

INTERNATIONAL
STANDARD

ISO
11855-5

Second edition
2021-08

AMENDMENT 1
2023-10

**Building environment design —
Embedded radiant heating and cooling
systems —**

**Part 5:
Installation**

AMENDMENT 1

Conception de l'environnement des bâtiments — Systèmes intégrés de chauffage et de refroidissement par rayonnement —

Partie 5: Installation

AMENDEMENT 1

STANDARDSISO.COM : Click to view the full PDF of ISO 11855-5:2021/Amd.1:2023

Reference number
ISO 11855-5:2021/Amd.1:2023(E)

© ISO 2023

COPYRIGHT PROTECTED DOCUMENT

© ISO 2023

All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below or ISO's member body in the country of the requester.

ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org

Published in Switzerland

STANDARDSISO.COM : Click to view the full PDF of ISO 11855-5:2021/Amd 1:2023

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different types of ISO document should be noted. This document was drafted in accordance with the editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

ISO draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). ISO takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, ISO had not received notice of (a) patent(s) which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at www.iso.org/patents. ISO shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expressions related to conformity assessment, as well as information about ISO's adherence to the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 205, *Building environment design*, in collaboration with the European Committee for Standardization (CEN) Technical Committee CEN/TC 228, *Heating systems and water based cooling systems in buildings*, in accordance with the Agreement on technical cooperation between ISO and CEN (Vienna Agreement).

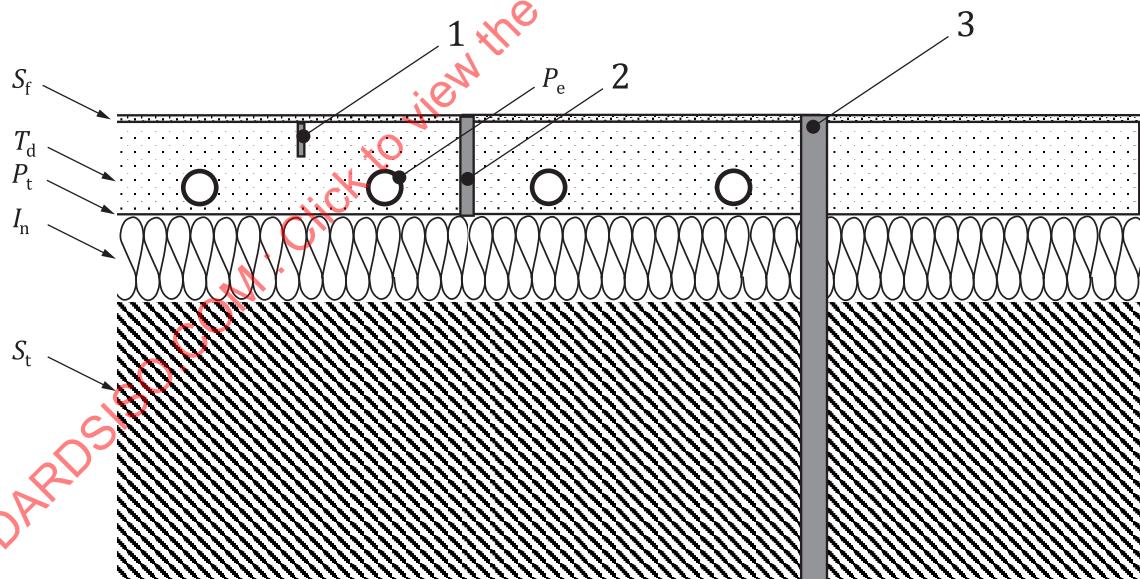
Any feedback or questions on this document should be directed to the user's national standards body. A complete listing of these bodies can be found at www.iso.org/members.html.

STANDARDSISO.COM : Click to view the full PDF of ISO 11855-5:2021/Amd 1:2023

Building environment design — Embedded radiant heating and cooling systems —

Part 5: Installation

AMENDMENT 1


Clause 4, Table 1

Modify the following line in Table 1:

Symbol	Unit	Quantity
s_h	m	In type II systems, thickness of thermal insulation from the outward edge of the insulation to the inward edge of the pipes (see Figure 2).

Clause 5, Figure 1

Modify to the following:

Key

- I_n thermal insulation layer
- P_e pipes or electric cables
- P_t protection layer
- S_f surface layer
- S_t structural layer
- T_d thermal diffusion layer
- 1 contraction joints

- 2 expansion joints (movement joints)
- 3 construction joints

Figure 1 — Position and typologies of joints

A construction joint (Figure 1) is a structural joint that involves the whole thickness of the element (e.g. wall, floor or ceiling), including the reinforcement. An expansion joint is used to compensate dimensional variations of the screed (mainly due to temperature change). An expansion joint crosses the entire thickness of the screed. A contraction joint interrupts only a part of the thickness of the screed. It constitutes a guided break line. The thickness of the screed that is cut shall not exceed 1/3 of the thickness of the uniform screed layer.

In the case of heating screeds of type I, movement joints and perimeter joints shall only be crossed by connecting pipes (flow pipes and return pipes of the circuit) and solely in one level. In this case, the connecting pipes shall be covered with a flexible insulation tube of some 0,3 m in length.