-- Hardware description properties

Hardware_Description_Source_Text: inherit list of aadlstring

Hardware_Source_Language: Supported_Hardware_Source_Languages

Semantics

Memory components are used to store binary images of source text, i.e., code and data. These images
are loaded into memory representing the virtual address space of a process and are accessible to threads
contained in the respective processes bound to the processor. Such access is possible if the memory is
contained in this processor or is accessible to this processor via a shared bus component. Loading of
binary images into memory may occur during processor startup or the binary images may have been
preloaded into memory before system startup. An example of the latter case is PROM or EPROM
containing binary images.

A memory is accessible from a processor if the memory is connected via a shared bus component and
the Allowed_Access_Protocol property value for that bus includes Memory_Access.

Memory components can have different property values under different operational modes.

6.3 Buses

A bus component represents an execution platform component that can exchange control and data
between memories, processors, and devices. This execution platform component represents a
communication channel, typically hardware together with communication protocols.

Processors, devices, and memories can communicate by accessing a shared bus. Such a shared bus
can be located in the same system implementation as the execution platform components sharing it or
higher in the system hierarchy. Memory, processor, and device types, as well as the system type of
systems they are contained in, can declare a need for access to a bus through a requires bus reference.

Buses can be connected directly to other buses by one bus requiring access to another bus. Buses
connected in such a way can have different bus classifier references.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 87 -

Connections between software components that are bound to different processors transmit their
information across buses whose protocol supports the respective connection category.

Legality Rules

Category Type Implementation

Bus

Features
• requires bus access

Flow specifications: no
Properties: yes

Subcomponents:
• None

Subprogram calls: no
Connections: no
Flows: no
Modes: yes
Properties: yes

A bus type can have requires bus access declarations and property associations.

A bus type must not contain any flow specifications.

A bus implementation must not contain any subcomponent declarations.

A bus implementation can contain a modes subclause and property associations.

A bus implementation must not contain a connections subclause, flows subclause, or subprogram calls
subclause.

Standard Properties

-- Properties specifying bus transmission properties

Allowed_Connection_Protocol: list of enumeration
 (Data_Connection,
 Event_Connection)

Allowed_Access_Protocol: list of enumeration (Memory_Access,
 Device_Access)

Allowed_Message_Size: Size_Range

Transmission_Time: list of Time_Range

Propagation_Delay: Time_Range

-- Hardware description properties

Hardware_Description_Source_Text: inherit list of aadlstring

Hardware_Source_Language: Supported_Hardware_Source_Languages

-- Data movement related properties

Assign_Time: Time

Assign_Byte_Time: Time

Assign_Fixed_Time: Time

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 88 -

Semantics

A bus provides access between processors, memories, and devices. This allows a processor to support
execution of source text in the form of code and data loaded as binary images into memory components.
A bus allows a processor to access device hardware when executing device software. A bus may also
support different port and subprogram connections between thread components bound to different
processors. The Allowed_Connection_Protocol property indicates which forms of access a
particular bus supports. The bus may constrain the size of messages communicated through data or
event data connections.

A bus component provides access between processors, memories, and devices. It is a shared
component, for which access is required by each of the respective components. A device is accessible
from a processor if the two share a bus component and the Allowed_Connection_Protocol property
value for that bus includes Device_Access. A memory is accessible from a processor if the two share a
bus component and the Allowed_Connection_Protocol property value for that bus includes
Memory_Access.

Buses can be directly connected to other buses. This is represented by one bus declaration specifying
access to another bus in its requires subclause.

Bus components can have different property values under different operational modes.

Processing Requirements and Permissions

A method of implementation shall define how the final size of a transmission is determined for a specific
connection. Implementation choices and restrictions such as packetization and header and trailer
information are not defined in this standard.

A method of implementation shall define the methods used for bus arbitration and scheduling.

Examples

bus VME

end VME;

memory Memory_Card

features

 Card_Connector : requires bus access VME;

end Memory_Card;

processor PowerPC

features

 Card_Connector : requires bus access VME;

end PowerPC;

processor implementation PowerPC.Linux

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 89 -

end PowerPC.Linux;

system Dual_Processor end Dual_Processor;

system implementation Dual_Processor.PowerPC

subcomponents

 System_Bus: bus VME;

 Left: processor PowerPC.Linux;

 Right: processor PowerPC.Linux;

 Shared_Memory: memory Memory_Card;

connections

 bus access System_Bus -> Left.Card_Connector;

 bus access System_Bus -> Right.Card_Connector;

 bus access System_Bus -> Shared_Memory.Card_Connector;

end Dual_Processor.PowerPC;

6.4 Devices

A device component represents an execution platform component that interfaces with the external
environment. A device may exhibit complex behavior that requires a nontrivial interface to application
software systems. Devices may internally have a processor, memory and software that is not explicitly
modeled. If the device has associated software such as device drivers that must reside in a memory and
execute on a processor external to the device, this can be specified through appropriate property values
for the device.

A device interacts with both execution platform components and application software components. A
device has physical connections to processors via a bus. This models software executing on a processor
accessing the physical device. A device also has logical connections to application software components.
Those logical connections are represented by connection declarations between device ports and
application software component ports. For any logical connection between a device and a thread
executing application source text, there must be a physical connection in the execution platform.

A device can be viewed to be a primary part of the application system. In this case, it is natural to place
the device together with the application software components. The physical connection to processors
must follow the system hierarchy.

A device may be viewed to be primarily part of the execution platform. In this case, it is placed in proximity
of other execution platform components. The logical connections have to follow the system hierarchy to
connect to application software components.

Examples of devices are sensors and actuators that interface with the external physical world, or
standalone systems (such as a GPS) that interface with an application system.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 90 -

Legality Rules

Category Type Implementation

device

Features
• port
• port group
• server subprogram
• requires bus access

Flow specifications: yes
Properties: yes

Subcomponents:
• None

Subprogram calls: no
Connections: no
Flows: yes
Modes: yes
Properties: yes

A device type can contain port, port group, server subprogram, requires bus access declarations, flow
specifications, as well as property associations.

A device component implementation must not contain a subcomponents subclause, connections
subclause, or subprogram calls subclause.

A device implementation can contain a modes subclause, a flows subclause, and property associations.

Standard Properties

-- Hardware description properties

Hardware_Description_Source_Text: inherit list of aadlstring

Hardware_Source_Language: Supported_Hardware_Source_Languages

-- Properties specifying device driver software that must be

-- executed by a processor

Source_Text: inherit list of aadlstring

Source_Language: Supported_Source_Languages

Source_Code_Size: Size

Source_Data_Size: Size

Source_Stack_Size: Size

-- Properties specifying the thread properties for device software

-- executing on a processor

Device_Dispatch_Protocol: Supported_Dispatch_Protocols => Aperiodic

Period: inherit Time

Compute_Execution_Time: Time_Range

Deadline: Time => inherit value(Period)

-- Properties specifying constraints for processor and memory binding

Allowed_Memory_Binding_Class:

 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

Allowed_Processor_Binding_Class:

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 91 -

 inherit list of classifier (processor, system)

Allowed_Processor_Binding: inherit list of reference (processor, system)

Semantics

A device component represents an execution platform component that provides an interface with the
external environment. It can exhibit complex behaviors that require a nontrivial interface to application
software systems via ports and subprogram features. This functionality may be fully embedded in the
device hardware, or it may be provided by device-specific software. This software must reside as a
binary image on memory components and is executed on a processor component. The executing
processor that has access to the device must be connected to the device via a bus. The memory storing
the binary image must be accessible to the processor.

A device is accessible from a processor if the device is connected via a shared bus component and the
Allowed_Connection_Protocol property value for that bus includes Device_Access.

A device declaration can include flow specifications that indicate that a device is a flow source, a flow
sink, or a flow path exists through a device.

Device components can have different property values under different operational modes.

Processing Requirements and Permissions

Execution of the device driver software may be considered to be part of the processor execution
overhead or it may be treated as an explicitly declared thread with its own execution properties.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 92 -

7 System Composition

Systems are organized into a hierarchy of components to reflect the structure of physical systems being
modeled. This hierarchy is modeled by system declarations to represent a composition of components
into composite components. A system instance models an instance of an application system and its
binding to a system that contains execution platform components.

7.1 Systems

A system represents an assembly of interacting application software, execution platform, and system
components. Systems can have multiple modes, each representing a possibly different configuration of
components and their connectivity contained in the system. Systems may require access to data and bus
components declared outside the system and may provide access to data and bus components declared
within. Systems may be hierarchically nested. This provides for modeling of large-scale runtime
architectures.

Legality Rules

Category Type Implementation

system

Features:
• server subprogram
• port
• port group
• provides data access
• provides bus access
• requires data access
• requires bus access

Flow specifications: yes
Properties: yes

Subcomponents:
• data
• process
• processor
• memory
• bus
• device
• system

Subprogram calls: no
Connections: yes
Flows: yes
Modes: yes
Properties: yes

A system component type can contain provided and required data and bus access declarations, port, port
group, and server subprogram declarations. It can also contain flow specifications as well as property
associations.

A system component implementation can contain data, process, and system subcomponent declarations
as well as execution platform components, i.e., processor, memory, bus, and device.

A system implementation can contain a modes subclause, a connections subclause, a flows subclause,
and property associations.

Standard Properties

-- Properties related to source text

Source_Text: inherit list of aadlstring

Source_Language: Supported_Source_Languages

-- Process property that can be specified at the system level as well

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 93 -

-- Runtime enforcement of address space boundaries

Scheduling_Protocol: list of Supported_Scheduling_Protocols

-- Inhertable thread properties

Synchronized_Component: inherit aadlboolean => true

Active_Thread_Handling_Protocol:
 inherit Supported_Active_Thread_Handling_Protocols
 => value(Default_Active_Thread_Handling_Protocol)

Period: inherit Time

Deadline: Time => inherit value(Period)

-- Properties related binding of software component source text in

-- systems to processors and memory

Allowed_Processor_Binding_Class:

 inherit list of classifier (processor, system)

Allowed_Processor_Binding: inherit list of reference (processor, system)

Actual_Processor_Binding: inherit reference (processor)

Allowed_Memory_Binding_Class:

 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

Not_Collocated: list of reference (data, thread, process, system, connections)

Actual_Memory_Binding: inherit reference (memory)

Allowed_Connection_Binding_Class:

 inherit list of classifier(processor, bus, device)

Allowed_Connection_Binding: inherit list of reference (bus, processor, device)

Actual_Connection_Binding: inherit reference (bus, processor, device)

-- Properties related systems as execution platforms

Available_Processor_Binding: inherit list of reference (processor, system)

Available_Memory_Binding: inherit list of reference (memory, system)

Hardware_Source_Language: Supported_Hardware_Source_Languages

-- Properties related to startup of processor contained in a system

Startup_Deadline: inherit Time

-- Properties related to system load times

Load_Time: Time_Range

Load_Deadline: Time

-- Properties related to the hardware clock

Clock_Jitter: Time

Clock_Period: Time

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 94 -

Clock_Period_Range: Time_Range

Semantics

A system component represents an assembly of software and execution platform components. All
subcomponents of a system are considered to be contained in that system.

System components can represent application software components and connections that must be bound
to execution platform components, i.e., processors, memories, and buses in order to be executable.
Those software components and connections may be bound to execution platform components within the
system, or they must be bound to execution platform components outside the system.

Some system components consist of purely software components all of which must be bound to
execution platform components outside the system itself. An example is an application software system.

Some system components consist purely of execution platform components. They represent aggregations
of execution platform components that act as the execution platform.

Some system components are self-contained in that all software components and connections are bound
to execution platform components contained within the system. Such self-contained systems may have
external connectivity in the form of logical connection points represented by ports and physical connection
points in the form of required or provided bus access. Examples, of such systems are database servers,
GPS receivers, and digital cameras. Such self-contained systems with an external interface can also be
modeled as devices. The device representation takes a black-box perspective, while the system
representation takes a white-box perspective.

A system component can contain a modes subclause. Each mode can represent an alternative system
configuration of contained subcomponents and their connections. The transition between modes is
determined by the mode transition declarations of the system and is triggered by the arrival of events. A
system can have mode-specific property associations.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 95 -

8 Features and Shared Access

A feature is a part of a component type definition that specifies how that component interfaces with other
components in the system. The four categories of features are: port, subprogram, parameters, and
subcomponent access.

Port features represent a communication interface for the exchange of data and events between
components. Ports are classified into data ports, event ports, and event data ports. Port groups
represent groups of component ports or port groups. Port groups can be used anywhere ports can be
used. Within a component, the ports of a port group can be connected to individually. Outside a
component, port groups can be connected as a single unit.

The subprogram feature represents a call interface for a service that is accessible to other components.
Server subprogram features represent subprograms that execute in their own thread and can be called
remotely. Data subprogram features represent subprograms through which the data component is
manipulated. Call sequences (see Section 5.2) specify calls to subprogram classifiers, data subprogram
features, and server subprogram features.

Parameter features represent data values that can be passed into and out of subprograms. Parameters
are typed with a data classifier reference.

Subcomponent access represents communication via shared access to data and bus components. A
data or bus component declared inside a component implementation is specified to be accessible to
components outside using a provides access feature declaration. A component may indicate that it
requires access to a data or bus subcomponent declared outside utilizing a requires access feature
declaration.

Syntax

feature ::=

 port_spec |

 port_group_spec |

 server_subprogram_spec |

 data_subprogram_spec |

 subcomponent_access |

 parameter

feature_refinement ::=

 port_refinement |

 port_group_refinement |

 server_subprogram_refinement |

 data_subprogram_refinement |

 subcomponent_access_refinement |

 parameter_refinement

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 96 -

Naming Rules

The defining identifier of a feature must be unique within the interface namespace of the associated
component type.

Thread features may not be declared using the predeclared ports names Dispatch, Complete or
Error.

Each refining feature identifier that appears in a feature refinement declaration must also appear in a
feature declaration in the associated component type or one of its ancestors.

A feature is named in one of two ways. Within the component implementations for a component type, a
feature declared in the type is named in the implementations by its identifier. Within component
implementations that contain subcomponents with features, a subcomponent feature is named by the
subcomponent identifier and the feature identifier separated by a “.” (dot).”

Legality Rules

The feature classifier reference and the port direction in a refined feature declaration must be identical to
the feature classifier reference and the port direction in the refined declaration.

In the case of data and event data ports, the refined feature declaration in a component type extension
can complete an incomplete data classifier reference.

Feature refinements can associate new property values.

Each feature can be refined at most once in the same component implementation or type extension.

Semantics

A feature declaration specifies an externally accessible element of a component. Features are also
visible from within component implementations associated with the component type that contains the
feature declaration.

A refined feature declaration may complete an incomplete component classifier reference and declare
feature property associations.

8.1 Ports

Ports are logical connection points between components that can be used for the transfer of control and
data between threads or between a thread and a processor or device. Ports are directional, i.e., an
output port is connected to an input port. Ports can pass data, events, or both. Data transferred through
ports is typed. From the perspective of the application source text, data ports look like data components,
i.e., they are data variables accessible in the source text. From the perspective of the application source
text, event ports represent Raise_Event runtime service calls and transfer the event to receiving
components or to the system executive to trigger a mode change. Event data ports transfer the data
along with the event to receiving components.

Syntax

 port_spec ::=

 defining_port_identifier : (in | out | in out) port_type

 [{ { port_property_association }+ }] ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 97 -

port_refinement ::=

 defining_port_identifier : refined to

 (in | out | in out) port_type

 [{ { port_property_association }+ }] ;

port_type ::=

 data port [data_classifier_reference]

 | event data port [data_classifier_reference]

 | event port

Naming Rules

A defining port identifier adheres to the naming rules specified for all features (see Section 8).

The unique component type identifier must be the name of a data component type. The data
implementation identifier, if specified, must be the name of a data component implementation associated
with the data component type.

Legality Rules

Ports can be declared in subprogram, thread, thread group, process, system, processor, and device
component types.

Data and event data ports may be incompletely defined by not specifying the data component classifier
reference or data component implementation identifier of a data component classifier reference. The port
definition can be completed using refinement.

Data and event data ports may be refined by adding a property association. The data component
classifier declared as part of the data or event data port declaration being refined does not need to be
included in this refinement.

The property names Overflow_Handling_Protocol, Queue_Processing_Protocol,
Dequeue_Protocol and Queue_Size may only appear in property associations for in event ports and
in event data ports.

Standard Properties

-- Properties specifying the source text variable representing the port

Source_Name: aadlstring

Source_Text: inherit list of aadlstring

-- property indicating whether port connections are required or optional

Required_Connection : aadlboolean => true

-- Optional property for device ports

Device_Register_Address: aadlinteger

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 98 -

-- Port specific compute entrypoint properties for event and event data ports

Compute_Entrypoint: aadlstring

Compute_Execution_Time: Time_Range

Compute_Deadline: Time

-- Properties specifying binding constraints for variables representing ports

Allowed_Memory_Binding_Class:
 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

-- In port queue properties

Queue_Size: aadlinteger 0 .. value(Max_Queue_Size) => 0

Queue_Processing_Protocol: Supported_Queue_Processing_Protocols => FIFO

Overflow_Handling_Protocol: enumeration (DropOldest, DropNewest, Error)
 => DropOldest

Urgency: aadlinteger 0 .. value(Max_Urgency)

Dequeue_Protocol: enumeration (OneItem, AllItems) => OneItem

 Semantics

A port specifies a logical connection point in the interface of a component through which incoming or
outgoing data and events may be passed. Ports may be named in connection declarations. Ports that
pass data are typed by naming a data component classifier reference.

A data or event data port represents a data instance that maps to a static variable in the source text. This
mapping is specified with the Source_Name and Source_Text properties. The
Allowed_Memory_Binding and Allowed_Memory_Binding_Class properties indicate the memory
(or device) hardware the port resources reside on.

Event and event data ports may dispatch a port specific Compute_Entrypoint. This permits threads
with multiple event or event data ports to execute different source text sequences for events arriving at
different event ports. If specified, the port specific Compute_Time and Compute_Deadline takes
precedence over those of the containing thread.

Ports are directional. An out port represents output provided by the sender, and an in port represents
input needed by the receiver. An in out port represents both an in port and an out port. Incoming
connection(s) and outgoing connection(s) of an in out port may be connected to the same component or
to different components. An in out port maps to a single static variable in the source text. This means
that the source text will overwrite the existing incoming value of the port when writing the output value to
the port variable.

A port can require a connection or consider it as optional as indicated by the Required_Connection
property. In the latter case it is assumed that the component with this port can function without the port
being connected.

Data and event data ports are used to transmit data between threads. They appear to the thread as input
and output buffers, accessible in source text as port variables. In the case of a data out port, data is
automatically transmitted at the completion of thread dispatch execution. In the case of an event data out

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 99 -

port, data is automatically transmitted at the time of the Raise_Event runtime service call (see Section
9).

Data ports are intended for transmission of state data such as signals. Therefore, no queuing is
supported for data ports. A thread can determine whether the input buffer of an in data port has new data
at this dispatch by checking the port status, which is accessible through the port variable.

Event ports are used to communicate events. Events can be raised by source text executing in
subprograms, threads, and by processors and devices. Events can trigger the dispatch of other threads
or can cause a mode switch. If the receiving thread is already active, the event is queued. Events are
triggered by an explicit Raise_Event runtime service call executed within a thread. Or if the thread’s
predeclared Complete port (see Section 5.3) is connected, then a runtime system completion event is
generated.

Event ports are represented by port variables. When a thread dispatch is the result of an event, the value
of the event port variable is set to one and the event is dequeued. If the Dequeue_Protocol property is
set to AllItems,then the value of the event port variable is set to the number of events in the queue
and the event queue is emptied. The port variable value of other event ports is set to zero.

When the thread dispatch is triggered through the predeclared Dispatch port or, in the case of periodic
threads, by the clock, then the port variable value of all event ports is set to one and one event is
dequeued. If the Dequeue_Protocol property is set to AllItems, then the value of each port variable
is set to the number of queued events at that time and the queue is emptied. This capability allows a
periodic thread to sample an event stream to determine the number of events that arrive in a given time
interval. For example, it permits the thread to determine the speed of a wheel based on a rotational
sensor on the wheel. It also permits a system health monitor thread to periodically process system alarms
without overloading the processor due to spikes in alarm arrivals.

Event data ports are intended for message transmission, i.e., the queuing of the event and associated
data at the port of the receiving thread. If the receiving thread is not executing a dispatch and the
Dispatch port is not connected, then the arrival of a message triggers a dispatch of the receiving thread.
The message transmission is triggered by an explicit Raise_Event runtime service call on the specific
event data port. If not transmitted through an explicit Raise_Event runtime service call, then the event
data is transmitted at completion of dispatch execution for those event data ports into which new values
were written.

Event data ports are represented by port variables. The status of whether an event data port provides a
new value to a thread is accessible through the port variable. If the queue is empty at the time of thread
dispatch, the event data port variable retains its old value.

When a thread dispatch is the result of an event, the value of the event data port variable is set to the
data value of the event data in the queue that triggered the dispatch and the event data is dequeued. If
the Dequeue_Protocol property is set to AllItems, then the data of all event data is placed in the
port variable and the event data queue is emptied. The port variables of other event data ports retain
their old value. If the thread dispatch is triggered through the predeclared Dispatch port, then the port
variable value for each event data ports is set to the data value of the first event data in the queue and
the event data is dequeued. If the Dequeue_Protocol property is set to AllItems, then all event
data is placed in the port variable for each event data port and the event data queue is emptied.

Any subprogram, thread, device, or processor with an outgoing event port, i.e., out event, out event
data, in out event, in out event data, can be the source of an event. During a single dispatch execution,
a thread may raise zero or more events and transmit zero or more event data through Raise_Event

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 100 -

runtime service calls. It may also raise an event at completion through its predeclared Complete port
(see Section 5.3) and transmit event data through event data ports that contain new values that have not
been transmitted through explicit Raise_Event runtime service calls.

Events are received through in event, in out event, in event data, and in out event data ports, i.e.,
incoming ports. If such an incoming port is associated with a thread and the thread does not contain a
mode transition naming the port, then the event or event data arriving at this port is added to the queue of
the port. If the thread is aperiodic or sporadic and does not have its Dispatch event connected, then
each event and event data arriving and queued at any incoming ports of the thread results in a separate
request for thread dispatch.

If an event port is associated with a component (including thread) containing modes and mode transition,
and the mode transition names the event port, then the arrival of an event is a mode change request and
it is processed according to the mode switch semantics (see Sections 11 and 12.3).

The Queue_Size, Queue_Processing_Protocol, and Overflow_Handling_Protocol port
properties specify queue characteristics. If an event arrives and the number of queued events (and any
associated data) is equal to the specified queue size, then the Overflow_Handling_Protocol
property determines the action. If the Overflow_Handling_Protocol property value is Error, then
an error occurs for the thread. The thread can determine the port that caused the error by calling the
standard Dispatch_Status runtime service. For Overflow_Handling_Protocol property values of
DropNewest and DropOldest, the newly arrived or oldest event in the queue event is dropped.

