

**AEROSPACE  
MATERIAL  
SPECIFICATION****AMS 4898B**Issued SEP 1996  
Revised MAY 2007

Superseding AMS 4898A

Titanium Alloy, Sheet  
6Al - 2Sn - 2Zr - 2Mo - 2Cr - 0.15Si  
Annealed**RATIONALE**

AMS 4898B results from a Five Year Review and update of this specification.

**1. SCOPE****1.1 Form**

This specification covers a titanium alloy in the form of sheet.

**1.2 Application**

This sheet has been used typically for parts requiring high strength, toughness, and fatigue strength up to 750 °F (399 °C), but usage is not limited to such applications. The product can be superplastically formed above 1500 °F (816 °C) and it can be aged after air cooling from the solution treatment or super-plastic forming temperature to increase the strength.

1.2.1 Certain processing procedures and service conditions may cause this sheet to become subject to stress-corrosion cracking; ARP982 recommends practices to minimize such conditions.

**2. APPLICABLE DOCUMENTS**

The issue of the following documents in effect on the date of the purchase order forms a part of this specification to the extent specified herein. The supplier may work to a subsequent revision of a document unless a specific document issue is specified. When the referenced document has been cancelled and no superseding document has been specified, the last published issue of that document shall apply.

**2.1 SAE Publications**Available from SAE International, 400 Commonwealth Drive, Warrendale, PA 15096-0001, Tel: 877-606-7323 (inside USA and Canada) or 724-776-4970 (outside USA), [www.sae.org](http://www.sae.org).

|          |                                                                                                                  |
|----------|------------------------------------------------------------------------------------------------------------------|
| AMS 2242 | Tolerances, Corrosion and Heat-Resistant Steel, Iron Alloy, Titanium, and Titanium Alloy Sheet, Strip, and Plate |
| AMS 2368 | Sampling and Testing of Wrought Titanium Raw Material, Except forgings and Forging Stock                         |
| AMS 2750 | Pyrometry                                                                                                        |
| AMS 2809 | Identification, Titanium and Titanium Alloy Wrought Products                                                     |
| ARP982   | Minimizing Stress-Corrosion Cracking in Wrought Titanium Alloy Products                                          |

SAE Technical Standards Board Rules provide that: "This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user."

SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.

Copyright © 2007 SAE International

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.

TO PLACE A DOCUMENT ORDER: Tel: 877-606-7323 (inside USA and Canada)  
Tel: 724-776-4970 (outside USA)Fax: 724-776-0790  
Email: [CustomerService@sae.org](mailto:CustomerService@sae.org)

SAE WEB ADDRESS:

<http://www.sae.org>

## 2.2 ASTM Publications

Available from ASTM International, 100 Barr Harbor Drive, P.O. Box C700, West Conshohocken, PA 19428-2959, Tel: 610-832-9585, [www.astm.org](http://www.astm.org).

|             |                                                                                                                                  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| ASTM E 290  | Bend Testing Material for Ductility                                                                                              |
| ASTM E 1409 | Determination of Oxygen and Nitrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Technique                           |
| ASTM E 1447 | Determination of Hydrogen in Titanium and Titanium Alloys by the Inert Gas Fusion Thermal Conductivity/Infrared Detection Method |
| ASTM E 1941 | Determination of Carbon in Refractory and Reactive Metals and Their Alloys                                                       |
| ASTM E 2371 | Analysis of Titanium and Titanium Alloys by Atomic Emission Plasma Spectrometry                                                  |

## 3. TECHNICAL REQUIREMENTS

### 3.1 Composition

Shall conform to the percentages by weight shown in Table 1; carbon shall be determined in accordance with ASTM E 1941, hydrogen in accordance with ASTM E 1447, oxygen and nitrogen in accordance with ASTM E 1409, and other elements in accordance with ASTM E 2371. Other analytical methods may be used if acceptable to the purchaser.