Queues will be serviced in a first-in, first-out order. When an event-driven thread declares multiple in
event and event data ports in its type and more than one of these queues are nonempty, the port with the
higher Urgency property value gets serviced first. If several ports with the same Urgency are non-
empty, then the oldest event will be serviced (global FIFO). It is permitted to define and use other
algorithms for picking among multiple non-empty queues. Disciplines other than FIFO may be used for
managing each individual queue .

Processing Requirements and Permissions

For each data or event data port declared for a thread, a system implementation method must provide
sufficient buffer space within the associated binary image to unmarshall the value of the data type.
Adequate buffer space must be allocated to store a queue of the specified size for each event data port.
The applicable source language annex of this standard defines data variable declarations that correspond
to the data or event data features. Buffer variables may be allocated statically as part of the source text
data declarations. Alternatively, buffer variables may be allocated dynamically while the process is
loading or during thread initialization. A method of implementing systems may require the data
declarations to appear within source files that have been specified in the source text property. In some
implementations, these declarations may be automatically generated for inclusion in the final set of
source text. A method of implementing systems may allow direct visibility to the buffer variables. Runtime
service calls may be provided to access the buffer variables.

The type mark used in the source variable declaration must match the type name of the port data
component type. Language-specific annexes to this standard may specify restrictions on the form of a
source variable declaration to facilitate verification of compliance with this rule.

For each event or event data port declared for a thread, a method of implementing the system must
provide a source name that can be used to refer to that event within source text. The applicable source
language annex of this standard defines this name and defines the source constructs used to declare this
name within the associated source text. A method of implementing systems may require such

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 101 -

declarations to appear within source files that have been specified in the source text property. In some
implementations, these declarations may be automatically generated for inclusion in the final set of
source text.

A method of implementing systems must provide a capability for a thread to determine whether a data
port has been updated with a new value since the previous dispatch. This capability may be implemented
in the form of a “fresh” field in the port variable. A runtime service call may be provided to supply port
variable status information.

If any source text associated with a software component contains a runtime service call that operates on
an event, then the enumeration value used in that service call must have a corresponding event feature
declared for that component.

A method of processing specifications is permitted to use non-standard property names and associations
to define alternative queuing disciplines.

A method of implementing systems is permitted to optimize the number of port variables necessary to
perform the transmission of data between ports as long as the semantics of such connections are
maintained. For example, the source text variable representing an out data port and the source text
variable representing the connected in data port may be mapped to the same memory location provided
their execution lifespan does not overlap.

Examples

package Nav_Types public

 data GPS properties Source_data_Size => 30 B; end GPS;

 data INS properties Source_data_Size => 20 B; end INS;

 data Position_ECEF properties Source_data_Size => 30 B; end Position_ECEF;

 data Position_NED properties Source_data_Size => 30 B; end Position_NED;

end Nav_Types;

process Blended_Navigation

features

 GPS_Data : in data port Nav_Types::GPS;

 INS_Data : in data port Nav_Types::INS;

 Position_ECEF : out data port Nav_Types::Position_ECEF;

 Position_NED : out data port Nav_Types::Position_NED;

end Blended_Navigation;

process implementation Blended_Navigation.Simple

subcomponents

 Integrate : thread;

 Navigate : thread;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 102 -

end Blended_Navigation.Simple;

8.2 Port Groups and Port Group Types

Port groups represent groups of component ports or port groups. Within a component, the ports of a port
group can be connected to individually. Outside a component, port groups can be connected as a single
unit. This grouping concept allows the number of connection declarations to be reduced, especially at
higher levels of a system when a number of ports from one subcomponent and its contained
subcomponents must be connected to ports in another subcomponent and its contained subcomponents.
The content of a port group is declared through a port group type declaration. This declaration is then
referenced when port groups are declared as component features.

Syntax

-- Defining the content structure of a port group

port_group_type ::=

 port group defining_identifier

 (features

 { port_spec | port_group_spec }*

 [inverse of unique_port_group_type_reference]

 |

 inverse of unique_port_group_type_reference

)

 [properties ({ portgroup_property_association }+ | none_statement)]

 { annex_subclause }*

end defining_identifier ;

port_group_type_extension ::=

 port group defining_identifier extends unique_port_group_type_reference

 (features

 { port_spec | port_refinement |

 port_group_spec | port_group_refinement }*

 [inverse of unique_port_group_type_reference]

 |

 inverse of unique_port_group_type_reference

)

 [properties ({ portgroup_property_association }+ | none_statement)]

 { annex_subclause }*

end defining_identifier ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 103 -

-- declaring a port group as component feature

port_group_spec ::=

 defining_port_group_identifier : port group

 [unique_port_group_type_reference]

 [{ { portgroup_property_association }+ }] ;

port_group_refinement ::=

 defining_port_group_identifier : refined to

 port group [unique_port_group_type_reference]

 [{ { portgroup_property_association }+ }] ;

unique_port_group_type_reference ::=

 [package_name ::] port_group_type_identifier

Naming Rules

The defining identifier of a port group type must be unique within the package namespace of the package
where the port group type is declared. If the port group type is declared in the AADL specification directly,
it must be unique within the anonymous namespace.

Each port group provides a local namespace. The defining port identifiers of port and port group
declarations in a port group type must be unique within the namespace of the port group type. The local
namespace of a port group type extension includes the defining identifiers in the local namespace of the
port group type being extended. This means, the defining identifiers of port or port group declarations in a
port group type extension must not exist in the local namespace of the port group type being extended.
The defining identifiers of port or port group refinements in a port group type extension must refer to a
port or port group in the local namespace of an ancestor port group type.

The defining port identifiers of port_spec declarations in port group refinements must not exist in the
local namespace of any port group being extended. The defining port identifier of port_refinement
declarations in port group refinements must exist in the local namespace of any port group being
extended.

The package name of the unique port group type reference must refer to a package name in the global
namespace. The port group type identifier of the unique port group type reference must refer to a port
group type identifier in the named package namespace, or if the package name is absent, in the
anonymous namespace.

Legality Rules

A port group type may contain zero or more elements, i.e., ports or port groups. If it contains zero
elements, then the port group type may be declared to be the inverse of another port group type.
Otherwise, it is considered to be incompletely specified.

A port group type can be declared to be the inverse of another port group type, as indicated by the
reserved words inverse of and the name of a port group type. Any port group type named in an inverse

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 104 -

of statement cannot itself contain an inverse of statement. This means that several port groups can be
declared to be the inverse of one port group. However, chaining of inverses such as B inverse of A and C
inverse of B is not permitted.

A port group type that is an extension of another port group type cannot contain an inverse of statement.
The port group type being extended cannot contain an inverse of statement.

Two port group types are considered to complement each other if the following holds:

• The number of ports or port groups contained in the port group and its complement must be
identical.

• Each of the declared ports or port groups in a port group must be a pair-wise complement
with that in the port group complement, with pairs determined by declaration order.

If both port group types have zero features, then they are considered to complement each other. In the
case of port group type extensions, the port and port group declarations in the extension are considered
to be after the declarations in the port group type being extended. Ports are pair-wise complementary if
they have complementary direction (out / in, in / out, in out / in out), and are of the same port type. In
the case of event data or data ports, the data component classifier reference must be identical.

A port group declaration that does not specify a port group type reference is incomplete. Such a
reference can be added in a port group refinement declaration.

A port group declaration may be refined by adding a property association. Inclusion of the port group
type reference is optional.

If the Aggregate_Data_Port property of a port group has the value true, all ports contained in its port
group type or the port group type of any contained port group must be data ports and they must all have
the same port direction.

Standard Properties

Aggregate_Data_Port: aadlboolean => false

-- Port properties defined to be inherit, thus can be associated with a

-- port group to apply to all contained ports.

Source_Text: inherit list of aadlstring

Allowed_Memory_Binding_Class:
 inherit list of classifier (memory, system, processor)

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

Semantics

A port group declaration represents groups of component ports that can be connected to externally
through a single connection. Port groups can contain port groups. This supports nested grouping of
ports for different levels of the modeled system.

Within a component, the ports of a port group can be connected to individually. The members of the port
group are declared in a port group type declaration that is referenced by the port group declaration. The
referenced port group type determines the port group compatibility for a port group connection.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 105 -

The inverse of reserved words of a port group type declaration indicate that the port group type
represents the complement to the referenced port group type. The legality of port group connections is
affected by the complementary nature of port groups (see Section 9).

The AADL supports the concept of aggregate data port as an extension of the port group concept. A port
group property called Aggregate_Data_Port identifies the role of the port group as an aggregate data
port. This port property applies to all out data ports and in out data ports of the port group.

The role of an aggregate data port is to make a collection of data from multiple out data ports available in
a time-consistent manner. Time consistency in this context means that if a set of periodic threads is
dispatched at the same time to operate on data, then the recipients of their data see either all old values
or all new values.

Processing Requirements and Permissions

The functionality of an aggregate data port can be realized as a thread whose only role is to collect the
data values from several in data ports and make them available at the same time on their respective out
data ports. The function may be optimized by mapping the data ports of the individual threads into a data
area representing the aggregate data port variable. This aggregate is then transferred as a single unit.

Examples

port group GPSbasic_socket

features

 Wakeup: in event port;

 Observation: out data port GPSLib::position;

end GPSbasic_socket;

port group GPSbasic_plug

features

 WakeupEvent: out event port;

 ObservationData: in data port GPSLib::position;

 -- the features must match in same order with opposite direction

 inverse of GPSbasic_socket

end GPSbasic_plug;

port group MyGPS_plug

 -- second port group as inverse of the original

 -- no chaining in inverse and

 -- no pairwise inverse references are allowed

 inverse of GPSbasic_socket

end MyGPS_plug;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 106 -

port group GPSextended_plug extends GPSbasic_plug

features

 Signal: out event port;

 Cmd: in data port GPSLib::commands;

end GPSextended_plug;

process Satellite_position

features

 position: port group GPSBasic_socket;

end Satellite_position;

process GPS_System

features

 position: port group GPSbasic_plug;

end GPS_System;

system implementation Satellite.others

subcomponents

 SatPos: process Satellite_position;

 MyGPS: process GPS_System;

connections

 port group Satpos.position -> MyGPS.position;

end Satellite.others;

8.3 Subprograms As Features

A data subprogram feature represents an execution entrypoint in source text that operates on a data
component of the associated data type. Server subprogram features represent entrypoints for remote
procedure calls, i.e., the ability to synchronously call this subprogram from a separate thread that may
execute on a different processor.

Syntax

data_subprogram_spec ::=

 defining_subprogram_identifier : subprogram

 [subprogram_classifier_reference]

 [{ { subprogram_property_association }+ }] ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 107 -

data_subprogram_refinement ::=

 defining_subprogram_identifier : refined to subprogram

 [subprogram_classifier_reference]

 [{ { subprogram_property_association }+ }] ;

server_subprogram_spec ::=

 defining_subprogram_identifier : server subprogram

 [unique_subprogram_reference]

 [{ { subprogram_property_association }+ }] ;

server_subprogram_refinement ::=

 defining_subprogram_identifier : refined to

 server subprogram

 [unique_subprogram_reference]

 [{ { subprogram_property_association }+ }] ;

unique_subprogram_reference ::=

 subprogram_classifier_reference

 | data_subprogram_feature_classifier_reference

data_subprogram_feature_classifier_reference ::=

 [package_name ::] data_type_identifier . subprogram_identifier

Naming Rules

A unique subprogram reference must be a subprogram classifier reference or a reference to a
subprogram feature declaration in a data component type.

Legality Rules

Data subprogram features can be declared in data components and must not have the reserved word
server.

Server subprogram features can be declared in thread, thread group, process, processor, and system
component types. They must have the reserved word server.

A server subprogram feature declaration must only refer to a subprogram classifier or to a subprogram
feature in a data component type.

If several subprogram declarations refer to the same subprogram type or via the Source_Name property
to the same subprogram in the source text, then their parameter signatures in the source text and the
property associations must be consistent with each other.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 108 -

When a server subprogram declaration appears in a thread component type, the scheduling protocol
property value for all thread implementations, subcomponents, and instances having that component type
must be Aperiodic or Sporadic.

A subprogram refinement can specify a subprogram type reference and declare property associations.

For calls to server subprograms, the subprogram classifier or subprogram feature reference of the
subprogram call and the subprogram classifier or subprogram feature reference of the server subprogram
must be the same.

Standard Properties

Source_Name: aadlstring

Source_Text: inherit list of aadlstring

Source_Stack_Size: Size

-- Subprogram execution properties

Subprogram_Execution_Time: Time_Range

-- Client subprogram execution properties

Client_Subprogram_Execution_Time: Time

-- Server subprogram execution properties

Compute_Execution_Time: Time_Range

Compute_Deadline: Time

Recover_Execution_Time: Time_Range

Recover_Deadline: Time

Overflow_Handling_Protocol: enumeration (DropOldest, DropNewest, Error)
 => DropOldest

Queue_Size: aadlinteger 0 .. value(Max_Queue_Size) => 0

Semantics

Data subprogram features represent entrypoints into source text that operate on data components of the
associated data component type. They are called by naming a data component type and the subprogram
separated with a ‘.” (dot) (see also Section 5.2).

Data subprogram features can refer to separately declared subprogram classifiers, which may specify the
parameters, required access, and out event or out event data ports of the subprogram (see Section 5.2).

If server subprogram features refer to subprograms in source text with parameters, the parameters are
marshalled and unmarshalled as necessary.

If server subprogram features refer to subprograms that raise events or event data, then the raised event
in the server subprogram is mapped to the corresponding event or event data port in the caller
subprogram.

Threads and subprograms can contain subprogram calls (see Sections 5.2 and 5.3). These can be calls
to subprograms local to thread, or they can be synchronous remote calls to a server subprogram in
another thread that is indicated by the Actual_Subprogram_Call property. In case of a remote call,

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 109 -

the requesting thread calls a local proxy that carries out the service request. The execution time of the
client proxy is determined by the Client_Subprogram_Execution_Time. The actual call results in
communicating the subprogram execution request. While the call is in progress, the calling thread is
blocked. Upon completion of the remote subprogram execution and return of results, the calling thread
resumes execution by entering the ready state.

Server subprogram features model service requests such as remote procedure calls to services provided
by a thread. Actual calls are specified as explicit subprogram calls whose call binding property specifies a
server subprogram.

Server subprogram features can be declared with their signature defined in the referenced and separately
declared subprogram classifiers.

A server subprogram feature declaration in a thread component type represents an entrypoint to a
remotely callable code sequence in the source text associated with a different thread. This thread may
reside in the same process, a different process on the same processor, or on a different processor. A
request for execution of such a subprogram is a dispatch request to the thread containing the server
subprogram – the same way events represent dispatch requests for aperiodic or sporadic threads. As in
the case of events, requests for execution of server subprograms may be queued if the thread is already
executing a dispatch request. A thread can have multiple subprogram entrypoints, expressed by multiple
server subprogram feature declarations in the respective component type. Only one of these server
subprograms may be executed per thread dispatch. Queuing and queue servicing follows the semantics
of event port queues.

If an event is raised during the execution of a server subprogram, this event is communicated back to the
calling subprogram and propagated according to the connection declaration associated with the event
port of the caller (see also Section 5.3).

If an error occurs or is raised while the thread is executing the server subprogram, that error is
communicated through the Error port of the containing thread - as previously defined in Section 5.3.

Processing Requirements and Permissions

Every method for processing specifications must parse subprogram feature declarations and check the
legality rules defined in this standard. However, a method of processing specifications need not define
how to build a system from a specification that contains subprogram features. In this case, subprogram
features may be rejected as unsupported. In this case, a warning message may be generated to notify
the user of this behavior in the toolset.

A subprogram feature of a software component maps to a subprogram declared in associated source text
as defined in the source language annex of this standard. This source subprogram must be declared and
visible at the outermost lexical scope as defined by the applicable source language standard. The
parameter identifiers appearing in the subprogram feature declaration must map to formal parameter
names appearing in the source subprogram declaration. Rules for mapping subprogram and parameter
identifiers to source text are defined in the source language annex of this standard. Any special rules for
server subprograms and parameter are defined in the source language annex of this standard.

A call to a server subprogram feature of a software component maps to a call to the proxy for the remote
subprogram in the associated source text. This proxy routine performs the appropriate remote invocation.
Actual calls to the proxy subprogram in the source text are found in the source program of the calling
thread. The data types of the actual parameter expressions must be compatible with the declared data
types in the specification as defined by the applicable source language standard. The details of these
mappings are defined in the source language annex of this standard.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 110 -

A method of implementation may automatically generate the source text required to perform a remote
subprogram call. This may include the marshalling and unmarshalling parameter values or the
transmission and reception of call and return events.

If the calling thread can execute on the same processor as the server subprogram, then a method of
implementation may use the calling thread to execute the server subprogram code rather than a separate
thread. When using this optimization procedure, proper synchronization must be maintained to preserve
the same runtime semantics. If runtime address space protection is required, then this technique cannot
be used if the protection between the calling thread and server subprogram thread is lost as result of the
optimization.

NOTES:

The annex subclause may be used along with the existing syntax to build a component-based client/server
subprogram model. An example of this approach follows.

Examples

package Pierre

public

 process printers

 features

 printonServer : server subprogram print;

 mainPrinter: in event port;

 backupPrinter: in event port;

 end printers;

 process implementation printers

 subcomponents

 A : thread printer in modes (modeA);

 B : thread printer in modes (modeB);

 Modes

 modeA: initial mode;

 modeB: mode;

 modeA -[backupPrinter]-> modeB;

 modeB -[mainPrinter]-> modeA;

 end printers;

 thread printer

 features

 print : server subprogram print;

 end printer;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 111 -

 subprogram print

 features

 filetoprint: data file;

 end print;

end Pierre;

thread A

features

 print: requires subprogram Pierre::print;

calls

 print: subprogram;

end A;

-- example of a server subprogram call

process B

annex pierre {**

-- a new features declaration to indicate a required subprogram

features

 remoteprint: requires subprogram Pierre::print;

**}

end B;

-- example of a local subprogram call

-- the subprogram is locally declared within the process.

-- the call is bound to it.

process C

end C;

process implementation C.default

subcomponents

 app: thread A;

annex pierre {**

-- a new subcomponents declaration to specify a local subprogram

subcomponents

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 112 -

 localprint: subprogram Pierre::print;

 -- a new connection declaration to bind a required subprogram to a

 -- local subprogram or a server subprogram via connections

connections

 subprogram app.print -> localprint;

**}

end C.default;

8.4 Subprogram Parameters

Subprogram parameter declarations represent data values that can be passed into and out of
subprograms. Parameters are typed with a data classifier reference representing the data type.

Syntax

 parameter ::=

 defining_parameter_identifier :

 (in | out | in out) parameter [data_classifier_reference]

 [{ { parameter_property_association }+ }] ;

parameter_refinement ::=

 defining_parameter_identifier : refined to

 (in | out | in out) parameter [data_classifier_reference]

 [{ { parameter_property_association }+ }] ;

Naming Rules

A defining parameter identifier adheres to the naming rules specified for all features (see Section 8).

The data classifier reference must refer to a data component type or a data component implementation.

Legality Rules

Parameters can be declared for subprogram component types.

If a parameter refinement includes a data classifier reference, then the classifier reference must be the
same as that of the parameter being refined.

If the parameter being refined has an incomplete data classifier reference, then the parameter refinement
may complete an incompletely specified data classifier reference.

A parameter refinement cannot redefine the direction of a parameter.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 113 -

Standard Properties

-- Properties specifying the source text representation of the parameter

Source_Name: aadlstring

Source_Text: inherit list of aadlstring

Semantics

A subprogram parameter specifies the data that are passed into and out of a subprogram. The data type
specified for the parameter and the data type of the actual data passed to a subprogram must be
compatible.

8.5 Subcomponent Access

Subcomponents can be made accessible outside their containment hierarchy. Components can declare
that they require access to externally declared subcomponents. Components may provide access to their
subcomponents. Provided subcomponent access is a feature of a component.

A required subcomponent access declaration in the component type of the subcomponent indicates that a
subcomponent requires access to a data component declared external to the component. Required
subcomponent accesses are resolved to actual data subcomponents as part of a subcomponent
declaration. Different forms of required access, such as read-only access, are specified by a
Required_Access property.

A provides subcomponent access declaration in the component type of the subcomponent indicates that
a subcomponent provides access to a data component contained in the component. Provided
subcomponent accesses can be used to resolve required subcomponent access. Different forms of
provided access, such as read-only access, are specified by a Provided_Access property.

A subcomponent that is accessed by more than one subcomponent is shared. The actual (shared)
subcomponent may be declared within the same component implementation as the one(s) requiring
access or it may be declared higher in the component containment hierarchy. Alternatively, it may be
declared within a subcomponent at the current level (of the ones requiring access) or higher. In this case,
the containing subcomponent will specify that it provides access to the shared subcomponent.

This is illustrated in Figure 10. Data D is a data component contained in the process implementation of
process subcomponent A. The process type of A makes it accessible through its provides data access
feature declaration. It is being accessed by thread Q, which is contained as subcomponent of the
process implementation for process B. Both the process type of process B and the thread type of thread
Q indicate the need to access a data component through a requires data access feature declaration. In
the system implementation of system Simple the provides data access feature of process A is
connected to the requires data access feature of process B through a data access connection. The
textual AADL model of this specification is given as an example later in this section.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 114 -

Figure 10 Containment Hierarchy and Shared Access

Syntax

-- The requires and provides subcomponent access subclause

subcomponent_access ::=

 defining_subcomponent_access_identifier :

 subcomponent_access_classifier

 [{ { access_property_association }+ }] ;

subcomponent_access_refinement ::=

 defining_subcomponent_access_identifier : refined to

 subcomponent_access_classifier

 [{ { access_property_association }+ }] ;

subcomponent_access_classifier ::=

 (provides | requires) (data | bus) access

 [unique_component_type_identifier

 [. component_implementation_name]]

Naming Rules

The defining identifier of a provides or requires subcomponent access declaration must be unique within
the interface namespace of the component type where the subcomponent access is declared.

The defining identifier of a provides or requires subcomponent refinement must exist as a defining
identifier of a required subcomponent in the interface namespace of the associated component type or
one of its ancestors.

The component type identifier or component implementation name of a subcomponent access classifier
reference must exist in the specified (package or anonymous) namespace.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 115 -

Legality Rules

The category of the subcomponent access declaration must be identical to the category of the component
type (and of the component implementation) in the referenced subcomponent classifier.

Standard Properties

Required_Access : access enumeration (read_only, write_only, read_write,
 by_method) => read_write

Provided_Access : access enumeration (read_only, write_only, read_write,
 by_method) => read_write

Semantics

The requires subcomponent access declaration indicates that the component requires access to a
subcomponent not contained in any of the implementations of the component type with the requires
subcomponent access declaration. The Required_Access property specifies how a component of a
given component type accesses a required subcomponent component that may be shared by multiple
subcomponents. The reference to a required subcomponent is resolved, i.e., bound to a subcomponent,
when a subcomponent of the component type requiring access is declared. When required
subcomponent references of two different subcomponents are bound to the same subcomponent, the
subcomponent is shared by them.

The provided subcomponent access declaration indicates that a subcomponent contained in the
component implementations is made accessible outside the component. The Provided_Access
property indicates how the shared data component may be accessed.

Examples

system implementation simple.impl

subcomponents

 A: process pp.i;

 B: process qq.i;

connections

 data access A.dataset -> B.reqdataset;

end simple.impl;

process pp

features

 Dataset: provides data access dataset_type;

end pp;

process implementation pp.i

subcomponents

 Share1: data dataset_type;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 116 -

 -- other subcomponent declarations

connections

 data access Share1 -> Dataset;

end pp.i;

process qq

features

 Reqdataset: requires data access dataset_type;

end qq;

process implementation qq.i

subcomponents

 Q: thread rr;

connections

 data access Reqdataset -> Q.req1;

end qq.i;

thread rr

features

 Req1: requires data access dataset_type;

end rr;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 117 -

9 Connections and Flows

A connection is a linkage that represents communication of data and control between components. This
can be the transmission of control and data between ports of different threads or between threads and
processor or device components. A connection may denote an event that triggers a mode transition.
The timing of data and control transmission depends on the connection category and on the dispatch
protocol of the connected threads. The flow of data between parameters of subprogram calls within a
thread may be specified using connections. Finally, connections designate access to shared
components.

A flow is a logical flow of information through a sequence of threads, processors, devices, and
connections. A component can have a flow specification, which specifies whether a component is a flow
source, i.e., the flow starts within the component, a flow sink, i.e., the flow ends within the component, or
there exists a flow path through the component, i.e., from one of its incoming ports to one of its outgoing
ports.

9.1 Connections

The AADL supports three types of connections: port connections, parameter connections, and access
connections. Port connections represent the transfer of data and control between two concurrently
executing components, i.e., between two threads or between a thread and a processor or device.
Parameter connections denote the flow of data through the parameters of a sequence of subprogram
calls, i.e., between units of sequential execution within a thread. Access connections designate access to
shared data components by concurrently executing threads or by subprograms executing within a thread.
They also represent communication between processors, memory, and devices by accessing a shared
bus.

Syntax

connection ::=

 port_connection

 | parameter_connection

 | access_connection

connection_refinement ::=

 port_connection_refinement

 | parameter_connection_refinement

 | access_connection_refinement

9.1.1 Port Connections

Port connections represent transfer of data and control between two concurrently executing components,
i.e., between two threads or between a thread and a processor or device. These connections are
semantic port connections. A semantic port connection is determined by a sequence of one or more
individual port connection declarations that follow the component containment hierarchy in a fully
instantiated system from an ultimate source to an ultimate destination. An individual port connection
declaration links a port of one subcomponent to the port of another. Or it joins a port of a subcomponent
with a port of a containing component.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 118 -

Semantic port connections are illustrated in Figure 11. The ultimate source of a semantic port connection
is an outgoing feature, i.e., an out or in out port of a thread, processor, or device component. The
ultimate destination of a semantic port connection is an incoming feature, i.e., an in or in out port of a
thread subcomponent, a processor or device component. In the case of event connections and port group
connections, a mode transition may also be specified as part of the port connection.

Port connection declarations follow the containment hierarchy of threads, thread groups, processes and
systems. Some connections link an outgoing feature to the corresponding feature in the containing
component and an incoming feature to the corresponding feature of a contained component. In other
words, these connections traverse up and down the containment hierarchy.

Other connections connect outgoing features of a component to incoming features of another component
at the same level of the containment hierarchy, i.e., it connects sibling components. These connections
occur at the highest level required for the connection declaration or at the top of the containment
hierarchy required for the declaration.

Semantic port connections may also route a raised event to a modal component through a sequence of
connection declarations. A mode transition in such a component is the ultimate destination of the
connection, if the mode transition names an in or in out event port in the enclosing component, or an out
or in out event port of one of the subcomponents (see Section 11).

Figure 11 Semantic Port Connection

This section defines the concepts of departure and arrival times of port connection transmission for each
of the port connection categories, i.e., for data port connections, event port connections, event data
port connections, and port group connections. The transfer semantics between connected ports are
defined such that the departure and arrival times of connection transmissions occurs in terms of deadline,
execution completion, and dispatch times. These semantics ensure deterministic communication between
periodic threads through data ports.

Syntax

port_connection ::=

 data_connection

 | event_connection

 | event_data_connection

 | port_group_connection

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 119 -

data_connection ::=

 [defining_data_connection_identifier :]

 data port source_unique_port_identifier

 (immediate_connection_symbol | delayed_connection_symbol)

 destination_unique_port_identifier

 [{ { property_association }+ }]

 [in_modes_and_transitions] ;

immediate_connection_symbol ::= ->

delayed_connection_symbol ::= ->>

event_connection ::=

 [defining_event_connection_identifier :]

 event port source_unique_port_identifier

 -> destination_unique_port_identifier

 [{ { property_association }+ }]

 [in_modes_and_transitions] ;

event_data_connection ::=

 [defining_event_data_connection_identifier :]

 event data port source_unique_port_identifier

 -> destination_unique_port_identifier

 [{ { property_association }+ }]

 [in_modes_and_transitions] ;

-- connection between port groups of two subcomponents or between

-- a port group of a subcomponent and a port group in the component type

port_group_connection ::=

 [defining_port_group_connection_identifier :]

 port group source_unique_port_group_identifier

 -> destination_unique_port_group_identifier

 [{ { property_association }+ }]

 [in_modes_and_transitions] ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 120 -

port_connection_refinement ::=

 connection_identifier : refined to

 (data port | event port | event data port | port group)

 (({ { property_association }+ }

 [in_modes_and_transitions])

 | in_modes_and_transitions

) ;

unique_port_identifier ::=

 -- port in the component type

 component_type_port_identifier

 |

 -- port in a subcomponent

 subcomponent_identifier . port_identifier

 |

 -- port element in a port group of the component type

 component_type_port_group_identifier . element_port_identifier

unique_port_group_identifier ::=

 -- port group in the component type

 component_type_port_group_identifier

 |

 -- port group in a subcomponent

 subcomponent_identifier . port_group_identifier

 |

 -- port group element in a port group of the component type

 component_type_port_group_identifier . element_port_group_identifier

Naming Rules

The defining identifier of a defined port connection declaration must be unique in the local namespace of
the component implementation with the connection subclause. For mode-specific connection
declarations, as indicated by the in_modes_and_transitions subclause, a connection name may
appear more than once.

The connection identifier in a port connection refinement declaration must refer to a named connection
declared in an ancestor component implementation.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 121 -

A source or destination reference in a port connection declaration must reference a port or port group
declared in the component type, a port or port group of one of the subcomponents, or a port or port group
that is an element of a port group in the component type.

Legality Rules

The ultimate source of a semantic port connection must be a feature of a thread, processor, or device.
The source feature referenced in a port connection declaration must be a feature of a thread, thread
group, process, processor, device, or system component. The ultimate destination of a semantic port
connection must be a port of a thread, a processor, a device. If the ultimate destination is the result of a
mode transition, the mode change is indicated by the mode subclause of the respective thread, thread
group, process, system, device, bus, memory, or processor naming an in event port in one of its mode
transitions. The destination feature referenced in a port connection declaration must be a feature of a
thread, thread group, process, processor, device, or system component.

One end of the connection must be a thread. The other end may be a processor, a device, or a thead.

If the ultimate destination of a semantic port connection is the result of a mode transition, then the
ultimate source must be an out event port.

If a semantic port connection is declared to apply to a particular mode, then the ultimate source and
ultimate destination components must be part of that mode.

If a semantic port connection is declared to apply to a particular mode transition, then the ultimate source
component must be part of a system mode that includes the old mode identifier and the ultimate
destination component must be part of a system mode that includes the new mode identifier.

The category of the port connection declaration must match the source and destination features as
described in the following paragraphs. This implies that all connection declarations of a semantic
connection must be of the same category.

The direction declared for the destination feature of a port connection declaration must be compatible with
the direction declared for the source feature(s) as defined by the following rules:

• If the port connection declaration represents a connection between sibling components, then
the source must be an out or an in out port and the destination must be an in or an in out
port, or in the case of port group connections the source and destination port groups must be
complements of each other (see Section 8.2).

• If the port connection declaration represents a connection between elements of two port
groups in the component type, then source must be an in or an in out port and the
destination must be an out or an in out port, or in the case of port group connections the
source and destination port groups must be complements of each other (see Section 8.2).

• If the port connection declaration represents a connection up or down the containment
hierarchy, then the source and destination must both be an out or an in out port, or both an
in or in out port, or in the case of port group connections the port groups of the same port
group type.

A data port cannot be the destination feature reference of more than one port connection declaration
unless each port connection declaration is (are) contained in a different mode. In this case, the restriction
applies for each mode.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 122 -

The ultimate source and ultimate destination of a delayed port connection must be periodic threads.

For data and event data port connections, the data classifier of the source port must be identical to the
data type of the destination port.

If more than one port connection declaration in a semantic port connection has a property association for
a given connection property, then the resulting property values must be identical.

For port group connections the following must hold:

• If the connection declaration represents a component connection between sibling
components, the port group types must be complements as indicated with the inverse of
statement in one of the two port group types.

• If the connection declaration represents a connection up or down the containment hierarchy,
the port group types must be identical.

Standard Properties

Connection_Protocol: Supported_Connection_Protocols

Allowed_Connection_Binding_Class:
 inherit list of classifier(processor, bus, device)

Allowed_Connection_Binding: inherit list of reference (bus, processor, device)

Not_Collocated: list of reference (data, thread, process, system, connections)

Actual_Connection_Binding: inherit reference (bus, processor, device)

Semantics

A semantic port connection represents directed flow of data and control between two threads, between a
processor and a thread, or a device and a thread. In the case of event port connections the ultimate
destination can be a in a new mode.

The AADL supports n-to-n connectivity for event and event data ports. A port may have multiple outgoing
connections, i.e., its content is transmitted to multiple destinations. This means that each destination port
receives an instance of the event, or event data being transmitted. Similarly, event and event data ports
can support multiple incoming connections resulting in sequencing and possibly queuing of incoming
events and event data.

Data connections are restricted to 1-n connectivity, i.e., a data port can have multiple outgoing
connections, but only one incoming connection. If the component with the destination data port has
modes then this restriction applies to each mode. Port groups may have multiple outgoing and incoming
connections unless any ports that are elements of a port group place additional restrictions.

If a component has an in out port, this port may be the destination of a connection from one component
and the source of a connection to another component. Bi-directional flow between two components is
represented by two connections between the in out ports of two components.

A port connection can be refined by adding property associations for the connection in a connection
refinement declaration.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 123 -

A port connection declared with the optional in_modes_and_transitions subclause specifies
whether the connection is part of specific modes or is part of the transition between two specific modes.
The detailed semantics of this subclause are defined in Section 11.1.

While in a given mode, transmission over a port connection only occurs if the connection is part of the
current mode.

During a mode switch, transmission over a data port connection only occurs at the actual time of mode
switch if the port connection is declared to apply to the transition between two specific modes. The actual
mode switch initiates transmission. This allows data state to be transferred between threads active in
different modes.

A data port connection is declared to be immediate (“->”) or to be delayed (“->>”). A semantic data port
connection is considered to be delayed if at least one of the connection declarations is declared to be
delayed. Otherwise, the semantic data port connection is considered to be immediate. Typically, a
delayed data connection is specified through the sibling connection declaration, i.e., the declaration at the
top of the containment hierarchy of a semantic connection.

For immediate data port connections the data transmission is initiated when the source thread completes
and enters the suspended state. Immediate data transfer only occurs when the periods of the sending
and receiving thread align, i.e., their dispatch occurs logically simultaneous. The actual execution of the
receiving thread is delayed until the sending thread completes execution. The content of the receiving
thread’s port variables is determined at the time of dispatch except for data ports that are connected by
immediate connection. Their value is the data port value of the sending thread at the time of the sending
thread’s execution completion.

Immediate and delayed connections are illustrated in Figure 12. Thread 1 and Thread 2 are two periodic
threads executing at a rate of 10Hz, i.e., they are logically dispatched every 100 ms. For immediate
connection, shown on the left of the figure, the actual start of execution of the receiving thread (Thread 2)
will be delayed after its dispatch event until the sending thread (Thread 1) completes execution and its
out port data value has been transferred into the in port of the receiving thread. If Thread 2 executes at
twice the rate of Thread 1, then the execution of Thread 2 will be delayed every time the two periods align
to receive the data at completion of Thread 1. Every other time Thread 2 will start executing at its dispatch
time with the old value in its data port.

For delayed data port connections, the data transmission is initiated at the deadline of the source thread.
The data is available at the destination port at the next dispatch of the destination thread that occurs at or
after the source thread deadline. If the source deadline and the destination dispatch occur at the same
logical time instant, the transmission is considered to occur within the same time instant. This is shown
on the right of Figure 12. The output of Thread 1 is made available to Thread 2 at the beginning of its
next dispatch. Thread 1 producing a new output at the next dispatch does not affect this value.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 124 -

Figure 12 Timing of Immediate & Delayed Data Connections

If multiple transmissions occur for a data port connection from the source thread before the dispatch of
the destination thread, then only the most recently transmitted data is available in the destination port. In
other words, the destination thread undersamples the transmitted data. In the case of two connected
periodic threads, this situation occurs when the source thread has a shorter period than the destination
thread. In the case of a periodic thread connected to an aperiodic thread, this situation occurs if the
aperiodic thread receives two dispatch events with an inter-arrival time larger than the period of the
source thread. In the case of an aperiodic thread connected to a periodic thread, this situation occurs if
the aperiodic thread has two successive completion times less than the period of the periodic thread.

If no transmission occurs on an in data port between two dispatches of the destination thread, then the
thread receives the same data again, resulting in oversampling of the transmitted data. A status indicator
is accessible to the source text of the thread as part of the port variable to determine whether the data is
fresh. This allows a receiving thread to determine whether a connection source is providing data at the
expected rate or at all.

The semantics of immediate and delayed data transmission between periodic threads assures
deterministic communication of state data. The alignment of transmission start and end times between
the sending and receiving thread are statically known and are not affected by preemption of thread
execution and variation in actual execution time.

NOTES:

Such deterministic communication cannot always be guaranteed if the transmission is initiated and completed by
explicit send and receive service calls in the source text of the sending and receiving thread. If these calls are
executed at the normal thread priorities, the time of actual data transfer through the send and receive call may vary
and result in non-deterministic change in the send and receive order of two communicating threads.

If a processor or device is the data connection source, then the transmission is initiated and completed
when the destination thread is dispatched.

For event and event data connections the transmission of control and data occurs immediately when the
source thread executes a Raise_Event call.

If the event connection source is a device or processor, then the occurrence of an interrupt represents the
initiation of an event transmission.

Transmission completion for event and event data connections results in queuing of the event or event
data. It also represents the arrival of a dispatch request for an aperiodic or sporadic thread, if the thread’s
Dispatch port is not connected. For details on the content of port variables at the time of dispatch for
periodic, aperiodic and sporadic threads see Section 8.1.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 125 -

Within a synchronized system, an event arrives logically simultaneously at all ultimate connection
destinations (see also Section 12.3).

Arrival of events on event ports can also trigger a mode switch if the event port is named in a mode
transition originating in the current mode (see Section 11). Events that trigger mode transitions are not
queued at event ports.

Processing Requirements and Permissions

The temporal semantics for port connections define several cases in which the transmission initiation and
completion times are identical. While it is not possible to perform a transmission instantaneously in a
physical system, a method of implementing systems must suppy a thead execution schedule that
preserves the temporal and logical semantics of the model. In some cases, this may result in a system
where the actual sending thread completion time occurs before the logical departure time of the
transmission. Similarly, the actual receiving thread may begin its execution after the logical arrival of the
transmission. Such an execution model is acceptable if the observed causal order is identical to that of
the logical semantic model and all timing requirements specified in all property associations are satisfied.

For port connections between periodic threads, the standard semantics and default property associations
result in undersampling when the period of the sending thread is less than the period of the receiving
thread. Oversampling occurs when the period of the sending thread is greater than the period of the
receiving thread. A method of implementing systems is permitted to provide an optimization which may
eliminate any physical transfers of data that can be guaranteed to be overwritten, or that can be
guaranteed to be identical to previously transferred values. Error-free transmission may be assumed
when performing such an optimization.

A method of building systems must include a runtime capability in every system to detect an erroneous or
failed transmission over a data connection between periodic threads to the degree of assurance required
by an application. A method of building systems must include a runtime capability in every system to
report a failure to perform a transmission by a sending periodic thread to all connected recipients. A
method of building systems must include a runtime capability in every system to detect data errors in
arriving transmissions over any connection to the degree of assurance required by an application. The
source language annex to this standard specifies the application program interface used to obtain error
information about transmissions. A method of building systems may define additional error semantics
and error detection mechanisms and associated application programming interfaces.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 126 -

NOTES:

All data values that arrive at the data ports of a receiving thread are immediately transferred at the logical arrival time
into the storage resources associated with those features in the source text and binary image associated with that
thread. A consequence of the semantic rules for data connections is that the logical arrival time of a data value to a
data port contained in a thread always occurs either when that thread is dispatchable or during an interval of time
between a dispatch event and a delayed start of execution, e.g., due to an immediate connection. That is, data
values will never be transferred into a thread’s data ports between the time it starts executing and the time it
completes executing and suspends awaiting a new dispatch.

Arriving event and event data values may be queued in accordance with the queuing rules defined in the port
features section. A consequence of the semantic rules for event and event data connections is that there will be
exactly one dispatch of a receiving thread for each arriving event or event data value that is not lost due to queue
overflow, and event data values will never be transferred into a thread between the time it starts executing and the
time it completes and suspends awaiting a new dispatch.

Examples

-- A simple example showing a system with two processes and threads.

-- The threads have a semantic connection.

-- The connection declarations follow the containment hierarchy.

data Alpha_Type

properties

 Source_Data_Size => 256 B;

end Alpha_Type;

port group xfer_plug

features

 Alpha : out data port Alpha_Type;

 Beta : in data port Alpha_Type;

end xfer_plug;

port group xfer_socket

 inverse of xfer_plug

end xfer_socket;

thread P

features

 Data_Source : out data port Alpha_Type;

end P;

thread implementation P.Impl

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 127 -

properties

 Dispatch_Protocol=>Periodic;

 Period=> 10 ms;

end P.Impl;

process A

features

 Produce : port group xfer_plug;

end A;

process implementation A.Impl

subcomponents

 Producer : thread P.Impl;

 Result_Consumer : thread Q.Impl;

connections

 data port Producer.Data_Source -> Produce.Alpha;

 data port Produce.Beta -> Result_Consumer.Data_Sink;

end A.Impl;

thread Q

features

 Data_Sink : in data port Alpha_Type;

end Q;

thread implementation Q.Impl

properties

 Dispatch_Protocol=>Periodic;

 Period=> 10 ms;

end Q.Impl;

process B

features

 Consume : port group xfer_socket;

end B;

process implementation B.Impl

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 128 -

subcomponents

 Consumer : thread Q.Impl;

 Result_Producer : thread P.Impl;

connections

 data port Consume.Alpha -> Consumer.Data_Sink;

 data port Result_Producer.Data_Source -> Consume.Beta;

end B.Impl;

system Simple

end Simple;

system implementation Simple.Impl

subcomponents

 pr_A : process A.Impl;

 pr_B : process B.Impl;

connections

 port group pr_A.Produce -> pr_B.Consume;

end Simple.Impl;

9.1.2 Parameter Connections

Parameter connections represent flow of data between the parameters of a sequence of subprogram calls
in a thread. Parameter connections may be declared from an in data or event data port or in out data or
event data port of the containing thread to a subprogram call in or in out parameter. Parameter
connections also specify connections from an in parameter or in out parameter of the containing
subprogram to a subprogram call in or in out parameter, from a subprogram call out or in out parameter
to a out or in out parameter of the containing subprogram, and from a subprogram call out or in out
parameter to a subprogram call in or in out parameter or an out or in out data or event data port of the
containing thread. In other words, the parameter connection declarations follow the containment
hierarchy of subprogram calls nested in other subprograms. This is illustrated in Figure 13. SAENORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 as

55
06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 129 -

Figure 13 Parameter Connections

For parameter connections, data transfer occurs at the time of the subprogram call and call return. In the
case of subprogram calls to server subprograms in other threads, the data is first transferred to a local
proxy and from there passed to the remote subprogram.

Syntax

parameter_connection ::=

 [defining_parameter_connection_identifier :]

 parameter source_unique_parameter_identifier

 -> destination_unique_parameter_identifier

 [{ { property_association }+ }]

 [in_modes] ;

parameter_connection_refinement ::=

 connection_identifier : refined to parameter

 { { property_association }+ }

 [in_modes] ;

unique_parameter_identifier ::=

 -- parameter in the thread or subprogram type

 component_type_parameter_identifier

 |

 -- parameter in another subprogram call

 subprogram_call_identifier . parameter_identifier

 |

 -- data or even data port in the thread type of the component type

 component_type_port_identifier

 |

 -- port element in a port group of the component type

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 130 -

 -- The port element must be a data or event data port

 component_type_port_group_identifier . element_port_identifier

Naming Rules

The defining identifier of a defined parameter connection declaration must be unique in the local
namespace of the component implementation with the connection subclause. For mode-specific
parameter connections, as indicated by the in_modes subclause, a connection name may appear more
than once.

The connection identifier in a parameter connection refinement declaration must refer to a named
connection declared in an ancestor component implementation.

A source or destination reference in a parameter connection declaration must reference a parameter of a
preceding subprogram call, a parameter declared in the component type of the containing subprogram, a
data port or event data port declared in the component type of the enclosing thread, or a data port or
event data port that is an element of a port group in the component type of the enclosing thread.

Legality Rules

Parameter connections must adhere to the following rule regarding their source and destination:

the source must be an in data or event data port or in out data or event data port of the containing thread
and the destination a subprogram call in or in out parameter,

the source must be an in parameter or in out parameter of the containing subprogram and the
destination a subprogram call in or in out parameter,

the source must be a subprogram call out or in out parameter and the destination a out or in out
parameter of the containing subprogram,

the source must be a subprogram call out or in out parameter and the destination a subprogram call in
or in out parameter or an out or in out data or event data port of the containing thread.

If the parameter connection declaration represents a parameter connection between sibling components,
then the source must be an out or an in out parameter and the destination must be an in or an in out
parameter. Furthermore, the source must be a parameter of a preceding subprogram call in the call
sequence, and the destination must be a parameter of a succeeding subprogram call in the call
sequence.

If a parameter connection is declared to apply to a particular mode, then the source and destination must
be part of that mode.

A parameter cannot be the destination feature reference of more than one parameter connection
declaration unless the source feature reference(s) of each parameter connection declaration is (are)
contained in a different mode. In this case, the restriction applies for each mode.

The data classifier of the source port or parameter must be identical to the data type of the destination
port or parameter.

Semantics

Parameter connections represent sequential flow of data through subprogram parameters in a sequence
of subprogram calls being executed by a thread. Those calls may be performed locally, i.e., within the
virtual address space of the containing process, or remotely by a synchronous call to a server

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 131 -

subprogram in another thread. In the latter case, the parameter values are passed via a local
subprogram proxy.

Parameter connections are restricted to 1-n connectivity, i.e., a data port or parameter can have multiple
outgoing connections, but only one incoming connection.

If a subprogram has an in out parameter, this parameter may be the destination of an incoming
parameter connection and the source of outgoing parameter connections.