TABLE 1 - COMPOSITION

| Element                       | min       | max             |
|-------------------------------|-----------|-----------------|
| Aluminum                      | 5.25      | 6.25            |
| Tin                           | 1.75      | 2.25            |
| Zirconium                     | 1.75      | 2.25            |
| Molybdenum                    | 1.75      | 2.25            |
| Chromium                      | 1.75      | 2.25            |
| Silicon                       | 0.10      | 0.20            |
| Iron                          | --        | 0.15            |
| Oxygen                        | --        | 0.15            |
| Carbon                        | --        | 0.08            |
| Nitrogen                      | --        | 0.05            |
| Hydrogen                      | --        | 0.015 (500 ppm) |
| Other Elements, each (3.1.1)  |           | 0.10 (150 ppm)  |
| Other Elements, total (3.1.1) |           | 0.40            |
| Titanium                      | remainder |                 |

#### 3.1.1 Determination not required for routine acceptance.

### 3.2 Melting Practice

Alloy shall be multiple melted. Melting cycle(s) prior to the final melting cycle shall be made using vacuum consumable electrode, nonconsumable electrode, electron beam cold hearth, or plasma arc cold hearth melting practice(s). The final melting cycle shall be made under vacuum using vacuum arc remelting (VAR) practice with no alloy additions permitted.

3.2.1 The atmosphere for nonconsumable electrode melting shall be vacuum or shall be argon and/or helium at an absolute pressure not higher than 1000 mm of mercury.

3.2.2 The electrode tip for nonconsumable electrode melting shall be water-cooled copper.

### 3.3 Condition

Hot rolled, annealed, ground, and pickled. Surface appearance shall be comparable to a commercial corrosion-resistant steel No. 2D finish (See 8.4).

### 3.3.1 Annealing

Heat to a temperature within the range 1300 to 1650 °F (704 to 899 °C), hold at the selected temperature within  $\pm 25$  °F ( $\pm 14$  °C) for a time commensurate with product thickness and the heating equipment and procedure used, and cool to room temperature at a rate equivalent to an air cool or faster. Pyrometry shall be in accordance with AMS 2750.

## 3.4 Properties

The product shall conform to the following requirements, determined in accordance with AMS 2368, except bending shall be determined in accordance with 3.4.1.2.

### 3.4.1 As Annealed

#### 3.4.1.1 Tensile Properties

Shall be as shown in Table 2. Tensile property requirements apply in both the longitudinal and transverse directions.

TABLE 2A - MINIMUM TENSILE PROPERTIES, INCH/POUND UNITS

| Nominal Thickness<br>Inch  | Tensile Strength<br>ksi | Yield Strength<br>at 0.2% Offset<br>ksi | Elongation in<br>2 Inches<br>% |
|----------------------------|-------------------------|-----------------------------------------|--------------------------------|
| 0.016 to 0.025, incl       | 155                     | 150                                     | 5                              |
| Over 0.025 to 0.032, incl  | 155                     | 150                                     | 6                              |
| Over 0.032 to 0.080, incl  | 155                     | 150                                     | 7                              |
| Over 0.080 to 0.1874, incl | 155                     | 150                                     | 8                              |

TABLE 2B - MINIMUM TENSILE PROPERTIES, SI UNITS

| Nominal Thickness<br>Millimeters | Tensile Strength<br>MPa | Yield Strength<br>at 0.2% Offset<br>MPa | Elongation in<br>51 Millimeters<br>% |
|----------------------------------|-------------------------|-----------------------------------------|--------------------------------------|
| 0.41 to 0.64, incl               | 1069                    | 1034                                    | 5                                    |
| Over 0.64 to 0.81, incl          | 1069                    | 1034                                    | 6                                    |
| Over 0.81 to 2.03, incl          | 1069                    | 1034                                    | 7                                    |
| Over 2.03 to 4.760, incl         | 1069                    | 1034                                    | 8                                    |

#### 3.4.1.2 Bending

Product 0.1874 inch (4.76 mm) and under in nominal thickness, shall have a test sample prepared nominally 0.750 inch (19.06 mm) in width, with its axis of bending parallel to the direction of rolling. The sample shall be bend tested in conformance with the guided bend test defined in ASTM E 290 through an angle of 105 degrees. The test fixture supports shall have a contact radius 0.010 minimum, and the plunger shall have a radius equal to the bend factor shown in Table 3 times the nominal thickness. Examination of the bent sample shall no evidence of cracking when examined at 15 - 25 X magnification.