Parameter connections follow the call sequence order of subprogram calls. In other words, parameter
connection sources must be preceding subprogram calls, and parameter connection destinations must be
successor subprogram calls.

The optional in_modes subclause specifies what modes the parameter connection is part of. The
detailed semantics of this subclause are defined in Section 11.1.

9.1.3 Access Connections

Access connections represent access to shared data components by concurrently executing threads or
by subprograms executing within thread. They also denote communication between processors, memory,
and devices by accessing a shared bus. These connections are semantic access connections. A
semantic access connection is defined by a sequence of one or more individual access connection
declarations that follow the component containment hierarchy in a fully instantiated system from an
ultimate source to an ultimate destination.

The ultimate source of a semantic access connection is the data component or bus component that is
being shared. The ultimate destination of an access connection is the component requiring the access
without a contained subcomponent also requiring access. For data access connections this can be a
thread or a subprogram call. For bus access connections the ultimate destination may be a processor,
memory, or a device. The direction of the connection follows from the provider of access to the requirer
of access. Figure 14 illustrates a semantic data connection from the data component D to thread Q.

Figure 14 Semantic Access Connection

The flow of data of a semantic access connection is determined by the fact whether an ultimate
destination has read access or write access to the shared component. The actual data flow is specified
using the properties Required_Access or Provided_Access.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 132 -

Syntax

access_connection ::=

 [access_connection_identifier :]

 (bus | data) access unique_access_provider_identifier

 -> unique_access_requirer_identifier

 [{ { property_association }+ }]

 [in_modes] ;

access_connection_refinement ::=

 connection_identifier : refined to (bus | data) access

 { { property_association }+ }

 [in_modes] ;

unique_access_provider_identifier ::=

 -- required access feature in the component type

 component_type_access_identifier

 |

 -- provided access in a subcomponent

 data_or_bus_subcomponent_identifier . access_identifier

 |

 -- data or bus subcomponent being accessed

 data_or_bus_subcomponent_identifier

unique_access_requirer_identifier ::=

 -- provided access feature in the component type

 component_type_access_identifier

 |

 -- required access in a subcomponent

 data_or_bus_subcomponent_identifier . access_identifier

Naming Rules

The defining identifier of a access connection declaration must be unique in the local namespace of the
component implementation with the connection subclause. For mode-specific access connections, as
indicated by the in_modes subclause, a connection name may appear more than once.

The connection identifier in an access connection refinement declaration must refer to a named
connection declared in an ancestor component implementation.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 133 -

A provider reference in an access connection declaration must reference a provides access feature of a
subcomponent, a requires access feature in the component type of the containing component, or a data
or bus subcomponent. A requirer reference in an access connection declaration must reference a
requires access feature of a subcomponent or a provides access feature in the component type of the
containing component.

Legality Rules

All access declarations forming a semantic data access connection must be data access declarations. All
access declarations forming a semantic bus access connection must be bus access declarations.

The ultimate source of a semantic access connection must be data or bus subcomponent. The ultimate
destination of a semantic data access connection must be a requires data access feature of a thread or a
subprogram call without a containing subprogram call requiring the same data access. The ultimate
destination of a semantic bus access connection must be a requires bus access feature of a processor,
memory, or device subcomponent.

If a semantic access connection is declared to apply to a particular mode, then the ultimate source and
ultimate destination must be part of that mode.

For access connections between access features, the direction declared for the destination feature must
be compatible with the direction declared for the source feature(s) as defined by the following rules:

• If the access connection declaration represents an access connection between access
features of sibling components, then the source must be a provides access or a data or bus
component and the destination must be a requires access.

• If the access connection declaration represents a feature mapping up or down the
containment hierarchy, then the source and destination must both be a requires access, both
be a provides access, or the source a data or bus subcomponent and the destination a
provides access.

A requires access cannot be the destination feature reference of more than one access connection
declaration unless the source feature reference(s) of each access connection declaration is (are)
contained in a different mode. In this case, the restriction applies for each mode.

For access connections the data type of the provider access must be identical to the data type of the
requires access.

If more than one access feature in a semantic access connection has an access Required_Access or
Provided_Access property association, then the resulting property values must be compatible. This
means that the provider must provide read-only or read-write access if the requirer specifies read-
only. Similarly, the provider must provide write-only or read-write access if the requirer specifies
write-only. The provider must provide read-write access if the requirer specifies read-write.
Finally, the provider must provide by-method access if the requirer specifies by-method access.

Semantics

An access connection represents access to a shared data component by concurrently executing threads
or by subprograms executing within thread. A bus access connection represents communication between
processors, memory, and devices by accessing a shared bus.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 134 -

Access connections are restricted to 1-n connectivity, i.e., a data or bus component can have multiple
outgoing access connections, but a requires access feature can only have one incoming connection.

The actual data flow is determined by the value of the Required_Access or Provided_Access
property. Read means flow of data from the shared component to the component requiring access, and
write means flow of data from the component requiring access to the shared component.

The optional in_modes subclause specifies what modes the access connection is part of. The detailed
semantics of this subclause are defined in Section 11.1.

9.2 Flows

The purpose of providing the capability of specifying end-to-end flows is to support various forms of flow
analysis, such as end-to-end timing and latency, reliability, numerical error propagation, Quality of Service
(QoS) and resource management based on operational flows. To support such analyses, relevant
properties are provided for the end-to-end flow, the flow specifications of components, and the ports
involved in the flow to be analyzed. For example, to deal with end-to-end latency the end-to-end flow may
have properties specifying its expected maximum latency and actual latency. In addition, ports on
individual components may have flow specific properties, e.g., an in port property specifies the expected
latency of data relative to its sensor sampling time or in terms of end-to-end latency from sensor to
actuator to reflect the latency assumption embedded in its extrapolation algorithm.

End-to-end flows are represented by flow specification, flow implementation, and end-to-end flow
declarations.

A flow specification declaration in a component type specifies an externally visible flow through a
component’s ports, port groups, or parameters. The flow through a component is called a flow path. A
flow originating in a component is called the flow source. A flow ending in a component is called the flow
sink.

A flow implementation declaration in a component implementation specifies how a flow specification is
realized in the implementation as a sequence of flows through subcomponents along connections from
the flow specification in port to the flow specification out port. This is illustrated in Figure 15. The system
type S1 is declared with three ports and two flow specifications. These are the flows through system S1
that are externally visible. In the example, both flows are flow paths, i.e., they flow through the system.
The ports identified by the flow specification do not have to have the same data type, nor do they have to
be the same port type, i.e., one can be an event port and the other an event data port. This allows flow
specifications to be used to describe logical flows of information.

The system implementation for system S1 is shown on the right of Figure 15. It contains two process
subcomponents P1 and P2. Each has two ports and a flow path specification as part of its process type
declaration. The flow implementation of flow path F1 is shown in both graphical and textual form. It starts
with port pt1, as specified in the flow specification. It then follows a sequence of connections and
subcomponent flow specifications. Modeled in the figure as the sequence of connection C1,
subcomponent flow specification P2.F5, connection C3, subcomponent flow specification P1.F7,
connection C5. The flow implementation ends with port pt2, as specified in the flow specification for F1.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 135 -

Figure 15 Flow Specification & Flow Implementation

An end-to-end flow is a logical flow through a sequence of system components, i.e., threads, devices and
processors. An end-to-end flow is specified by an end-to-end flow declaration. End-to-end flow
declarations are declared in component implementations, typically the flow implementation in the system
hierarchy that is the root of all threads, processors, and devices involved in an end-to-end flow. The
subcomponent identified by the first subcomponent flow specification referenced in the end-to-end flow
declaration contains the system component that is the starting point of the end-to-end flow. Succeeding
named subcomponent flow specifications contain additional system components. In the example shown
in Figure 15, the flow specification F7 of process P1 may have a flow implementation that includes flows
through two threads which is not included in this view of the model. The identified subcomponent of the
final referenced subcomponent flow specification contains the last system component of the end-to-end
flow.

9.2.1 Flow Specifications

A flow specification declaration indicates that information logically flows from one of its incoming ports,
parameters, or port groups to one of its outgoing ports, parameters, or port groups. The ports can be
event, event data, or data ports. A flow may start within the component, called a flow source. A flow may
end within the component, called a flow sink. Or a flow may go through a component from one of its in or
in out ports or parameters to one of its out or in out ports or parameters, called a flow path. In the case
of port groups, there is a flow from a port group to its inverse.

Multiple flow specifications can be defined involving the same ports. For example, data coming in through
an in port group is processed and derived data from one of the port group’s contained ports is sent out
through different out ports.

Syntax

flow_spec ::=

 flow_source_spec

 | flow_sink_spec

 | flow_path_spec

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 136 -

flow_spec_refinement ::=

 flow_source_spec_refinement

 | flow_sink_spec_refinement

 | flow_path_spec_refinement

flow_source_spec ::=

 defining_flow_identifier : flow source flow_feature_identifier

 [{ { property_association }+ }] ;

flow_sink_spec ::=

 defining_flow_identifier : flow sink flow_feature_identifier

 [{ { property_association }+ }] ;

flow_path_spec ::=

 defining_flow_identifier : flow path source_flow_feature_identifier ->

 sink_flow_feature_identifier

 [{ { property_association }+ }] ;

flow_source_spec_refinement ::=

 defining_flow_identifier :

 refined to flow source { { property_association }+ } ;

flow_sink_spec_refinement ::=

 defining_flow_identifier :

 refined to flow sink { { property_association }+ } ;

flow_path_spec_refinement ::=

 defining_flow_identifier :

 refined to flow path { { property_association }+ } ;

flow_feature_identifier ::=

 port_identifier

 | parameter_identifier

 | port_group_identifier

 | port_group_identifier . port_identifier

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 137 -

Naming Rules

The defining flow identifier of a flow specification must be unique within the interface name space of the
component type.

The flow feature identifier in a flow path must refer to a port, parameter, or port group in the component
type, or to a port or port group contained in a port group in the component type.

The defining flow identifier of a flow specification refinement must refer to a flow specification or
refinement in an ancestor component type.

Legality Rules

The direction declared for the destination of a flow path specification declaration must be compatible with
the direction declared for the source as defined by the following rules:

• If the source is a port or parameter, its direction must be must be an in or an in out.

• If the destination is a port or parameter, its direction must be an out or an in out.

The direction declared for the destination port or parameter of a flow source specification declaration must
be out or in out.

The direction declared for the source port or parameter of a flow source specification declaration must be
in or in out.

Standard Properties

Latency: Time

Throughput: Data_Volume

NOTES:

These properties are examples of properties for latency and throughput analysis. Additional properties are also
necessary on ports to fully support throughput analysis, such as arrival rate and data size. Appropriate properties for
flow analysis may be defined by the tool vendor or user (see Section 10).

Semantics

A flow specification declaration represents a logical flow originating from within a component, flowing
through a component, or ending within a component.

In case of a flow through a component, the component may transform the input into a different form for
output. In case of data or event data port, the data type may change. Similarly the flow path may be
between different port types and between ports, parameters and port groups. This permits end-to-end
flows to be specified as logical information flows through a system despite the fact that the information is
being manipulated and its representation changed.

Examples

process foo

features

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 138 -

 Initcmd: in event port;

 Signal: in data port gps::signal_data;

 Result1: out data port gps::position.radial;

 Result2: out data port gps::position.cartesian;

 Status: out event port;

Flows

 -- two flows split from the same input

 Flow1: flow path signal -> result1;

 Flow2: flow path signal -> result2;

 -- An input is consumed by process foo through its initcmd port

 Flow3: flow sink initcmd;

 -- An output is generated (produced) by process foo and made available

 -- through its port Status;

 Flow4: flow source Status;

end foo;

9.2.2 Flow Implementations

Component implementations must provide an implementation for each flow specification. A flow
implementation declaration identifies the flow through its subcomponents. In case of a flow source
specification, it starts from the flow source of a subcomponent or from the component implementation
itself and ends with the port named in the flow source specification. In case of a flow sink specification,
the flow implementation starts with the port named in the flow sink specification declaration and ends
within the component implementation itself or with the flow sink of a subcomponent. In case of a flow path
specification, the flow implementation starts with the source port and ends with the destination port. Flow
characteristics modeled by properties on the flow implementation are constrained by the property values
in the flow specification. Flow implementations can be declared to be mode-specific.

By declaring flow specifications explicitly we clearly specify the expectations of a component, for both the
user of a component and the implementer of a component. Compliance with the specifications can be
checked separately from both perspectives.

Syntax

flow_implementation ::=

 (flow_source_implementation

 | flow_sink_implementation

 | flow_path_implementation)

 [{ { property_association }+ }]

 [in_modes_and_transitions] ;

flow_source_implementation ::=

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 139 -

 flow_identifier : flow source

 { subcomponent_flow_identifier -> connection_identifier -> }*

 flow_feature_identifier

flow_sink_implementation ::=

 flow_identifier : flow sink

 flow_feature_identifier

 { -> connection_identifier -> subcomponent_flow_identifier }*

flow_path_implementation ::=

 flow_identifier : flow path

 source_flow_feature_identifier

 [{ -> connection_identifier -> subcomponent_flow_identifier }+

 -> connection_identifier]

 -> sink_flow_feature_identifier

flow_implementation_refinement ::=

 flow_source_implementation_refinement

 | flow_sink_implementation_refinement

 | flow_path_implementation_refinement

flow_source_implementation_refinement ::=

 flow_identifier :

 refined to flow source

 ({ { property_association }+ } [in_modes_and_transitions]

 | in_modes_and_transitions

) ;

flow_sink_implementation_refinement ::=

 flow_identifier :

 refined to flow sink

 ({ { property_association }+ } [in_modes_and_transitions]

 | in_modes_and_transitions

) ;

flow_path_implementation_refinement ::=

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 140 -

 flow_identifier :

 refined to flow path

 ({ { property_association }+ } [in_modes_and_transitions]

 | in_modes_and_transitions

) ;

subcomponent_flow_identifier ::=

 subcomponent_identifier . flow_spec_identifier

Naming Rules

The flow identifier of a flow implementation must name a flow specification in the component type. Each
flow implementation must be declared at most once in each component implementation. For mode-
specific flow implementations, as indicated by the in_modes_and_transitions subclause, a flow
implementation name may appear more than once.

The flow feature identifier in a flow implementation must refer to a port, parameter, or port group in the
component type, or to a port or port group contained in a port group in the component type.

The subcomponent flow identifier of a flow implementation must name a flow specification in the
component type of the named subcomponent.

The connection identifier in a flow implementation must refer to a connection in the component
implementation.

The defining flow identifier of a flow implementation refinement must refer to a flow implementation or
refinement in an ancestor component implementation.

Legality Rules

The source of a connection named in a flow implementation declaration must be the same as the source
flow feature of the flow implementation or as the destination of the directly preceding subcomponent flow
specification.

The destination of a connection named in a flow implementation declaration must be the same as the
destination flow feature of the flow implementation or as the source of the directly succeeding
subcomponent flow specification.

If the component implementation provides mode-specific flow implementations, as indicated by the in
modes statement, then there must be a flow implementation for each of the modes.

In case of a mode-specific flow implementation, the named connections and the subcomponents of the
named flow specifications must be declared for the modes listed in the in modes statement.

In a complete specification, if a system, process, or thread group component implementation contains a
flow implementation declaration, then the flow implementation must include flow specifications through
named thread, processor, or device subcomponents.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 141 -

If the category of the component type containing a flow specification declaration is thread or subprogram,
and a component implementation of the component type does not contain subprogram calls, then the flow
specification represents its implementation and an explicit flow implementation declaration is not required.

Standard Properties

Latency: Time

Throughput: Data_Volume

NOTES:

These properties are examples of properties for latency and throughput analysis. Their values represent the values of
the flow implementation, which must satisfy the constraints of the property values of the flow specification. The
semantics of the constraint are analysis specific.

Semantics

A flow implementation declaration represents the realization of a flow specification in the given
component implementation. A flow implementation may be declared to be mode-specific.

A flow path implementation starts with the port named in the corresponding flow specification, passes
through zero or more subcomponents, and ends with the port named in the corresponding flow
specification (see Figure 15). A flow source implementation ends with the port named in the
corresponding flow specification. A flow sink implementation starts with the port named in the
corresponding flow specification. A flow path implementation may specify a flow that goes directly from a
flow source to a flow destination without any connections in between.

A flow implementation within a thread may be modeled as flow through subprogram calls via their
parameters.

A flow through a component may transform the input into a different form for output. In case of data or
event data port, the data type may change. Similarly the flow path may be between different port types
and between ports and port groups. This permits end-to-end flows to be specified as logical information
flows through a system despite the fact that the information is being manipulated and its representation
changed.

The optional in_modes_and_transitions subclause specifies what modes the flow implementation is
part of. The detailed semantics of this subclause are defined in Section 11.1.

Examples

-- process foo is declared in the previous section

process implementation foo.basic

subcomponents

 A: thread bar.basic;

 -- bar has a flow path fs1 from port p1 to p2

 -- bar has a flow source fs2 to p3

 C: thread baz.basic;

 B: thread baz.basic;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 142 -

 -- baz has a flow path fs1 from port p1 to p2

 -- baz has a flow sink fsink in port reset

connections

 conn1: data port signal -> A.p1;

 conn2: data port A.p2 -> B.p1;

 conn3: data port B.p2 -> result1;

 conn4: data port A.p2 -> C.p1;

 conn5: data port C.p2 -> result2;

 conn6: data port A.p3 -> status;

 connToThread: event port initcmd -> C.reset;

flows

 Flow1: flow path

 signal -> conn1 -> A.fs1 -> conn2 ->

 B.fs1 -> conn3 -> result2;

 Flow2: flow path

 signal -> conn1 -> A.fs1 -> conn4 ->

 C.fs1 -> conn5 -> result2;

 Flow3: flow sink initcmd -> connToThread -> C.fsink;

 -- a flow source may start in a subcomponent,

 -- i.e., the first named element is a flow source

 Flow4: flow source A.fs2 -> connect6 -> status;

end foo.basic;

9.2.3 End-To-End Flows

An end-to-end flow represents a logical flow of information from a source to a destination through a
sequence of threads that process and possibly transform the information. In a complete specification, the
source and destination can be threads, devices, and processors.

Syntax

end_to_end_flow_spec ::=

 defining_end_to_end_flow_identifier : end to end flow

 start_subcomponent_flow_identifier

 { -> connection_identifier

 -> flow_path_subcomponent_flow_identifier }*

 -> connection_identifier -> end_subcomponent_flow_identifier

 [{ (property_association }+ }]

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 143 -

 [in_modes_and_transitions] ;

end_to_end_flow_refinement ::=

 defining_end_to_end_identifier :

 refined to end to end flow

 ({ { property_association }+ } [in_modes_and_transitions]

 | in_modes_and_transitions

) ;

Naming Rules

The defining end-to-end flow identifier of an end-to-end flow declaration must be unique within the local
name space of the component implementation containing the end-to-end flow declaration. For mode
specific end-to-end flows, as indicated by the in_modes_and_transitions subclause, an end-to-end
flow identifier may appear more than once.

The connection identifier in an end-to-end flow declaration must refer to a connection in the component
implementation.

The subcomponent flow identifier of an end-to-end flow declaration must name a flow specification in the
component type of the named subcomponent.

The defining identifier of an end-to-end flow refinement must refer to an end-to-end flow or refinement in
an ancestor component implementation.

Legality Rules

The flow specifications identified by the flow_path_subcomponent_flow_identifier must be flow
paths.

The start_subcomponent_flow_identifier must refer to a flow path or a flow source.

The end_subcomponent_flow_identifier must refer to a flow path or a flow sink.

In case of a mode specific end-to-end flow declarations, the named connections and the subcomponents
of the named flow specifications must be declared for the modes listed in the in modes statement.

Standard Properties

Expected_Latency: Time

Actual_Latency: Time

Expected_Throughput: Data_Volume

Actual_Throughput: Data_Volume

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 144 -

NOTES:

These properties are examples of properties for latency and throughput analysis. The expected property values
represent constraints that must be satisfied by the actual property values of the end-to-end flow. The semantics of
the constraint are analysis specific.

Semantics

An end-to-end flow represents a logical flow of information through a system instance. The end-to-end
flow is declared in a component implementation that is the common root of all components involved in the
flow. The end-to-end flow starts with a subcomponent flow specification, followed by zero or more
connections and subcomponent flow specificaitons, and ends with a connection and a subcomponent
flow specification. The actual end-to-end flow starts from a device, processor, or thread, follows semantic
connections to intermediate threads and ends with a thread, device or processor. If the start or end point
of an end-to-end flow is a thread, its contribution to the flow may be limited to a partial execution by
specifying a flow implementation through a subset of its subprogram calls.

The optional in_modes_and_transitions subclause specifies what modes the end-to-end flow is part
of. The detailed semantics of this subclause are defined in Section 11.1.

Examples

-- process foo is declared in the previous section

process implementation foo.basic

subcomponents

 A: thread bar.basic;

 -- bar has a flow path fs1 from p1 to p2

 -- bar has a flow source fs2 to p3

 C: thread baz.basic;

 B: thread baz.basic;

 -- baz has a flow path fs1

 -- baz has a flow sink fsink

connections

 conn1: data port signal -> A.p1;

 conn3: data port C.p2 -> result1;

 conn4: data port A.p2 -> C.p1;

 conn5: event port A.p3 -> Status;

 connToThread: event port initcmd -> C.reset;

flows

 Flow1: flow path

 signal -> conn1 -> A.fs1 -> conn4 ->

 C.fs1 -> conn3 -> result2;

 Flow3: flow sink initcmd -> connToThread -> C.fsink;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 145 -

 -- a flow source may start in a subcomponent,

 -- i.e., the first named element is a flow source

 Flow4: flow source A.fs2 -> connect5 -> status;

 -- an end-to-end flow from a source to a sink

 ETE1: end to end flow

 A.fs2 -> conn4 -> C.fsink;

 -- an end-to-end flow where the end points are not sources or sinks

 ETE2: end to end flow

 A.fs1 -> conn4 -> C.fs1;

end foo.basic;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 146 -

10 Properties

A property provides information about component types, component implementations, subcomponents,
features, connections, flows, modes, and subprogram calls. A property has a name, a type, and a value.
The property name declares a name for a given property along with the AADL components and
functionality to which the property applies. The property type specifies the set of acceptable values for a
property. Each property has a value or list of values that is associated with the named property in a given
specification.

A property set contains declarations of property types and property names that may appear in an AADL
specification. The two predeclared property sets in this standard define properties and property types that
are applicable to all AADL specifications. User’s may define property sets that are unique to their model,
project or toolset. The properties and property types that are declared in user-defined property sets are
accessed using their qualified name. A property name declaration within a property set indicates the
component types, component implementations, subcomponents, features, connections, flows, modes,
and subprogram calls, for which this property applies.

Properties can have associated expressions that are statically typed, and evaluate to a specific value.
The time at which a property expression is evaluated may depend on the property and on how a
specification is processed. For example, some expressions may be evaluated immediately, some after
binding decisions have been made, and some reflect runtime state information, e.g., the current mode.
During analysis, all property expressions can be evaluated to known values, if necessary, by considering
all possible runtime states. A given property name may have a default expression.

10.1 Property Sets

A property set defines a named group of property types, property names, and property constant values.

Syntax

property_set ::=

 property set defining_property_set_identifier is

 { property_type_declaration

 | property_name_declaration

 | property_constant }+

 end defining_property_set_identifier ;

Naming Rules

Property set defining identifiers must be unique in the global namespace.

The defining identifier following the reserved word end must be identical to the defining identifier following
the reserved word property set.

Associated with every property set is a property set namespace that contains the defining identifiers for all
property types declared within that property set. This means that properties with the same identifier can
be declared in different property sets.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 147 -

A property or property type declared in a property set is named by its qualified name, that is the property
set identifier followed by the property identifier, separated by a double colon (“::”). Predeclared properties
and property types are referred to by their property identifiers.

10.1.1 Property Types

A property type declaration associates an identifier with a property type. A property type denotes the set
of legal values in a property association that are the result of evaluating the associated property
expression.

Syntax

property_type_declaration ::=

 defining_property_type_identifier : type property_type_designator ;

property_type_designator ::=

 property_type | unique_property_type_identifier

property_type ::=

 aadlboolean | aadlstring

 | enumeration_type | units_type

 | number_type | range_type

 | classifier_type

 | reference_type

enumeration_type ::=

 enumeration (defining_enumeration_literal_identifier

 { , defining_enumeration_literal_identifier }*)

units_type ::=

 units units_list

units_list ::=

 (defining_unit_identifier

 { , defining_unit_identifier => unit_identifier * numeric_literal }*)

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 148 -

number_type ::=

 aadlreal [real_range] [units units_designator]

 | aadlinteger [integer_range] [units units_designator]

units_designator ::=

 units_unique_property_type_identifier

 | units_list

real_range ::= real_lower_bound .. real_upper_bound

real_lower_bound ::= signed_aadlreal_or_constant

real_upper_bound ::= signed_aadlreal_or_constant

integer_range ::= integer_lower_bound .. integer_upper_bound

integer_lower_bound ::= signed_aadlinteger_or_constant

integer_upper_bound ::= signed_aadlinteger_or_constant

signed_aadlreal_or_constant ::=

 (signed_aadlreal | [sign] real_property_constant_term)

signed_aadlinteger_or_constant ::=

 (signed_aadlinteger | [sign] integer_property_constant_term)

sign ::= + | -

signed_aadlinteger ::=

 [sign] integer_literal [unit_identifier]

signed_aadlreal ::=

 [sign] real_literal [unit_identifier]

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 149 -

range_type ::=
 range of number_type

 | range of number_unique_property_type_identifier

classifier_type ::=

 classifier [(component_category { , component_category }*)]

reference_type ::=

 reference [(referable_element_category

 { , referable_element_category }*)]

referable_element_category ::=

 component_category | connections | server subprogram

unique_property_type_identifier ::=

 [property_set_identifier ::] property_type_identifier

Naming Rules

All property type defining identifiers declared within the same property set must be distinct from each
other, i.e., unique within the property set namespace.

A property type is named by its property type identifier or the qualified name specified by the property
set/property type identifier pair, separated by a double colon (“::”). An unqualified property type identifier
must be part of the predeclared property sets. Otherwise, the property type identifier must appear in the
property set namespace.

An enumeration type introduces an enumeration namespace. The enumeration literal identifiers in the
enumeration list declare a set of enumeration literals. They must be unique within this namespace.

A units type introduces a units namespace. The units identifiers in the units list declare a set of units
literals. They must be unique within this namespace.

The units identifier to the right of a => must refer to a unit identifier defined in the same units type
declaration.

Legality Rules

The value of the first numeric literal that appears in a range of a number_type must not be greater than
the value of the second numeric literal including the value’s units.

Range values should always be declared with unit literals if the property requires a unit literal.

The unique property constant identifier in an integer range must represent an integer constant.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 150 -

A boundless range type may be declared such that the actual range declarations have no limit on the
upper and lower bound.

The unique property constant identifier in a real range must represent a real constant.

If the property requires a unit , then the unit must be specified for both lower and upper bound.

 Semantics

A property type declaration associates an identifier with a property type.

The aadlboolean property type represents the two values, true and false.

The aadlstring property type represents all legal strings of the AADL.

An enumeration property type represents an explicitly listed set of enumeration identifiers as the set of
legal values.

A units property type represents an explicitly listed set of measurement unit identifiers as the set of legal
values. The second and succeeding unit identifiers are declared with a multiplier representing the
conversion factor that is applied to the previous unit to determine the value in terms of the specified
measurement unit.

An aadlreal property type represents a real value or a real value and its measurement unit. If a units
clause is present, then the type value is a pair of values, a real value and a unit. The unit may only be one
of the enumeration literals specified in the units clause. If a units clause is absent, then the value is a real
value. If a simple range is present, then the real value must be an element of the specified range.

An aadlinteger property type represents an integer value or an integer value and its measurement unit. If
an units clause is present, then the value is a pair of values, and unit may only be one of the enumeration
literals specified in the units clause. If an units clause is absent, then the value is an integer value. If a
simple range is present, then the integer value must be an element of the specified range.

The range type represents closed intervals of numbers. It specifies that a property of this type has a
value that is a range term. The range type specifies the number type of values in the range. A property
specifying a range term as its value indicates a least value called the lower bound of the interval, a
greatest value called the upper bound of the interval, and optionally the difference between adjacent
values called the delta. The delta may be unspecified, in which case the range is dense, but it is
otherwise undefined whether the range is an interval of the real or the rational numbers.

A classifier property type represents the subset of syntactically legal component classifier references
whose category matches one of component categories in the specified list. If the category list is absent,
all component classifier references are acceptable.

A reference type (indicated by the reserved word reference) represents the subset of syntactically legal
references to those components whose category matches one of component categories in the specified
list, or to connections, or to server subprogram features. If the category list is absent, all components,
connections, and server subprograms are acceptable.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 151 -

NOTES:

The classifier and reference property types support the specification of properties representing binding constraints.

Examples

Length_Unit : type units (mm, cm => mm * 10,

 m => cm * 100, km => m * 1000);

OnOff : type aadlboolean;

Car_Length : type aadlreal 1.5 .. 4.5 units (meter);

Speed_Range : type range of aadlreal 0 .. 250 units (kph);

10.1.2 Property Names

All property names that appear in a property association list must be declared with property name
declarations inside a property set. Property names are typed and are defined for specific component,
port, port group, subprogram, access, mode, flow, and connection categories.

Syntax

property_name_declaration ::=

 defining_property_name_identifier : [access] [inherit]

 (single_valued_property | multi_valued_property)

 applies to (

 (property_owner_category { , property_owner_category }*

 | all)

) ;

single_valued_property ::=

 property_type_designator [=> default_property_expression]

multi_valued_property ::=

 list of property_type_designator

 [=>

 ([default_property_expression { , default_property_expression }*])

]

property_owner_category ::=

 component_category [classifier_reference]

 | mode | port group | flow

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 152 -

 | [event] [data] port

 | server subprogram | parameter

 | [connection_type] connections

connection_type ::=

 port group | [event] [data] port | access | parameter

Naming Rules

All property name defining identifiers declared within the same property set must be distinct from each
other and distinct from all property type defining identifiers declared within that property set. The property
set namespace contains the defining identifiers for all property names declared within that property set.

Legality Rules

The reserved word access is only permitted for property name declarations whose applies to property
category list contains categories of subcomponents that can be required or provided subcomponents.
These categories are data and bus.

Semantics

A property name declaration introduces a new property by a name that is of a specified property type,
accepts a single value or a list of values, and may specify a default property expression. This property is
defined for those component categories, specific component classifiers, or for port, port group, flow,
subprogram, mode, and connection categories that are listed after the applies to in the
Property_Owner_Category list. This indicates that component classifiers and subcomponents
corresponding to the specified category, ports, port groups, flows, subprograms, modes, and connections
can have property associations for such a property. If the category specification includes a classifier, and
the classifier is a component type, then the property applies to both the type and implementation of the
specified component category. In the case of a component implementation classifier, the property applies
only to the implementation. The reserved word all in the applies to statement indicates that the property
applies to any Property_Owner_Category.

A property declared with the reserved word access is associated with the access to a subcomponent
rather than the data component itself. For example, two components can require access to a data
component, one requiring read-only access, while the other requires write-only access.

A property declared with the reserved word inherit indicates that if a property value cannot be determined
for a component, then its value will be inherited from a containing component. The detailed rules for
determining property values are described in Section 10.3.

A property name declared without a default value is considered undefined (see also Section 10.3). A
property name declared to have a list of values is considered to have an empty list if no default value is
declared.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 153 -

Examples

Wheel_speed : aadlinteger 0 rpm .. 5000 rpm units (rpm)

 applies to (system);

10.1.3 Property Constants

Property constants are property values that are known by a symbolic name. Property constants are
provided in the predeclared property sets and can be defined in property sets. They can be referenced in
property expressions by name wherever the value itself is permissible.

Syntax

property_constant ::=

 single_valued_property_constant | multi_valued_property_constant

single_valued_property_constant ::=

 defining_property_constant_identifier : constant

 ((aadlinteger | aadlreal

 [units_unique_property_type_identifier])

 | aadlstring | aadlboolean

 | enumeration_unique_property_type_identifier

 | integer_range_unique_property_type_identifier

 | real_range_unique_property_type_identifier

 | integer_unique_property_type_identifer

 | real_unique_property_type_identifer)

 => constant_property_value ;

multi_valued_property_constant ::=

 defining_property_constant_identifier : constant list of

 ((aadlinteger | aadlreal

 [units_unique_property_type_identifier])

 | aadlstring | aadlboolean

 | enumeration_unique_property_type_identifier

 | integer_range_unique_property_type_identifier

 | real_range_unique_property_type_identifier

 | integer_unique_property_type_identifer

 | real_unique_property_type_identifer)

 => ([constant_property_value { , constant_property_value }*]) ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 154 -

constant_property_value ::=

 string_literal

 | signed_integer

 | signed_real

 | boolean_value

 | enumeration_identifier

 | signed_aadlinteger .. signed_aadlinteger [delta signed_aadlinteger]

 | signed_aadlreal .. signed_aadlreal [delta signed_aadlreal]

unique_property_constant_identifier ::=

 value ([property_set_identifier ::] property_constant_identifier)

Naming Rules

The defining property constant identifier must be distinct from all other property constant identifiers,
property name identifiers, and property type identifiers in the namespace of the property set that contains
the property constant declaration.

A property constant is named by its property constant identifier or the qualified name specified by the
property set/property constant identifier pair, separated by double colon (“::”). An unqualified property
constant identifier must be part of the predeclared property sets. Otherwise, the property constant
identifier must appear in the property set namespace.

Legality Rules

If a property constant declaration has more than one property expression, it must contain the reserved
words list of.

The property type of the property constant declaration must match the property type of the constant
property value.

If the constant property value is an integer or real value with a unit identifier, then the property type
specification of the property constant must include a units identifier.

Semantics

Property constants allow integer, real, and string values to be known by symbolic name and referenced
by that name in property expressions. This reference is expressed by the construct value() resulting in
the value of the constant to be used instead of the reference.

Examples

Max_Threads : constant aadlinteger => 256;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 155 -

10.2 Predeclared Property Sets

There is a standard predeclared property set named AADL_Properties, which is part of every AADL
specification. In addition, there is a set of enumeration property types and property constants for which
enumeration literals and values can be defined for different AADL specifications. This set of property
types is declared in a property set named AADL_Project. All of the property enumeration types and
property constants listed in Appendix A.2 must be declared in this property set. The set of enumeration
literals may vary. The AADL_Properties and AADL_Project property sets are implicitly a part of
every AADL specification.

The property types, property names, and property constants of these predeclared property sets can be
named without property set name qualification.

property set AADL_Properties is

 -- See Appendix A.1

end AADL_Properties;

property set AADL_Project is

 -- See Appendix A.2

end AADL_ Project;

Naming Rules

The predeclared property sets AADL_Properties and AADL_Project share a property set
namespace.

Legality Rules

The AADL_Properties property set cannot be modified.

Existing property type and property constant declarations in the AADL_Project property set can be
modified. New declarations must not be added to the AADL_Project property set, but can be introduced
through a separate property set declaration.

Processing Requirements and Permissions

Additional property name declarations may not be inserted into the standard predeclared property set
AADL_Properties. Different property set declarations must be used for nonstandard property names.

Providers of AADL processing methods may modify the standard property type declarations in
AADL_Properties to allow additional values for a specific property name. For example, additional
enumeration identifiers beyond those listed in this standard may be added.

Additional property sets may be defined. AADL tools may be defined that include support for additional
property sets. Similarly, AADL specifications may be define that property associations from additional
property sets.

Additional property sets that may be suitable for a wide variety applications may be defined in an Annex.
AADL tools that support this Annex should include support for these additional property sets. Similarly,

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 156 -

AADL specifications that conform to the Annex shall satisfy the requirements associated with the annex
property set.

10.3 Property Associations

A property association correlates a property value or list of property values with a property name resulting
from evaluation of property expressions. Property associations can be declared within component types,
component implementations, subcomponents, features, connections, flows, modes, and subprogram
calls, as well as their respective refinement declarations. Subcomponents can also declare contained
property associations of subcomponents contained in them. Contained property associations permit
separate property values to be associated with every component in the system instance hierarchy (see
Section 12.1).

Syntax

property_association ::=

 [property_set_identifier ::] property_name_identifier (=> | +=>)

 [constant] property_value

 [in_binding]

 [in_modes] ;

access_property_association ::=

 [property_set_identifier ::] property_name_identifier (=> | +=>)

 [constant] access property_value

 [in_binding]

 [in_modes] ;

contained_property_association ::=

 [property_set_identifier ::]

 property_name_identifier (=> | +=>)

 [constant] property_value

 applies to contained_unit_identifier { . contained_unit_identifier }*

 [in_binding]

 [in_modes] ;

property_value ::= single_property_value | property_list_value

single_property_value ::= property_expression

property_list_value ::=

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 157 -

 ([property_expression { , property_expression }*])

in_binding ::=

 in binding (platform_classifier_reference

 { , platform_classifier_reference }*)

platform_classifier_reference ::=

 processor_classifier_reference

 | memory_classifier_reference

 | bus_classifer_reference

Naming Rules

A property name consists of an optional property set identifier followed by a property identifier, separated
by a double colon (“::”).

The property set identifier, if present, must appear in the global namespace and must be the defining
identifier in a property set declaration.

The property identifier must exist in the namespace of the property set, or if the optional property set
identifier is absent, in the namespace of the predeclared property sets AADL_Properties or
AADL_Project.

A property name may appear in the property association clause of a component type, component
implementation, subcomponent, feature, flow, connection, mode, or subprogram call only if the respective
AADL model element is listed in the applies to list of the property name declaration.

The dot-separated identifier sequence following the reserved words applies to of a contained property
association identifies a component, feature, flow, connection, or mode in the containment hierarchy, for
which the property value holds. The root of this path is the subcomponent or the component
implementation with the contained property association declaration. The path consists of a sequence of
zero or more subcomponent identifiers followed by a subcomponent, feature, flow, connection, or mode
identifier. A port in a port group is identified by the port group identifier and the port identifier.

If a property association has an in binding statement, the property value is binding-specific. The property
value applies if the binding is to one of the specified execution platform types of the categories processor,
memory, or bus. If a property association list contains both binding-specific associations and an
association without an in binding statement, then the latter applies to all bindings not explicitly declared
in in binding statements.

If a property association has an in modes statement, the property value is mode-specific. The property
value applies if one of the specified modes is active. If a property association list contains both mode-
specific associations and an association without an in modes statement, then the latter applies to all
associations not explicitly declared in in modes statements.

A property association list must have at most one property association for the same property name. In
case of mode-specific and binding-specific property associations, there must be at most one association
for each mode and binding.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 158 -

Legality Rules

The property named by a property association must list the category of the component type, component
implementation, subcomponent, feature, connection, flow, or mode the property association is declared
for in its Property_Owner_Category list (see Section 10.1.2).

If a property association is declared within a package, the property value applies to all component
classifier declarations contained in the package for which the property is valid.

If a property expression list consists of a list of two or more property expressions, all of those property
expressions must be of the same property type.

If the property declaration for the associated property name does not contain the reserved words list of,
the property value must be a single property value. If the property declaration for the associated
property name contains the reserved words list of, the property value can be a single property value,
which is interpreted to be a list of one value.

The property association operator +=> must only be used if the property declaration for the associated
property name contains the reserved words list of. Furthermore, the property association may not have
an in modes or in binding statement.

The property association operator +=> may not be used in contained property associations.

In a property association, the type of the evaluated property expression must match the property type of
the named property.

A property value declared by a property association with the reserved word constant cannot be changed.

The semantics rules below for determining the value of a property impose a precedence on the property
associations for a property. A property association with the reserved word constant must be the highest
priority association.

The reserved word access is only permitted and is required in property associations declared in required
and provided access subcomponent declarations and refinements.

The unique component type identifiers in the in binding statement must refer to component types of the
categories processor, memory, or bus.

Property associations declared as part of a component type declaration, port group type declaration, a
feature or feature refinement declaration in a component type or port group type, or as part of a feature
refinement in the refines type clause of a component implementation are not permitted to have an in
modes statement as the scope of modes is limited to component implementations. A feature refinement
in the refines type clause of a component implementation must not inherit a modal property association
from its component implementation.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 159 -

Semantics

Property associations determine the property value of the component instances and their feature,
connection, flow, and mode instances in the system instance hierarchy (see Section 12.1). The property
association of a component type, component implementation, subcomponent, feature, flow, connection,
mode, or subprogram call determines the property value of all instances derived from the respective
declaration.

If a property association is declared within a package, the property value applies to all component
classifier declarations contained in the package for which the property is valid.

The value of a property is determined through evaluation of the property expression. Property
associations are declared in the properties subclause of component types and component
implementations. They are also declared as part of feature declarations in component types, as part of
subcomponent, connection, flow and mode declarations in component implementations. Contained
property associations declared with subcomponents can represent separate property values for different
instances of subcomponents, their features, connections, flows and modes that are contained in the
subcomponent. Contained property associations can also be used to record system instance specific
property values for all components, features, connections, flows, and modes in a system instance. This
permits AADL analysis tools to record system instance specific information about a physical system
separate from the declarative AADL specification. For example, a resource allocation tool can record the
actual bindings of threads to processors and source text to memory through a set of contained property
associations, and can keep multiple such binding configurations for the same system.

The property value is determined according to the following rules, which impose a precedence on the
property associations for a particular property. The earlier a property association for the given property is
encountered by the rules, the higher it’s precedence.

If a property value is not present after applying all of the rules below, it is determined by the default value
of its property name declaration. If not present in the property name declaration, the property value is
undefined.

For component types and port group types, the property value of a property is determined by its property
association in the properties subclause. If not present, the property value is determined by the first
ancestor component type or port group type with its property association. If not present and the
component type or port group type is declared in the private section of a package, then the property value
is determined by its association in the property subclause of the private section. If not present in the
private section, it is determined by its association in the property subclause of the package’s public
section. If the component type or port group type is declared in the public section of a package, the
property value is determined by its association in the public section of the package. Otherwise, it is
considered not present.

For component implementations and port groups, the property value of a property is determined by its
property association in the properties subclause. If not present, the property value is determined by the
first ancestor component implementation or port group with its property association. If not present, it is
determined by the property value of the component implementation’s component type according to the
component type rules.

For subcomponents, the property value of a property is determined by its property association in the
subcomponent declaration. If not present and the subcomponent is refined, then the property value is
determined by a property association in the subcomponent declaration being refined; this is done
recursively along the refinement sequence. If not present in the subcomponent, it is determined by the
subcomponent’s component classifier reference according to the respective component implementation
or component type rules described above. If not present and the property name has been declared as
inherit, it is determined by the property value of the component implementation that contains the

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 160 -

subcomponent declaration according to the component implementation rules. Otherwise, it is considered
not present.

For modes, connections, or flow sequences the property value of a property is determined by its property
association in the mode, connection, or flow sequence declaration. If not present and the mode,
connection, or flow sequence is refined, then the property value is determined by a property association in
the mode, connection, or flow sequence declaration being refined; this is done recursively along the
refinement sequence. If not present and the property name has been declared as inherit, it is determined
by the property value of the component implementation that contains the mode, connection, or flow
sequence declaration according to the component implementation rules. Otherwise, it is considered not
present.

For subprogram calls in call sequences, the property value of a property is determined by its property
association in the subprogram call. If not present and the called subprogram name is a subprogram
classifier reference, the property value is determined by the subprogram classifier according to the
component implementation or component type rules described above. If not present and the called
subprogram name is a subprogram feature reference in a data component, the property value is
determined by the subprogram feature according to the feature rules described below. If not present and
the property name has been declared as inherit, it is determined by the property value of the component
implementation that contains the subprogram call according to the compoment implementation rules.
Otherwise, it is considered not present.

For features in a component type or port group type, or flow specifications in a component type, the
property value of a property is determined by its property association in the feature or flow specification
declaration. If not present and the feature or flow specification is refined, then the property value is
determined by a property association in the feature or flow specification declaration being refined; this is
done recursively along the refinement sequence. For subprogram, server subprogram, and port group
features, if not present and the feature references a subprogram classifier or port group type reference,
the property value is determined by the subprogram component classifier reference or port group type
according to the respective component implementation, component type, or port group type rules
described above. If not present and the feature references a subprogram feature in a data component
type, the property value is determined by the subprogram feature according to the feature rules. If not
present and the property name has been declared as inherit, then it is determined by the property value
of the component type or port group type that contains the feature or flow specification declaration
according to the respective component type or port group type rules. Otherwise, it is considered not
present.

For features in a refines type clause of a component implementation, the property value of a property is
determined by its property association in the feature refinement declaration If not present, then the
property value is determined by a property association in the feature declaration being refined; this is
done recursively along the refinement sequence. If not present and the property value has been declared
inherit, it is determined by the property value of the component implementation according to the
component implementation rules. Otherwise, it is considered not present.

For component, feature, connection, flow, or mode instances in the system instance hierarchy, the
property value of a property is determined by the contained property association highest in the system
instance hierarchy that references the component, feature, connection, flow, or mode. If not present, then
the property value is determined by the respective subcomponent, mode, connection, feature declaration
that results in the instance according to the rules above. If not present and the property name has been
declared as inherit, then it is determined by the property value of the first containing component in the
containment hierarchy of the system instance. Otherwise, it is undefined.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 161 -

Figure 16 Property Value Determination

Figure 16 illustrates the order in which the value of a property is determined. Instance4 is an element in
the system instance hierarchy. The value of one of its properties is determined by first looking for a
property associated with the instance itself – shown as step 1. This is specified by a contained property
association. The contained property association for this instance declared in a component implementation
highest in the instance hierarchy determines that value. If no instance value exists, the implementation
(ImplA) of the instance is examined (step 2). If it does not exist, ancestor implementations are examined
(step 3). If the property value still has not been determined, the component type is examined (step 4). If
not found there, its ancestor component types are examined (step 5). If not found and the property is
inherited, for subcomponents and features, the enclosing implementation is examined. Otherwise, the
containing component in the component instance hierarchy is examined (step 6). Finally, the default
value is considered.