TABLE 3 - BENDING PARAMETERS

| Nominal Thickness<br>inch  | Nominal Thickness<br>Millimeters | Bend Factor |
|----------------------------|----------------------------------|-------------|
| 0.016 to 0.070, incl       | 0.41 to 1.78, incl               | 4.5         |
| Over 0.070 to 0.1874, incl | Over 1.78 to 4.760, incl         | 5           |

#### 3.4.1.3 Average Grain Size

Sheet 0.125 inch (3.18 mm) and under in nominal thickness, shall have an average grain size of ASTM No. 10 or finer (See 8.5).

#### 3.4.1.4 Microstructure

Shall be that structure resulting from processing within the alpha-beta phase field. Microstructure shall conform to 3.4.1.4.1 or 3.4.1.4.2.

3.4.1.4.1 Equiaxed and/or elongated primary alpha in a transformed beta matrix with no continuous network of alpha at prior beta grain boundaries.

3.4.1.4.2 Essentially complete field of equiaxed and/or elongated alpha with or without intergranular beta and with no continuous network of alpha at prior beta grain boundaries.

#### 3.4.1.5 Surface Contamination

Sheet shall be free of any oxygen-rich layer, such as alpha case, or other surface contamination.

#### 3.4.2 Response to Heat Treatment

When specified by purchaser, sheet, 0.016 to 0.1874 inch, (0.41 to 4.760 mm), inclusive, in nominal thickness, shall meet the requirements shown in Table 4 after being solution heat treated by heating to a temperature within the range 1600 to 1700 °F (871 to 927 °C), holding at the selected temperature within  $\pm 25$  °F ( $\pm 14$  °C) for 15 to 60 minutes, cooling to room temperature at a rate equivalent to an air cool or faster, followed by aging within the range of 900 to 1000 °F (482 to 538 °C), holding at the selected temperature within  $\pm 15$  °F ( $\pm 8$  °C) for 8 to 12 hours (See 8.1 and 8.2), and cooling to room temperature.

TABLE 4 - MINIMUM TENSILE PROPERTIES

| Property                         | Value              |
|----------------------------------|--------------------|
| Tensile Strength                 | 180 ksi (1241 MPa) |
| Yield Strength at 0.2% Offset    | 160 ksi (1103 MPa) |
| Elongation in 2 Inches (50.8 mm) | 5% (See 3.4.2.1)   |

3.4.2.1 Elongation requirement applies only to sheet 0.032 inch (0.81 mm) and over in nominal thickness.

#### 3.5 Quality

Sheet, as received by purchaser, shall be uniform in quality and condition, sound, and free from "oil canning" (See 8.6.1) of depth in excess of one-half of the flatness tolerances, ripples, foreign materials and from imperfections detrimental to usage of the sheet.

#### 3.6 Tolerances

Shall conform to all applicable requirements of AMS 2242 except the variation in flatness, unless otherwise specified, shall not exceed one-half of the standard flatness tolerance.

### 4. QUALITY ASSURANCE PROVISIONS

#### 4.1 Responsibility for Inspection

The vendor of sheet shall supply all samples for vendor's tests and shall be responsible for the performance of all required tests. Purchaser reserves the right to sample and to perform any confirmatory testing deemed necessary to ensure that the product conforms to specified requirements.

#### 4.2 Classification of Tests

##### 4.2.1 Acceptance Tests

Composition (3.1), surface appearance (3.3), tensile properties as annealed (3.4.1.1), bending (3.4.1.2), average grain size (3.4.1.3), microstructure (3.4.1.4), and tolerances (3.6) are acceptance tests and shall be performed on each heat or lot as applicable.