Two property association operators are supported. The operator => results in a new value for the
property. The operator +=> results in the addition of a value to a property value list. More specifically, a
property association via the operator => replaces any associations of lower precedence according to the
above rules. A property association via the operator +=> appends to the value determined by the
association immediately preceding it according to the order imposed by the above rules.

A property value list is evaluated by evaluating each of the property expressions, and appending the
values in order. If the property expression evaluates to a list, all the list elements are appended. If the
property expression evaluates to undefined, it is treated as an empty list.

If a property association is declared with the reserved word constant, then the following rules apply:

For subcomponents, connections, flow sequences, and modes, any refinements cannot contain a
property association for this property.

For features or flow specifications, any refinements cannot contain a property association for this
property.

For component implementations, any component implementation extension, or any subcomponents
referencing the component implementation or any of its descendents as component classifier cannot
contain a property association for this property.

For port groups, any port group refinement cannot contain a property association for this property.

For component types, any component type extension, any component implementation, any
subcomponent, or any subprogram or server subprogram feature referencing the component type or any
of its descendents cannot contain a property association for this property.

For port group types, any port group type extension or any port group feature referencing the port group
type or any its descendents cannot contain a property association for this property.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 162 -

A property association declared with the reserved word access applies to the access to an actual
subcomponent represented by the provided or required subcomponent access rather than the actual
subcomponent itself. Two different components sharing access to a component may have different
access property associations.

The optional in_modes subclause specifies what modes the property association is part of. The detailed
semantics of this subclause are defined in Section 11.1.

Component instance property associations with specified contained subcomponent identifier sequences
allow separate property values to be associated with each component instance in the containment
hierarchy. In particular, it permits separate property values such as actual processor binding property
values or result values from an analysis method to be associated with each component in the system
instance containment hierarchy.

10.4 Property Expressions

A property expression represents the value that is associated with a property through a property
association. The type of the value resulting from the evaluation of the property expression must match
the property type declared for the property name.

Syntax

property_expression ::=

 boolean_term

 | real_term

 | integer_term

 | string_term

 | enumeration_term

 | real_range_term

 | integer_range_term

 | property_term

 | component_classifier_term

 | reference_term

boolean_term ::=

 boolean_value

 | boolean_property_constant_term

 | not boolean_term

 | boolean_term and boolean_term

 | boolean_term or boolean_term

 | (boolean_term)

boolean_value ::= true | false

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 163 -

real_term ::=

 signed_aadlreal_or_constant

integer_term ::=

 signed_aadlinteger_or_constant

string_term ::= string_literal | string_property_constant_term

enumeration_term ::=

 enumeration_identifier | enumeration_property_constant_term

integer_range_term ::=

 integer_term .. integer_term [delta integer_term]

 | integer_range_property_constant_term

real_range_term ::=

 real_term .. real_term [delta real_term]

 | real_range_property_constant_term

property_term ::=

 value ([property_set_identifier ::] property_name_identifier)

property_constant_term ::=

 value ([property_set_identifier ::] property_constant_identifier)

component_classifier_term ::=

 component_category

 [unique_component_type_identifier

 [. component_implementation_identifier]]

reference_term ::=

 reference

 subcomponent_identifier { . subcomponent_identifier }*

 | { subcomponent_identifier. }+ connection_identifier

 | { subcomponent_identifier . }+ server_subprogram_identifier

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 164 -

NOTES:

Boolean operators have the following decreasing precedence order: (), not, and, or.

Naming Rules

The component type identifier or component implementation name of a subcomponent classifier
reference must appear in the anonymous namespace or in the namespace of the specified package.

The enumeration identifier of a property expression must have been declared in the enumeration list of
the property type that is associated with the property.

Legality Rules

If the base type of a property number type or range type is integer, then the numeric literals must be
integers.

The type of a property named in a property term must match the type of the property name in the property
association.

The type of a property constant named in a property constant term must match the type of the property
name in the property association.

Property name references in property expressions cannot be circular. If a property has a property
expression that refers to a property name, then that property’s expression evaluation cannot directly or
indirectly depend on the value of the original property.

Semantics

Every property expression can be evaluated to produce a value, a range of values, or a reference. It can
be statically determined whether this value satisfies the property type designator of the property name in
the property association. The value of the property association may evaluate undefined, if no property
association or default value has been declared.

Boolean terms are of property type aadlboolean. The reserved words true and false evaluate to the
Boolean values true and false. The operator not logically negates the value of a Boolean term.
Expressions containing the operators or and and are of type Boolean. They evaluate to the logical
disjunction and conjunction of the values of their subexpressions. Boolean operators have the following
decreasing precedence order: (), not, and, or. Because Boolean expressions can contain property terms
that reference the values of other properties, and a referenced property value could be undefined, the
Boolean operators are defined to operate over the three values true, false, and undefined.

op1 and op2 True False Undefined

True True False Undefined

False False False False

Undefined Undefined False Undefined

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 165 -

op1 or op2 True False Undefined

True True True True

False True False Undefined

Undefined True Undefined Undefined

X Not X

True False

False True

Undefined Undefined

Number terms evaluate to a numeric value denoted by the numeric literal, or evaluate to a pair consisting
of a numeric value and the specified units identifier. A number term satisfies an aadlinteger property
type if the numeric value is a numeric literal without decimal point or exponent. Otherwise, it satisfies the
aadlreal property type. If specified, the units identifier must be one of the unit identifiers in the unit
designator of the property type. Furthermore, the value must fall within the optionally specified range of
the property type – taking into account unit conversion as necessary.

Enumeration terms evaluate to enumeration identifiers. The enumeration property type of the property
name is satisfied if the enumeration identifier is declared in the enumeration list of the property type.

Range terms are of range property type and are represented by number terms for lower and upper range
bounds plus and an optional delta value. Range terms evaluate to two or three numeric values that and
each must satisfy the number type declared as part of the range property type. The delta value
represents the maximum difference between two values. Properties with range terms as values typically
represent range and increment constraints on data streams communicated through ports.

String terms are of aadlstring property type. A string literal evaluates to the string of characters denoted
by that literal.

Property terms evaluate to the value of the referenced property. This allows one property value to be
expressed in terms of another. The value of the referenced property is determined in the context of the
element for which the property value is being determined. For example, the Deadline property has the
property term value(Period) as its default property expression. If this default value is not overwritten by
another property association, the value of Deadline of a thread subcomponent is determined by
evaluating the property term in the context of the thread subcomponent, i.e., the Deadline value is
determined by the Period value for the thread subcomponent rather than the context of the default
value declaration. The value of the referenced property may be undefined, in which case the property
term evaluates to undefined.

Property constant terms evaluate to the value of the referenced property constant. This allows one
property value to be expressed symbolically in terms of a constant identifier rather than the actual value.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 166 -

Component classifier terms are of the property type component classifier. They evaluate to a
component category and an optional component classifier reference.

Reference terms are of reference property type and evaluate to a reference. This reference may be a
reference to a component in the component containment hierarchy or to a connection or server
subprogram contained in a component.

 For property associations of component implementations, the first identifier in the reference must
appear as a subcomponent identifier in the local namespace of the component implementation to
which the property association belongs.

 For property associations of subcomponents, the first identifier must appear as a subcomponent
identifier within the local namespace of the component implementation that is referenced as the
component classifier of the subcomponent.

 Subsequent identifiers must appear in the namespace of the component implementation
associated with the subcomponent identified by the preceding identifier and must map to
subcomponent declarations.

The entire reference evaluates to the component, connection, or server subprogram feature identified by
the last identifier in that name. In other words, the sequence of identifiers specifies a path down the
containment hierarchy starting with the component in the context of which the property association is
declared.

NOTES:

Expressions of the property type reference or classifier are provided to support the description of binding constraints
and of binding-specific property expressions.

Processing Requirements and Permissions

A method of processing specifications may define additional rules to determine if an expression value is
legal for a property name, beyond the restrictions imposed by the declared property type. The declared
property type represents a minimum set of restrictions that must be enforced for every use of a property
name.

If an associated expression or default value is not specified for a property name, a method of processing
specifications is permitted to reject that specification as erroneous. A method of processing specifications
is permitted to construct a default expression, providing that default is made known to the developers.
This decision may be made on a per property basis. If a property value is not required for a specific
development activity, then the method of processing associated with this activity may accept a
specification in which that property has no associated value.

A method of processing specifications may impose additional restrictions on the use of property
expressions whose value depends on the current mode of operation, or on bindings. For example, mode-
dependent values may be allowed for some properties but disallowed for others. Mode-dependent
property expressions may be disallowed entirely.

Examples

thread Producer

end Producer;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 167 -

thread implementation Producer.Basic

properties

 Compute_Execution_Time => 0ms..10ms in binding (powerpc.speed_350Mhz);

 Compute_Execution_Time => 0ms..8ms in binding (powerpc.speed_450MHz);

end Producer.Basic ;

process Collect_Samples

end Collect_Samples;

system Software

end Software;

system implementation Software.Basic

subcomponents

 Sampler_A : process Collect_Samples;

 Sampler_B : process Collect_Samples

 {

 -- A property with a list of values

 Source_Text => (“collect_samples.ads”, “collect_samples.adb”) ;

 Period => 50 ms;

 } ;

end Software.Basic;

system Hardware

end Hardware;

system implementation Hardware.Basic

subcomponents

 Host_A: processor;

 Host_B: processor;

end Hardware.Basic ;

system Total_System

end Total_System;

system implementation Total_System.SW_HW

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 168 -

subcomponents

 SW : system Software.Basic;

 HW : system Hardware.Basic;

properties

 -- examples of contained property associations

 -- in a subcomponent of SW we are setting the binding to a

 -- component contained in HW

 Allowed_Processor_Binding => reference HW.Host_A

 applies to SW.Sampler_A;

 Allowed_Processor_Binding => reference HW.Host_B

 applies to SW.Sampler_A;

end Total_System.SW_HW;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 169 -

11 Operational Modes

Modes represent the operational states of software, execution platform, and compositional components in
the modeled system. A component can have mode-specific property values. A component can also have
mode-specific configurations of subcomponents and connections. Mode transitions model dynamic
operational behavior that represents switching between configurations and changes in components
internal characteristics.

This section defines modes and mode transitions to support the modeling of operational modes.

11.1 Mode

A mode represents an operational mode state, which manifests itself as a configuration of contained
components, connections, and mode-specific property value associations. A configuration may be an
execution platform configuration in the form of a set of processors, memories, buses, and devices; an
application system configuration in the form of a set of communicating threads within or across processes
and systems; or a source text operational mode within a thread, i.e., an execution behavior embedded in
the source text itself. When multiple modes are declared for a component, a mode transition behavior
declaration identifies which events cause a mode switch and the new mode, i.e., a change to a different
configuration. Exactly one mode is considered the current mode. The current mode determines the set
of threads that are considered active, i.e., ready to respond to dispatches, and the connections that are
available to transfer data and control.

A mode transition specifies possible runtime passage from one state or condition to another. Such
transitions are triggered by events. When declared for processes and systems, mode transitions model
the switch between alternative configurations of active threads. When declared for execution platforms,
mode transitions model the change between different execution platform configurations. When declared
for threads and data, mode transitions model the changeover between modes that are encoded in the
source text and may result in different associated property values.

Syntax

mode ::=

 defining_mode_identifier : [initial] mode

 [{ { mode_property_assocation }+ }];

mode_transition ::=

 source_mode_identifier { , source_mode_identifier }*

 -[unique_port_identifier { , unique_port_identifier }*]->

 destination_mode_identifier ;

mode_refinement ::=

 defining_mode_identifier : refined to mode

 { { mode_property_assocation }+ } ;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 170 -

in_modes ::=

 in modes ((mode_identifier { , mode_identifier }*

 | none))

in_modes_and_transitions ::=

 in modes ((mode_or_transition { , mode_or_transition }*

 | none))

mode_or_transition ::=

 mode_identifier | (old_mode_identifier -> new_mode_identifier)

Naming Rules

The defining mode identifiers must be unique within the local namespace of the component
implementation.

The identifiers in a mode transition that refer to modes must exist in the local namespace of the
component implementation that contains the mode subclause. In other words, only modes declared in
the component implementation that contains the mode transition or in any of its extension ancestors can
be referenced.

The mode identifiers named in an in modes statement must refer to modes declared in the mode
subclause of the component implementation that contains the subcomponent declaration, connection
declaration, or property association with the in modes, or any of its extension ancestors. In other words,
subcomponents, connections, and property associations can only be applicable to modes of the
component implementation they are contained in.

The same mode or mode transition must not be named in the in modes statement of different mode-
specific declarations of the same subcomponent, call sequence, flow implementation, and property
association.

An in modes statement in a refinement declaration may be used to specify mode membership to replace
the one, if any, in the declaration being refined.

The old and new mode identifier in a mode_or_transition clause must not be the same.

Legality Rules

A mode can be declared in data, thread, thread group, process, system, processor, bus, memory, and
device component implementations.

If a component implementation contains mode declarations, one of those modes must be declared with
the reserved word initial. If the component implementation extends another component implementation,
the initial mode may have been declared in one of the ancestor component implementations.

The set of transitions declared within a single component implementation must define a deterministic
transition function. For each mode, there must exist exactly one transition associated with a single event
arrival, which can cause transition to another mode.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 171 -

The unique port identifier must be either an in or in out event port identifier in the interface namespace of
the associated component type or an out or in out event port in the interface namespace of the
component type associated with the named subcomponent.

Semantics

The mode semantics described here focus on a single mode subclause. A system instance that
represents the runtime architecture of an operational system can contain multiple components with their
own mode transitions. The semantics of system-wide mode switching are discussed in Section 12.3.

A mode represents an operational state that is represented as a runtime configuration of containee
components, connections, and mode-specific property value associations. A runtime configuration of
interconnected systems, processes and threads is such an operational state. As is a collection of
execution platform components. An operational mode embedded in the source text may be represented
as threads and data with modes and different associated property values.

Systems and their components may have mode-specific property value associations. The modes for
subcomponents, connections, flow implementations or property associations are specified using the
associated in modes statement.

A component implementation may contain several declared modes. Exactly one of those modes is the
current mode. Initially, the initial mode is the current mode.

In the case of modes declared in system and process implementations, only the threads that are part of
the current mode are in the suspended awaiting dispatch state – responding to dispatch requests. All
other threads are in the suspended awaiting mode state or thread terminated state.

In the case of modes in threads, the current mode reflects conditional execution within the source text.
Observable differences in execution can be reflected in AADL by mode-specific call sequences, flow
implementations, connections, and property associations (see Section 10.4).

In the case of execution platforms, only the execution platform components that are part of the current
mode are accessible to software components. Only the processors and memories that are part of the
current mode can be the target of bindings of components active in that mode.

The in modes statement is declared as part of subcomponent declarations, subprogram call sequences,
flow implementations, and property associations. It specifies the modes for which these declarations and
property values hold. The mode identifiers refer to mode declarations in the modes subclause of the
component implementation. If the in modes statement is not present, then the subcomponent,
subprogram call sequence, flow implementation, or property association is part of all modes. If a property
association has both mode-specific declarations and a declaration without an in modes statement, then
the declaration without the in modes statement applies to those modes not covered by the mode-specific
declarations. The reserved word none is used to indicate a declaration is not part of any mode.

The in modes statement declared as part of connection declarations specify the modes or mode
transitions for which these connection declarations hold. The mode identifiers refer to mode declarations
in the modes subclause of the component implementation. If a connection is declared to be part of a
mode transition, then the content of the ultimate source port is transferred to the ultimate destination port
at the actual mode switch time. If the in modes statement contains only mode transitions, then the
connection is part of the specified mode transitions, but not part of any particular mode. If the in modes
statement is not present, then the connection is part of all modes. If a connection has both mode-specific
declarations and a declaration without an in modes statement, then the declaration without the in modes

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 172 -

statement applies to those modes not covered by the mode-specific declarations. The reserved word
none is used to indicate a declaration is not part of any mode or mode transition.

If the in modes statement is declared as part of a refinement, the newly named modes replace the
modes specified in the declaration being refined.

Mode Switch

The modes subclause declares a state machine describing the dynamic mode switching behavior of
modes. The states of the state machine represent the different modes and the transitions specify the
event(s) that can trigger a mode switch to the destination mode. Only one mode alternative represents the
current mode at any one time. A mode switch is triggered when an event arrives at an event port that is
named in one of the transitions out of the state representing the current mode. If an event is raised and
there is no transition out of the current mode naming the event port through which the event arrives, the
event is ignored. If several events occur logically simultaneously and affect different mode transitions out
of the current mode, the order of arrival for the purpose of determining the mode transition is
implementation dependent. If an Urgency property is associated with each mode transition, then the
mode transition with the highest urgency takes precedence.

Any change of the current mode has the effect of changing the property value in property associations
with mode-specific values – as expressed by the in modes statement.

A mode switch within a thread results in a change of its current mode. The effect is a change in the
subprogram call sequence and mode-specific property values to reflect a change in source text internal
execution behavior. Such a change in property values may include a change in the thread’s period,
deadline, or worst-case execution time. A mode switch within a thread does not affect the set of active
threads, processors, devices, buses, or memories, nor does it affect the set of active connections.

A mode switch within a system, process, or thread group implementation has the effect of deactivating
and activating threads to respond to dispatches, and changing the pattern of connections between
components. Deactivated threads transition to the suspended awaiting mode state. Background threads
that are not part of the new mode suspend performing their execution. Activated threads transition to the
suspended awaiting dispatch state and start responding to dispatches. Suspended background threads
that are part of the new mode resume performing execution once the transition into the new mode is
complete. Threads that are part of both the old and new mode of a mode transition continue to respond
to dispatches and perform execution. Ports that were connected in the old mode, may not be connected
in the new mode and vice versa.

When a mode switch is requested through the arrival of an event on a mode transition, the actual mode
switch occurs immediately if no periodic threads are part of the old mode, otherwise it occurs once these
periodic threads in the old mode are synchronized at their hyperperiod. Only those threads with a
Synchronzied_Component property value of true are considered in the determination of the
hyperperiod (see Section 12.3).

Starting with the actual time of mode switch, the component is in a mode transition in progress state for a
limited amount of time. During this time some threads are deactivated, other threads are activated,
connections are adjusted, and the active threads in the new mode start to execute. This time period
takes the Synchronized_Component property into account and is determined at the level of the whole
system instance (see Section 12.3). After that period of time, the component is considered to operate in
the new mode.

At the time of the actual mode switch, the deactivate entrypoint is invoked for the following threads that
must be deactivated: periodic threads that are synchronized with the mode switch; aperiodic or sporadic

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 173 -

threads that are in the suspended awaiting dispatch state. This is shown in Figure 5 with the transition
labeled thread exit(mode).

At the time instant of actual mode switch, aperiodic and sporadic threads as well as periodic threads not
synchronized with the mode switch may still be in the perform computation state (see Figure 5). The
Active_Thread_Handling_Protocol property specifies for each such thread what action is to be
taken. Possible actions are:

Abort the execution of the thread and permit the thread to recover any state through execution of its
recover entrypoint. This permits the thread to recover to a consistent state for future activation and
dispatch. Upon completion of the recover entrypoint, execution, event and event data port queues of the
thread are flushed and the thread enters the suspended awaiting mode state. If the thread was executing
a server subprogram, the current dispatch execution of the calling thread of a call in progress or queued
call is also aborted.

Permit the thread to complete the execution of its current dispatch. Any remaining queued events, or
event data may be flushed, or remain in the queue until the thread is activated again as specified by the
Active_Thread_Queue_Handling_Protocol property.

Permit the thread to finish processing all events or event data in its queues.

The semantics of any such actions for threads in the performing computation state at the time instant of
actual mode switch is not shown in the hybrid automaton in Figure 5.

Background processes that are only part of the old mode are suspended when the actual mode switch
occurs.

At the time of the actual mode switch, any threads that were inactive in the old mode and are active in the
new mode execute their activate entrypoint. In the case of periodic threads, this is immediately followed
by their first dispatch of the compute entrypoint. In the case of background threads, the thread resumes
execution from where it was suspended at the last deactivation.

Threads that are active in both the old and the new mode are dispatched in their usual manner; in the
case of background threads, they continue in the execute state.

Some property values for a component or its subcomponents may be mode-specific, for example the
period of a periodically dispatched thread may be different in different modes of operation. It changes at
the time of actual mode switch.

Processing Permissions and Requirements

Every method for processing specifications must parse mode transition declarations and check the
legality rules defined in this standard. However, a method of processing specifications need not define
how to build a system from a specification that contains mode transition declarations. That is, complex
behaviors that may have multiple modes of operation may be rejected by a method of building systems as
an unsupported capability.

If two different events that occur logically simultaneously result in more than one possible transition out of
the current mode, a method of implementation may supply an implementation-dependent order or
response to these events. An implementation may provide an Urgency parameter to the Raise_Event
service call (see Section 5.3) to prioritize the response to simultaneous events. A method of
implementation is permitted to raise a runtime error to indicate the nondeterministic nature of the system.
Or, a method of implementation may specify additional rules to define the order in which transitions will
occur.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 174 -

In a physical distributed system, exact simultaneity among multiple events cannot be achieved. A
physical system implementation must use synchronization protocols sufficient to insure that the causal
ordering of event and data transfers defined by the logical temporal semantics of this standard are
satisfied by the physical system, to the degree of assurance required by an application.

A method of implementation is permitted to provide preservation of queue content for aperiodic and
sporadic threads on a mode switch until the next activation. This is specified using the thread property
Active_Thread_Queue_Handling_Protocol.

A method of implementation is permitted to support a subset of the described protocols to handle threads
that are in the performing computation state at the time instant of actual mode switch. They must
document the chosen subset and its semantic behavior as part of the
Supported_Active_Thread_Handling_Protocol property.

Examples

data Position_Type

end Position_Type;

process Gps_Sender

features

 Position: out data port Position_Type;

 -- if connected secondary position information is used to recalibrate

 SecondaryPosition: in data port Position_Type

 { Required_Connection => false;};

end Gps_Sender;

process implementation Gps_Sender.Basic

end GPD_Sender.Basic;

process implementation Gps_Sender.Secure

end Gps_Sender.Secure;

process GPS_Health_Monitor

features

 Backup_Stopped: out event port;

 Main_Stopped: out event port;

 All_Ok: out event port;

 Run_Secure: out event port;

 Run_Normal: out event port;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 175 -

end GPS_Health_Monitor;

system Gps

features

 Position: out data port Position_Type;

 Init_Done: in event port;

end Gps;

system implementation Gps.Dual

subcomponents

 Main_Gps: process Gps_Sender.Basic in modes (Dualmode, Mainmode);

 Backup_Gps: process Gps_Sender.Basic in modes (Dualmode, Backupmode);

 Monitor: process GPS_Health_Monitor;

connections

 data port Main_Gps.Position -> Position in modes (Dualmode, Mainmode);

 data port Backup_Gps.Position -> Position in modes (Backupmode);

 data port Backup_Gps.Position -> Main_Gps.SecondaryPosition

 in modes (Dualmode);

modes

 Initialize: initial mode;

 Dualmode : mode;

 Mainmode : mode;

 Backupmode: mode;

 Initialize –[Init_Done]-> Dualmode;

 Dualmode –[Monitor.Backup_Stopped]-> Mainmode;

 Dualmode –[Monitor.Main_Stopped]-> Backupmode;

 Mainmode, Backupmode –[Monitor.All_Ok]-> Dualmode;

end Gps.Dual;

system implementation Gps.Secure extends Gps.dual

subcomponents

 Secure_Gps: process Gps_Sender.Secure in modes (Securemode);

connections

 data port Secure_Gps.Position -> Position in modes (Securemode);

modes

 Securemode: mode;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 176 -

 SingleSecuremode: mode;

 Dualmode –[Monitor.Run_Secure]-> Securemode;

 Securemode –[Monitor.Run_Normal]-> Dualmode;

 Securemode –[Monitor.Backup_Stopped]-> SingleSecuremode;

 SingleSecuremode –[Monitor.Run_Normal]-> Mainmode;

 Securemode –[Monitor.Main_Stopped]-> Backupmode;

end Gps.Secure;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 177 -

12 Operational System

Component type and component implementation declarations are architecture design elements that
define the structure and connectivity of a physical system architecture. They are component classifiers
that must be instantiated to create a complete system instance. A complete system instance that
represents the containment hierarchy of the physical system is created by instantiating a root system
implementation and then recursively instantiating the subcomponents and their subcomponents. Once
instantiated, a system instance can be completely bound, i.e., each thread is bound to a processor; each
source text, data component, and port is bound to memory; and each connection is bound to a bus if
necessary.

A completely instantiated and bound system acts as a blueprint for a system build. Binary images are
created and configured into load instructions according to the system instance specification in AADL.

12.1 System Instances

A system instance represents the runtime architecture of a physical system that consists of application
software components and execution platform components.

A system instance is completely instantiable if the system implementation being instantiated is completely
specified and completely resolved.

A system instance is completely instantiated and bound if all threads are ultimately bound to a processor,
all source text making up process address spaces are bound to memory, connections are bound to buses
if their ultimate source and destinations are bound to different processors, and subprogram calls are
bound to server subprograms as necessary.

A set of contained property associations can reflect property values that are specific to individual
instances of components, ports, connections, provided and required access. These properties may
represent the actual binding of components, as well as results of analysis, simulation, or actual execution
of the completely instantiated and bound system. Thus, multiple sets of contained property associations
can be associated with the same system instance to represent different system configurations.

Legality Rules

The system type specified for a system instance must not contain any required subcomponents.

A complete system instance must not contain incompletely specified subcomponents, ports, and
subprograms. All processes in a completely instantiable system must contain at least one thread.

In a complete system instance, the ports of all threads, devices, and processors must be the ultimate
source or destination of semantic connections. The Required_Connection property may be used to
indicate that a port connection is optional. In the case of the predeclared Error and Complete ports
(see Section 5.3), connections are optional.

In a completely instantiable system, the subprogram calls of all threads must either be local calls or be
bound to a server subprogram whose thread is part of the same mode.

In a completely instantiable system, for every mode that is the source of mode transitions, there must be
at least one mode transition that is the ultimate destination of a semantic connection whose ultimate
source is part of the mode.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 178 -

In a complete system instance, aperiodic and sporadic threads that are part of a given mode must
have at least one connection to one of their in event ports or in event data ports or their predeclared
Dispatch port. The predeclared Dispatch port must not be connected if the thread has a
Dispatch_Protocol property value of periodic or background.

For instantiable systems, all threads must be bindable to processors and all components representing
source text must be bindable to memory.

The source text associated with all contained components of the system instance must be compliant with
the specified component type, component implementation, and property associations.

A system instance must contain at least one thread, one processor and one memory component in its
containment hierarchy to represent an application system that is executable on an execution platform, i.e.,
a processor with memory containing the application code and data.

Semantics

A system instance represents an operational physical system. That physical system may be a stand-
alone system or a system of systems. A system instance consists of application software and execution
platform components. The component configuration, i.e., the hierarchical structure and interconnection
topology of these components is statically known. The mode concept describes alternative statically
known component configurations. The runtime behavior of the system allows for switching between these
alternative configurations according to a mode transition specification.

The physical system denoted by a system implementation can be built if the system is instantiable and if
source text exists for all components whose properties refer to source text. This source text must be
compliant with the AADL specification and the source text language semantics. Source text is processed
to generate binary images. The binary images are loaded into memory and made accessible to threads
in virtual address spaces of processes.

In addition, there exists a kernel address space for every processor. This address space contains binary
images of processor software and device software bound to the processor.

12.2 System Binding

This section defines how binary images produced by compiling source units are assigned to and loaded
onto processor and memory resources, taking into account requirements for component sharing and the
interconnect topology between processors, memories and devices. The decisions and methods required
to combine the components of a system to produce a physical system implementation are collectively
called bindings.

Naming Rules

The Allowed_Processor_Binding property values evaluate to a processor, or a system that contains
a processor in its component containment hierarchy.

The Allowed_Memory_Binding property values evaluate to a memory, a processor that contains
memory or a system that contains a memory or a processor containing memory in its component
containment hierarchy.

The first identifier of the property value for each element of a property value list must exist in the local
namespace of the containing component implementation or in one of its containing component

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 179 -

implementations. The first containing component with a match must be an execution platform system,
i.e., must be a processor component or a system component containing a processor or memory in its
containment sub-hierarchy. Subsequent identifiers must exist in the local namespace of the component
implementation associated with the component identified by the preceding identifier. The final identifier
identifies the system, processor, or memory component that represents a legal candidate for processor or
memory binding.

Legality Rules

Every mode-specific configuration of a system instance must have a binding of every process component
to a (set of) memory component(s), and a binding of every thread component to a (set of) processor(s).
In the case of dynamic process loading, the actual binding may change at runtime. In the case of tightly
coupled multi-processor configurations, the actual thread binding may change between members of an
actual binding set of processors as these processors service a common set of thread ready queues.
Multiple software components may be bound to a single memory component. A software component may
be bound to multiple memory components. A thread must be bound to a single processor. Multiple
threads can be bound to a single processor.

All software components for a process must be bound to memory components that are all accessible from
every processor to which any thread contained in the process is bound. That is, every thread is able to
access every memory component into which the process containing that thread is loaded.

A shared data component must be bound to memory accessible by all processors to which the processes
sharing the data component are bound.

For all threads in a process, all processors to which those threads are bound must have identical
component types and component implementations. That is, all threads that are contained in a given
process must all be executing on the same kind of processor, as indicated by the processor classifier
reference value of the Allowed_Processor_Binding_Class property associated with the process.
Furthermore, all those processors must be able to access the memory to which the process is bound.

The complete set of software components making up the kernel address space of a processor must be
bound to memory that is accessible by that processor.

Each thread must be bound to a processor satisfying the Allowed_Processor_Binding_Class and
Allowed_Processor_Binding property values of the thread. The Allowed_Processor_Binding
property may specify a single processor, thus specifying the exact processor binding. It may also specify
a list of processor components or system components containing processor components, indicating that
the thread is bindable to any of those processor components.

Each process must be bound to a memory satisfying the Allowed_Memory_Binding_Class and
Allowed_Memory_Binding property values of the process. The Allowed_Memory_Binding
property may specify a single memory component, thus specifying the exact memory binding. It may also
specify a list of memory components or system components containing memory components, indicating
that the process is bindable to any of those memory components.

The memory requirements of the binary images and the runtime memory requirements of threads and
processes bound to a memory component must not exceed that memory’s capacity. The execution time
requirements of all threads bound to a processor must not exceed the schedulable cycles required to
insure that all thread timing requirements are met. These two constraints may be checked statically or
dynamically. Runtime detection of such a memory capacity or timing requirements violation results in an
error that the application system can choose to recover from.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 180 -

The memory requirements of ports and data components are specified as property values of their data
types. Those property associations can have binding-specific values.

Semantics

A complete system instance is instantiated and bound by identifying the actual binding of all threads to
processors, all binary images reflected in processes and other components to memory, and all
connections to buses if they span multiple processors. The actual binding can be recorded for each
component in the containment hierarchy by property associations declared with in the system
iimplementation.

The actual binding must be determined within specified binding constraints. Binding constraints of
application components to execution platform components are expressed by the allowed binding and
allowed binding class properties for memory, processor, and bus. In the case of an allowed binding
property, the execution platform component is identified by a sequence of ‘.’ (dot) separated
subcomponent names. This sequence starts with the subcomponent contained in the component
implementation for which the property association is declared. Or the sequence begins with the
subcomponent contained in the component implementation of the subcomponent or system
implementation for which the property association is declared. This means that the property association
representing the binding constraint or the actual binding may have to be declared as a component
instance property association of a component that represents a common root of the components to be
bound.

Processing Requirements and Permissions

A method of building systems is permitted to require bindings of selected kinds to be fixed at development
time, or to be fixed at the time of physical system construction. A method of building systems is permitted
to allow bindings of selected kinds to change dynamically at runtime. For example, a method of building
systems may require process to memory binding and loading to be fixed during physical system
construction, and may require thread to processor bindings to be fixed at mode changes. Other choices
are possible and permitted.

A method of building systems must check and enforce the semantics and legality rules defined in this
standard. Property associations may impose constraints on allowed bindings. The access semantics
impose a number of constraints on allowed bindings for processes and threads to execution platform
systems, and ultimately to processors and memories. In general, the semantic constraints depend on the
particular software and hardware architecture interconnect topologies. In particular, for most hardware
and operating system configurations all threads contained in a process must execute on the same
processor. Such additional restrictions must be taken into account by the method of building systems. A
method of building systems is otherwise permitted to make any partitioning and binding choices that are
consistent with the semantics and legality rules of this standard.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 181 -

NOTES:

If multiple processes share a component, then the physical memory to which the shared component is bound will
appear in the virtual address space of all those processes. This physical memory is not necessarily addressed using
either the same virtual address in different processes or the same physical address from different processors. An
access property association may be used to specify different addresses used to access the same component from
different processors.

The AADL supports binding-specific property values. This allows different property values to be specified for a
component property whose values are sensitive to binding decisions.

Examples

system smp

end smp;

system implementation smp.s1

-- a multi-processor system

subcomponents

 p1: processor cpu.u1;

 p2: processor cpu.u1;

 p3: processor cpu.u1;

end smp.s1;

process p1

end p1;

process implementation p1.i1

subcomponents

 ta: thread t1.i1;

 tb: thread t1.i1;

end p1.i1;

thread t1

end t1;

thread implementation t1.i1

end t1.i1;

processor cpu

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 182 -

end cpu;

processor implementation cpu.u1

end cpu.u1;

system S

end S;

system implementation S.I

-- a system combining application components

-- with execution platform components

subcomponents

 p_a: process p1.i1;

 p_b: process p1.i1;

 up1: processor cpu.u1;

 up2: processor cpu.u1;

 ss1: system smp.s1;

properties

 Allowed_Processor_Binding => (reference up1, reference up2)

 applies to p_a.ta;

 Allowed_Processor_Binding => (reference up1, reference up2)

 applies to p_a.tb;

 -- ta is restricted to a subset of processors that tb can be bound to;

 -- since ta and tb are part of the same process they must be bound to the

 -- same processor in most hardware configurations

 Allowed_Processor_Binding => reference ss1.p3 applies to p_b.ta;

 Allowed_Processor_Binding => reference ss1 applies to p_b.tb;

end S.I;

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 183 -

NOTES:

Binding properties are declared in the system implementation that contains in its containment hierarchy both the
components to be bound and the execution platform components that are the target of the binding. Binding
properties can also be declared separately for each instance of such a system implementation, either as part of the
system instantiation or as part of a subcomponent declaration.

12.3 System Operation

System operation is the execution of a completely instantiated and bound system. System operation
consists of different phases:

System startup: initialization of the execution platform and the application system.

Normal operation: execution of threads and communication between threads and devices.

System operation mode transition: mode switching of one or more components with specified mode
transitions.

System-wide fault handling, shutdown, and restart.

System Startup

On system startup, the hardware of the execution platform is initialized, the binary images of the kernel
address space are loaded into memory of each processor, and execution is started to initialize the
execution platform software. Loading into memory may take zero time, if the memory can be preloaded,
e.g., PROM or flash memory. Once initialized, each processor initiates the loading of the binary images
of processes bound to the specific processor into memory (see Figure 17).

Process binary images are loaded in the memory component to which the process and its contained
software components are bound (see Figure 8). In a static process loading scenario, all binary images
must be loaded before execution of the application system starts, i.e., thread initialization is initiated. In a
dynamic process loading scenario, binary images of all the processes that contain a thread that is part of
the current mode must be loaded.

The maximum system initialization time can be determined as Processor_Startup_Deadline +
max(Load_Time) of all systems and processes + max(Initialize_Deadline) of all threads.

All software components for a process must be bound to memory components that are all accessible from
every processor to which any thread contained in the process is bound. That is, every thread is able to
access every memory component into which the binary image of the process containing that thread is
loaded.

Data components shared across processes must be bound to memory accessible by all processors to
which the processes sharing the data component are bound.

Thread initialization must be completed by the next hyperperiod of the initial mode. Once all threads are
initialized, threads that are part of the initial mode enter the await dispatch state. If loaded, threads that
are not part of the initial mode enter the suspend awaiting mode state (see Figure 5). At their first
dispatch, the initial values of connected out or in out ports are made available to destination threads in
their in or in out ports.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 184 -

Figure 17 System Instance States, Transitions, and Actions

Normal System Operation

Normal operation, i.e., the execution semantics of individual threads and transfer of data and control
according to connection and shared access semantics, have been covered in previous sections. In this
section we focus on the coordination of such execution semantics throughout a system instance.

A system instance is called synchronized if all components use a globally synchronized reference time. A
system instance is called asynchronous if different components use separate clocks with the potential for
clock drift.

This version of the standard defines the semantics of execution for synchronous systems. A method of
implementing a system may provide asynchronous system semantics as long as system wide
coordination protocols are in place.

In a synchronized system, periodic threads are dispatched simultaneously with respect to a global clock.
The hyperperiod of a set of periodic threads is defined to be the least common multiple of the periods of
those threads.

In a synchronized system, a raised event logically arrives simultaneously at the ultimate destination of all
semantic connections whose ultimate source raised the event. In a synchronized system, two events are
considered to be raised logically simultaneously if they occur within the granularity of the globally
synchronized reference time. If several events are logically raised simultaneously and arrive at the same
port or at different transitions out of the current mode in the same or different components, the order of
arrival is implementation-dependent.

System Operation Modes

The set of all mode transitions specified for all components of a system instance form a set of concurrent
mode transitions, called system operation modes (SOM). The set of possible SOMs is the cross product
of the sets of modes for each component. That is, a SOM is a set of component modes, one mode for
each component of the system. The initial SOM is the set of initial modes for each component.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 185 -

The discrete variable Mode denotes a SOM. That is, the variable Mode denotes a possible discrete state
that is defined by the mode hybrid semantic diagrams. Note that the value of Mode will in general change
at various instants of time during system operation, although not in a continuous time-varying way.

The SOM transition is requested whenever a mode transition in any component in the system instance is
requested by the arrival of an event. A single event can trigger a mode switch request in one or more
components. In a synchronized system, this event occurs logically simultaneously for all components,
i.e., the resulting component mode switch requests are treated as a single SOM transition request.

If several events occur logically simultaneously and are semantically connected to transitions in different
components that lead out of their current mode or to different transitions out of the same mode in one
component, then events are considered to have an implementation-dependent order that determines the
mode transition for the mode switch – resulting in the other events being ignored.

After a SOM transition request has occurred, the actual SOM transition occurs in zero time, if no periodic
threads are part of the old mode, otherwise, it occurs at the hyperperiod boundary of the old SOM. This is
indicated in Figure 18 by the guard on the transition from the current_system_operation_mode
state to the mode_transition_in_progress state. During that time, the system continues to operate
in the old SOM and additional events that would result in a SOM transition from the current SOM are
ignored.

The rational-valued function Hyper(Mode) in Figure 18 denotes the hyperperiod of a SOM. The
hyperperiod is determined by the periods of those periodic threads whose Synchronzied_Component
property is true, and that will deactivate or activate as part of the mode switch, or that remain active but
whose connections may change during the mode switch. If this set of threads is empty, the mode
transition is initiated immediately.

At the time of actual SOM transition, the transition is performed to the new SOM that contains the
destination modes of the requested component mode switch(es).

System Operation Mode Transition

A runtime transition between SOMs requires a non-zero interval of time, during which the system is said
to be in transition between two system modes of operation. While a system is in transition, excluding the
instants of time at the start and end of a transition, all arriving events that appear in transition edge
declarations are ignored and will not cause any mode change.

At the instant of time the mode-transition-in-progress state is entered, connections that are part of the old
SOM and not part of the new SOM are disabled. For data connections, this means that the data value is
not transferred into the in data port variable of the newly disabled thread.

At the instant of time the mode-transition-in-progress state is entered, data is transferred
logically simultaneously for all connections that are declared to be part of any of the component mode
transitions making up the SOM transition. For data connections, this means that the data is transferred
from the out data port such that its value becomes available at the first dispatch of the receiving thread.

At the instant of time the mode-transition-in-progress state is entered, connections that are not
part of the old SOM and part of the new SOM are enabled. For data connections, this means that the data
value of a transition connection is transferred into the in data port variable of the newly enabled thread. If
the in data port of the destination thread is not the destination of a transition connection, the data value of
the out data port of the source thread is transferred into the in data port variable of the newly enabled
thread. If the source thread is also activated as part of the mode transition, its out data port value is
transferred after the thread completes its activate entrypoint execution.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 186 -

When the mode-transition-in-progress state is entered, thread exit(Mode) is triggered for all threads that
are part of the old thread and not part of the new thread. This results in the execution of deactivation
entrypoints for those threads (see Figure 5) as described in Section 11.

In addition, at the time the mode-transition-in-progress state is entered, thread enter(Mode) is
triggered for threads that are part of the new mode and not part of the old mode. This permits those
threads to execute their activation entrypoints (see Figure 5). In addition, for periodic threads this is
immediately followed by their first compute entrypoint dispatch as described in Section 11.

At the instant of time the mode-transition-in-progress state is entered, connections that are not
part of the old SOM and are part of the new SOM are enabled, i.e., connection transmission occurs
according to the connections that are part of the new SOM.

While the system is in the mode-transition-in-progress state, threads that are part of the old and
new SOM continue to operate normally. SOM transition requests as resulting from raise events are
ignored while the system instance is in the mode-transition-in-progress state.

The system instance remains in the mode-transition-in-progress state until the next hyperperiod.
This hyperperiod is determined by the rules stated earlier. At that time, the system instance enters
current_system_operation_mode state and starts responding to new requests for SOM transition.

Figure 18 System Mode Switch Semantics

The synchronization scope for enter(Mode) consists of all threads that are contained in the system
instance that were inactive and are about to become active. The synchronization scope for exit(Mode)
contains all threads that are contained in the system instance that were active and are to become
inactive. The edge labels enter(Mode) and exit(Mode) also appear in the set of concurrent semantic
automata derived from the mode declarations in a specification. That is, enter(Mode) and exit(Mode)
transitions for threads occur synchronously with a transition from the
current_system_operation_mode state to the mode-transition-in-progress state.

System-wide Fault Handling, Shutdown, and Restart

Thread unrecoverable errors result in transmission of event data on the Error port of the appropriate
thread, processor, or device. The ultimate destination of this semantic connection can be a thread or set
of threads whose role is that of a system health monitor and system configuration manager. Such
threads make decisions about appropriate fault handling actions to take. Such actions include raising of
events to trigger mode switches, e.g., to request SOM transitions.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 187 -

Processing Requirements and Permissions

This standard does not require that source text be associated with a software or execution platform
category. However, a method of implementing systems may impose this requirement as a precondition
for constructing a physical system from a specification.

A system instance represents the runtime architecture of an application system that is to be analyzed and
processed. A system instance is identified to a tool by a component classifier reference to an instantiable
system implementation. For example, a tool may allow a system classifier reference to be supplied as a
command line parameter. Any such externally identified component specification must satisfy all the rules
defined in this specification for system instances.

A method of building systems is permitted to only support static process loading.

A method of building systems is permitted to create any set of loadable binary images that satisfy the
semantics and legality rules of this standard. For example, a single load image may be created for each
processor that contains all processes and threads executed by that processor and all source text
associated with devices and buses accessible by that processor. Or a separate load image may be
created for each process to be loaded into memory to make up the process virtual address space, in
addition to the kernel address space created for each processor.

A process may define a source namespace for the purpose of compiling source programs, define a virtual
address space, and define a binary image for the purpose of loading. A method of building systems is
permitted to separate these functions. For example, processes may be compiled and pre-linked as
separate programs, followed by a secondary linking to combine the process binary images to form a load
image.

A method of building systems is permitted to compile, link and load a process as a single source program.
That is, a method of building systems is permitted to impose the additional requirement that all associated
source text for all threads contained in a process form a legal program as defined in the applicable
programming language standard.

If two software components that are compiled and linked within the same namespace have identical
component types and implementations, or the intersection of their associated source text compilation
units is non-empty, then this must be detected and reported.

A method of building systems is permitted to omit loading of processor, device, and bus software in a
processor kernel address space if none of the threads bound to that processor need to access or execute
that software.

This standard supports static virtual memory management, i.e., permits the construction of systems in
which binary images of processes are loaded during system initialization, before a system begins
operation.

Also permitted are methods of dynamic virtual memory management or dynamic library linking after
process loading has completed and thread execution has started. However, any method for
implementing a system must assure that all deadline properties will be satisfied for each thread.

An alternative implementation of the process and thread state transition sequences is permitted in which
a process is loaded and initialized each time the system changes to a mode of operation in which any of
the containing threads in that process are active. This process load and initialize replaces the perform
thread activate action in the thread state transition sequence as well as the process load action in the
process state transition sequence. These alternative semantics may be adopted for any designated

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 188 -

subset of the processes in a system. All threads contained in a process must obey the same thread
semantics.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 189 -

13 Lexical Elements

The text of an AADL description consists of a sequence of lexical elements, each composed of
characters. The rules of composition are given in this section.

13.1 Character Set

The only characters allowed outside of comments are the graphic_characters and format_effectors.

Syntax

character ::= graphic_character | format_effector

 | other_control_function

graphic_character ::= identifier_letter | digit | space_character

 | special_character

Semantics

The character repertoire for the text of an AADL specification consists of the collection of characters
called the Basic Multilingual Plane (BMP) of the ISO 10646 Universal Multiple-Octet Coded Character
Set, plus a set of format_effectors and, in comments only, a set of other_control_functions; the coded
representation for these characters is implementation defined (it need not be a representation defined
within ISO-10646-1).

The description of the language definition in this standard uses the graphic symbols defined for Row 00:
Basic Latin and Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspond to the graphic
symbols of ISO 8859-1 (Latin-1); no graphic symbols are used in this standard for characters outside of
Row 00 of the BMP. The actual set of graphic symbols used by an implementation for the visual
representation of the text of an AADL specification is not specified.

The categories of characters are defined as follows:

identifier_letter

upper_case_identifier_letter | lower_case_identifier_letter

upper_case_identifier_letter

Any character of Row 00 of ISO 10646 BMP whose name begins “Latin
Capital Letter”.

lower_case_identifier_letter

Any character of Row 00 of ISO 10646 BMP whose name begins “Latin
Small Letter”.

digit

One of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 190 -

space_character

The character of ISO 10646 BMP named “Space''.

special_character

Any character of the ISO 10646 BMP that is not reserved for a control function, and is not
the space_character, an identifier_letter, or a digit.

format_effector

The control functions of ISO 6429 called character tabulation (HT), line tabulation (VT),
carriage return (CR), line feed (LF), and form feed (FF).

other_control_function

Any control function, other than a format_effector, that is allowed in a comment; the set of
other_control_functions allowed in comments is implementation defined.

The following names are used when referring to certain special_characters:

Symbol Name Symbol Name

" quotation mark : colon

number sign ; semicolon

= equals sign (left parenthesis

) Right parenthesis _ underline

+ plus sign [left square bracket

, Comma] right square bracket

- Minus { left curly bracket

. Dot } right curly bracket

Implementation Permissions

In a nonstandard mode, the implementation may support a different character repertoire; in particular, the
set of characters that are considered identifier_letters can be extended or changed to conform to local
conventions.

NOTES:

Every code position of ISO 10646 BMP that is not reserved for a control function is defined to be a graphic_character
by this standard. This includes all code positions other than 0000 - 001F, 007F - 009F, and FFFE - FFFF.

13.2 Lexical Elements, Separators, and Delimiters

Semantics

The text of an AADL specification consists of a sequence of separate lexical elements. Each lexical
element is formed from a sequence of characters, and is either a delimiter, an identifier, a reserved word,
a numeric_literal, a character_literal, a string_literal, or a comment. The meaning of an AADL

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 191 -

specification depends only on the particular sequences of lexical elements that form its compilations,
excluding comments.

The text of an AADL specification is divided into lines. In general, the representation for an end of line is
implementation defined. However, a sequence of one or more format_effectors other than character
tabulation (HT) signifies at least one end of line.

In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any
of a space character, a format_effector, or the end of a line, as follows:

A space character is a separator except within a comment, a string_literal, or a character_literal.

Character tabulation (HT) is a separator except within a comment.

The end of a line is always a separator.

One or more separators are allowed between any two adjacent lexical elements, before the first, or after
the last. At least one separator is required between an identifier, a reserved word, or a numeric_literal
and an adjacent identifier, reserved word, or numeric_literal.

A delimiter is either one of the following special characters

() [] { } , . : ; = * + -

or one of the following compound delimiters each composed of two or three adjacent special characters

:: => +=> -> ->> .. −[]−> {** **}

Each of the special characters listed for single character delimiters is a single delimiter except if that
character is used as a character of a compound delimiter, or as a character of a comment, string_literal,
character_literal, or numeric_literal.

The following names are used when referring to compound delimiters:

Delimiter Name

:: qualified name separator

=> association

+=> additive association

-> Immediate connection

->> delayed connection

.. interval

-[left step bracket

]-> right step bracket

{** begin annex

**} end annex

Processing Requirements and Permissions

An implementation shall support lines of at least 200 characters in length, not counting any characters
used to signify the end of a line. An implementation shall support lexical elements of at least 200

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 192 -

characters in length. The maximum supported line length and lexical element length are implementation
defined.

13.3 Identifiers

Identifiers are used as names. Identifiers are case insensitive.

Syntax

identifier ::= identifier_letter {[underline] letter_or_digit}*

letter_or_digit ::= identifier_letter | digit

An identifier shall not be a reserved word.

For the lexical rules of identifiers, the rule of whitespace as token separator does not apply. In other
words, identifiers do not contain spaces or other whitespace characters.

Semantics

All characters of an identifier are significant, including any underline character. Identifiers differing only in
the use of corresponding upper and lower case letters are considered the same.

Legality Rules

An identifier must be distinct from the reserved words of the AADL.

Processing Requirements and Permissions

In a nonstandard mode, an implementation may support other upper/lower case equivalence rules for
identifiers, to accommodate local conventions.

In non-standard mode, a method of implementation may accept identifier syntax of any programming
language that can be used for software component source text.

Examples

 Count X Get_Symbol Ethelyn Garçon

 Snobol_4 X1 Page_Count Store_Next_Item Verrűckt

13.4 Numerical Literals

There are two kinds of numeric literals, real and integer. A real_literal is a numeric_literal that includes a
point; an integer_literal is a numeric_literal without a point.

Syntax

numeric_literal ::= integer_literal | real_literal

integer_literal ::= decimal_integer_literal | based_integer_literal

real_literal ::= decimal_real_literal

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 193 -

13.4.1 Decimal Literals

A decimal literal is a numeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax

decimal_integer_literal ::= numeral [positive_exponent]

decimal_real_literal ::= numeral . numeral [exponent]

decimal_integer_literal ::= numeral

numeral ::= digit {[underline] digit}*

exponent ::= E [+] numeral | E – numeral

positive_exponent ::= E [+] numeral

Semantics

An underline character in a numeral does not affect its meaning. The letter E of an exponent can be
written either in lower case or in upper case, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal literal without the exponent is to
be multiplied to obtain the value of the decimal literal with the exponent.

Examples

 12 0 1E6 123_456 -- integer literals

 12.0 0.0 0.456 3.14159_26 -- real literals

13.4.2 Based Literals

A based literal is a numeric_literal expressed in a form that specifies the base explicitly.

Syntax

based_integer_literal ::= base # based_numeral # [positive_exponent]

base ::= digit [digit]

based_numeral ::= extended_digit {[underline] extended_digit}

extended_digit ::= digit | A | B | C | D | E | F | a | b | c | d | e | f

Legality Rules

The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at
most sixteen. The extended_digits A through F represent the digits ten through fifteen respectively. The
value of each extended_digit of a based_literal shall be less than the base.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 194 -

Semantics

The conventional meaning of based notation is assumed. An exponent indicates the power of the base
by which the value of the based literal without the exponent is to be multiplied to obtain the value of the
based literal with the exponent. The base and the exponent, if any, are in decimal notation.

The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples

 2#1111_1111# 16#FF# 016#0ff# -- integer literals of value 255

 2#1110_0000# 16#E#E1 8#240# -- integer literals of value 224

13.5 String Literals

A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two
quotation marks used as string brackets.

Syntax

string_literal ::= "{string_element}"

string_element ::= "" | non_quotation_mark_graphic_character

A string_element is either a pair of quotation marks (""), or a single graphic_character other than a
quotation mark.

Semantics

The sequence of characters of a string_literal is formed from the sequence of string_elements between
the bracketing quotation marks, in the given order, with a string_element that is "" becoming a single
quotation mark in the sequence of characters, and any other string_element being reproduced in the
sequence.

A null string literal is a string_literal with no string_elements between the quotation marks.

NOTES:

An end of line cannot appear in a string_literal.

Examples

"Message of the day:"

"" -- a null string literal

" " "A" """" -- three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

13.6 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 195 -

Syntax

comment ::= --{non_end_of_line_character}

A comment may appear on any line of a program.

Semantics

The presence or absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the meaning of a program; their sole purpose is the
enlightenment of the human reader.

Examples

-- this is a comment

end; -- processing of Line is complete

-- a long comment may be split onto

-- two or more consecutive lines

---------------- the first two hyphens start the comment

13.7 Reserved Words

The following are the AADL reserved words. Reserved words are case insensitive.

aadlboolean aadlinteger aadlreal aadlstring

access all and annex

applies binding bus calls

classifier connections constant data

delta device end enumeration

event extends false features

flow flows group implementation

In inherit initial inverse

Is list memory mode

modes none not of

or out package parameter

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 196 -

path port private process

processor properties property provides

public range reference refined

refines requires server set

sink source subcomponents subprogram

system thread to true

type units value

NOTES:

The reserved words appear in lower case boldface in this standard. Lower case boldface is also used for a reserved
word in a string_literal used as an operator_symbol. This is merely a convention – AADL specifications may be
written in whatever typeface is desired and available.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 197 -

Appendix A Predeclared Property Sets

Normative

The property set AADL_Properties is a part of every AADL specification. It defines properties for AADL
model elements that are defined in the core of the AADL. This property set may not be modified by the
modeler.

The property set AADL_Project is a part of every AADL specification. It defines property enumeration
types and property constants that can be tailored for different AADL projects and site installations. These
definitions allow for tailoring of the predeclared properties.

The property types, property names, and property constants of these predeclared property sets can be
named without property set name qualification.

A.1 Standard AADL Property Set

There is a standard predeclared property set named AADL_Properties. This property set declaration is
a part of every AADL specification.

NOTES:

In accordance with the naming rules for references to items defined in the predeclared property sets, the declarations
in this property set refer to enumeration types and property constants declared in the AADL_Project property set
without a qualifying property set name.

property_set AADL_Properties is

Activate_Deadline: Time

 applies to (thread);

Activate_Deadline specifies the maximum amount of time allowed for the execution of a
thread’s activation sequence. The numeric value of time must be positive.

The property type is Time. The standard units are ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), sec (seconds), min (minutes) and hr (hours).

Activate_Execution_Time: Time_Range

 applies to (thread);

Activate_Execution_Time specifies the minimum and maximum execution time, in the
absence of runtime errors, that a thread will use to execute its activation sequence, i.e., when a
thread becomes active as part of a mode switch. The specified execution time includes all time
required to execute any service calls that are executed by a thread, but excludes any time spent
by another thread executing remote procedure calls in response to a remote subprogram call
made by this thread.

Activate_Entrypoint: aadlstring

 applies to (thread);

The Activate_Entrypoint property specifies the name of a source text code sequence that

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 198 -

will execute when a thread is activated. This property may have an unspecified value.

The named code sequence in the source text must be visible in and callable from the outermost
program scope, as defined by the scope and visibility rules of the applicable source language.
The source language annex of this standard defines acceptable parameter and result signatures
for the entrypoint subprogram.

Active_Thread_Handling_Protocol:
 inherit Supported_Active_Thread_Handling_Protocols
 => value(Default_Active_Thread_Handling_Protocol)

 applies to (thread, thread group, process, system);

The Active_Thread_Handling_Protocol property specifies the protocol to use to handle
execution at the time instant of an actual mode switch. The available choices are implementer
defined. One of the available choices must be the default value.

This protocol specifies the activation order of threads become active as part of a new mode.

Active_Thread_Queue_Handling_Protocol:
 inherit enumeration (flush, hold) => flush

 applies to (thread, thread group, process, system);

The Active_Thread_Queue_Handling_Protocol property specifies the protocol to use to
handle the content of any event port or event data port queue of a thread at the time instant of an
actual mode switch. The available choices are flush and hold. Flush empties the queue. Hold
keeps the content in the queue of the thread being deactiveated until it is reactivated.

Actual_Connection_Binding: inherit reference (bus, processor, device)

 applies to (port connections, thread, thread group, process, system);

Connections are bound to the bus, processor, or device specified by the
Actual_Connection_Binding property.

Actual_Latency: Time

 applies to (flow);

The Actual_Latency property specifies the actual latency as determined by the
implementation of the end-to-end flow through semantic connections. Its numeric value must be
positive.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours).

Actual_Memory_Binding: inherit reference (memory)

 applies to (thread, thread group, process, system, processor,
 data port, event data port, subprogram);

Code and data from source text is bound to the memory specified by the
Actual_Memory_Binding property.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 199 -

Actual_Processor_Binding: inherit reference (processor)

 applies to (thread, thread group, process, system);

A thread is bound to the processor specified by the Actual_Processor_Binding property.
The process of binding threads to processors determines the value of this property.

Actual_Subprogram_Call: reference (server subprogram)

 applies to (subprogram);

The Actual_Subprogram_Call property specifies the server subprogram that is servicing the
subprogram call as a remote call. If no value is specified, the subprogram call is a local call.

Actual_Subprogram_Call_Binding: reference (bus, processor, memory)

 applies to (subprogram);

The Actual_Subprogram_Call_Binding property specifies the bus, processor, or memory to
which a remote subprogram call is bound. If no value is specified, the subprogram call is a local
call.

Actual_Throughput: Data_Volume

 applies to (flow);

The Actual_Throughput property specifies the actual throughput as determined by an
analysis of the semantic flows representing the end-to-end flow.

Aggregate_Data_Port: aadlboolean => false

 applies to (port group);

The Aggregate_Data_Port property specifies whether the port group acts as an aggregate
data port for ports that contain data.

Allowed_Access_Protocol: list of enumeration (Memory_Access,
 Device_Access)

 applies to (bus);

The Allowed_Access_Protocol property specifies the categories of hardware components
that can be connected to the processor via the bus. The Memory_Access value specifies that
threads executing on a processor may access portions of their binary image that have been
bound to a memory over that bus. The Device_Access value specifies that threads executing
on the processor can communicate with devices via that bus.

If a list of allowed connection protocols is not specified for a bus, then the bus may be used to
connect both devices and memory to the processor.

Allowed_Connection_Binding: inherit list of reference (bus, processor, device)

 applies to (port connections, thread group, process, system);

The Allowed_Connection_Binding property specifies the execution platform resources that
are to be used to perform a communication. The property type is a list of component names.
The list must contain an odd number of component names. The named components must belong
to a processor, device or bus category.

The first component named in the list must be either the processor to which the thread containing

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 200 -

the ultimate source feature is bound, or else the processor or device containing the ultimate
hardware source feature. The last component named in the list must be either the processor to
which the thread containing the ultimate destination feature is bound, or else the processor or
device containing the ultimate hardware destination feature. The intermediate component names
must alternate between a bus, and a processor or a device. Each pair of names for processor or
device components that are separated by the name of a bus component must share that bus
component. That is, the sequence of processors, devices and buses must form a connected path
through the specified hardware architecture.

Allowed_Connection_Binding_Class:
 inherit list of classifier(processor, bus, device)

 applies to (port connections, thread, thread group, process, system);

The Allowed_Connection_Binding_Class property specifies the hardware resources that
are to be used to perform a communication. The property type is list of component classifier
names. The list must contain an odd number of component names. The named component
classifiers must belong to a processor, device or bus category.

The first component classifier named in the list must be either that of the processor to which the
thread containing the ultimate source feature is bound, or else the processor or device containing
the ultimate hardware source feature. The last component classifier named in the list must be
either that of the processor to which the thread containing the ultimate destination feature is
bound, or else the processor or device containing the ultimate hardware destination feature. The
intermediate component classifier names must alternate between a bus, and a processor or a
device. Each pair of names for processor or device classifiers that are separated by the name of
a bus classifier must share that bus component. That is, the sequence of processors, devices,
and buses must form a connected path through the specified hardware architecture.

Allowed_Connection_Protocol: list of enumeration
 (Data_Connection,
 Event_Connection)

 applies to (bus);

The Allowed_Connection_Protocol property specifies the categories of connections a bus
supports. That is, a connection may only be legally bound to a bus if the bus supports that
category of connection. The Data_Connection value means data connections are supported.
The Event_Connection value means event connections are supported.

If a list of allowed connection protocols is not specified for a bus, then any category of connection
can be bound to the bus.

Allowed_Dispatch_Protocol: list of Supported_Dispatch_Protocols

 applies to (processor);

The Allowed_Dispatch_Protocol property specifies the thread dispatch protocols are
supported by a processor. That is, a thread may only be legally bound to the processor if the
specified thread dispatch protocol of the processor corresponds to the dispatch protocol required
by the thread.

If a list of allowed scheduling protocols is not specified for a processor, then a thread with any
dispatch protocol can be bound to and executed by the processor.

Allowed_Memory_Binding: inherit list of reference (memory, system, processor)

 applies to (thread, thread group, process, system, device, data port,

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 201 -

 event data port, subprogram, processor);

Code and data produced from source text can be bound to the set of memory components that is
specified by the Allowed_Memory_Binding property. The set is specified by a list of memory
and system component names. System names represent the memories contained in them. The
Allowed_Memory_Binding property may specify a single memory, thus specifying the exact
memory binding.

The allowed binding may be further constrained by the memory classifier specified in the
Allowed_Memory_Binding_Class.

The value of the Allowed_Memory_Binding property may be inherited from the component
that contains the component or feature.

If this property has no associated value, then all memory components declared in an AADL
specification are acceptable candidates.

Allowed_Memory_Binding_Class:
 inherit list of classifier (memory, system, processor)

 applies to (thread, thread group, process, system, device, data port,
 event data port, subprogram, processor);

The Allowed_Memory_Binding_Class property specifies a set of memory, device, and
system classifiers. These classifiers constrain the set of memory components in the
Allowed_Memory_Binding property to the subset that satisfies the component classifier.

The value of the Allowed_Memory_Binding property may be inherited from the component
that contains the component or feature.

If this property has no associated value, then all memory components specified in the
Allowed_Memory_Binding are acceptable candidates.

Allowed_Message_Size: Size_Range

 applies to (bus);

The Allowed_Message_Size property specifies the allowed range of sizes for a block of data
that can be transmitted by the bus hardware in a single transmission (in the absence of
packetization).

The expression defines the range of data message sizes, excluding any header or packetization
overheads added due to bus protocols, that can be sent in a single transmission over a bus.
Messages whose sizes fall below this range will be padded. Messages whose sizes fall above
this range must be broken into two or more separately transmitted packets.

Allowed_Period: list of Time_Range

 applies to (processor, system);

The Allowed_Period property specifies a set of allowed periods for periodic tasks bound to a
processor.

The period of every thread bound to the processor must fall within one of the specified ranges.

If an allowed period is not specified for a processor, then there are no restrictions on the periods
of threads bound to that processor.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 202 -

Allowed_Processor_Binding: inherit list of reference (processor, system)

 applies to (thread, thread group, process, system, device);

The Allowed_Processor_Binding property specifies the set of processors that are available
for binding. The set is specified by a list of processor and system component names. System
names represent the processors contained in them.

If the property is specified for a thread, the thread can be bound to one of the specified set of
processors for execution. If the property is specified for a thread group, process or system, then it
applies to all contained threads, i.e., the contained threads inherit the property association unless
overridden. If this property is specified for a device, then it the thread associated with the device
driver code can be bound to oe of the set of processors for execution. The
Allowed_Processor_Binding property may specify a single processor, thus specifying the
exact processor binding.

The allowed binding may be further constrained by the processor classifier reference specified in
the Allowed_Processor_Binding_Class property.

If this property has no associated value, then all processors declared in n AADL specification are
acceptable candidates.

Allowed_Processor_Binding_Class:
 inherit list of classifier (processor, system)

 applies to (thread, thread group, process, system, device);

The Allowed_Processor_Binding_Class property specifies a set of processor and system
classifiers. These component classifiers constrain the set of processors in the
Allowed_Processor_Binding property to the subset that satisfies the component classifier.

The default value is inherited from the containing process or system component.

If this property has no associated value, then all processors specified in the
Allowed_Processor_Binding are acceptable candidates.

Allowed_Subprogram_Call: list of reference (server subprogram)

 applies to (subprogram);

A subprogram call can be bound to any member of the set of server subprograms specified by
the Allowed_Subprogram_Call property. If no value is specified, then subprogram call must
be a local call.

Allowed_Subprogram_Call_Binding:
 inherit list of reference (bus, processor, device)

 applies to (subprogram, thread, thread group, process, system);

Server subprogram calls can be bound to the physical connection of an execution platform that is
specified by the Allowed_Subprogram_Call_Binding property. If no value is specified, then
subprogram call must be a local call.

Assign_Time: Time

 applies to (processor, bus);

The Assign_Time property specifies a time unit value used in a linear estimation of the
execution time required to move a block of bytes on a particular processor or bus. The time
required is assumed to be the number of bytes times the Assign_Byte_Time plus

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 203 -

Assign_Fixed_Time.

Assign_Time = (Number_of_Bytes * Assign_Byte_Time) + Assign_Fixed_Time

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours). The numeric value must be a
positive number.

Assign_Byte_Time: Time

 applies to (processor, bus);

The Assign_Byte_Time property specifies a time unit value which reflects the time required to
move a single bytes on a particular processor or bus, not including the Assign_Fixed_Time.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours). The numeric value must be a
positive number.

Assign_Fixed_Time: Time

 applies to (processor, bus);

The Assign_Fixed_Time property specifies a time unit value which reflects the fixed or
overhead time required for assignment of any number of bytes on a particular processor or bus.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours). The numeric value must be a
positive number.

Available_Memory_Binding: inherit list of reference (memory, system)

 applies to (system);

The Available_Memory_Binding property specifies the set of contained memory
components that are made available for binding outside the system. The set is specified by a list
of memory and system component names. System names represent the memories contained in
them.

Available_Processor_Binding: inherit list of reference (processor, system)

 applies to (system);

The Available_Processor_Binding property specifies the set of contained processor
components that are made available for binding outside the system. The set is specified by a list
of processor and system component names. System names represent the processors contained
in them.

Base_Address: access aadlinteger 0 .. value(Max_Base_Address)

 applies to (data);

The Base_Address property specifies the address of the first word in the memory. The
addresses used to access successive words of memory are Base_Address, Base_Address +
Word_Space, …Base_Address + (Word_Count-1) * Word_Space.

The property expression must be preceded by the reserved word access, in which case the
property specifies the address associated with the access to a subcomponent rather than the
data component itself.

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

SAE AS5506

- 204 -

Client_Subprogram_Execution_Time: Time

 applies to (subprogram);

The Client_Subprogram_Execution_Time property specifies the length of time it takes to
execute the client portion of a remote subprogram call.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours). The numeric value must be a
positive number.

Clock_Jitter: Time

 applies to (processor, system);

The Clock_Jitter property specifies a time unit value that gives the maximum time between
the start of clock interrupt handling on any two processors in a multi-processor system.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours). The numeric value must be a
positive number.

Clock_Period: Time

 applies to (processor, system);

The Clock_Period property specifies a time unit value that gives the time interval between two
clock interrupts.

The property type is Time. The standard units are ns (nanoseconds), us (microseconds), ms
(milliseconds), sec (seconds), min (minutes) and hr (hours). The numeric value must be a
positive number.

Clock_Period_Range: Time_Range

 applies to (processor, system);

The Clock_Period_Range property specifies a time range value that represents the minimum
and maximum value assignable to the Clock_Period property.

Compute_Deadline: Time

 applies to (thread, subprogram, event port, event data port);

The Compute_Deadline specifies the maximum amount of time allowed for the execution of a
thread’s compute sequence. If the property is specified for a subprogram, event port, or event
data port feature, then this compute execution time applies to the dispatched thread when the
corresponding call, event, or event data arrives. When specified for a server subprogram, the
Compute_Deadline applies to the thread executing the remote procedure call in response to
the server subprogram call. The Compute_Deadline specified for a feature must not exceed
the Compute_Deadline of the associated thread. The numeric value of time must be positive.

The values specified for this property for a thread are bounds on the values specified for specific
features.

The Deadline property places a limit on Compute_Deadline and Recover_Deadline:
Compute_Deadline + Recover_Deadline ≤ Deadline.

The property type is Time. The standard units are ps (picoseconds), ns (nanoseconds), us
(microseconds), ms (milliseconds), sec (seconds), min (minutes) and hr (hours).

SAENORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 as
55

06

https://saenorm.com/api/?name=a7a69be327dbc2e1add32af7dfb421da

