INTERNATIONAL ISO/IEC/
STANDARD IEEE
29119-5

First edition
2016-11-15

Software and systems engineerin;
Software testing —

Part 5:
Keyword-Driven Testing

U

Ingénierie du logiciel et des-systéemes — Essais du logiciel —

Partie 5: Essais axés sur.des mots-clés

Reference number
ISO/IEC/IEEE 29119-5:2016(E)

© ISO/IEC 2016
© IEEE 2016

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2016, Published in Switzerland
© IEEE 2016

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without
prior written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the
country of the requester.

ISO copyright office IEC Central Office 3, Institute of Electrical and Electronics Engineers, Inc
Ch. de Blandonnet 8 « CP 401 rue de Varembé CH- 3 Park Avenue, New York
CH-1214 Vernier, Geneva, Switzerland 1211 Geneva 20 NY 10016-5997, USA

Tel. +41 22 749 01 11
Fax +41 22 749 09 47

copyright@iso.org .
Www.iso.org Web www.iec.ch

Switzerland

E-mail inmail@iec.ch stds.ipr@ieee.org

www.ieee.org ¢ [S0/IEC 2016 - All rights reserved
ii © IEEE 2016 - All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Contents Page
1 1T o o - 1
2 L0001 0 4 30 2= T T =N 1
21 0] 2= 4 Lo L= o I o Vo - 1
2.2 (11 eToY 0 o] g .4 T 1 4 o 1
23 IR T1TeT L= oo €0 o 1 F= o 1 S 2
3 NOIMALIVE FEfErENCES ...t s e s e n e e e mn e e e e mne e e e s mne e e enaneenenns 2
4 TErmMs and deTiNITIONS .o s s s e s s eseeeeeeeseeeseensneeeeeeaneeaneesnessnneaneeeseneseneseensennenepens 2
5 Introduction to Keyword-Driven Testing.........cccovimiiiiiiiiiniir e s ne e iy e 4
5.1 VY TSN (P 4
5.2 Layers in Keyword-Driven TeSting......ccccccviiccceiimmiiiiisccscernnssssssssssmsssn s ssssmss s s sssssssssns fask e sessssanas 7
E 0 T © |V -1 - =>4 F O g
ES I (o 1T 11 TN = = N S .8
5.2.3 Tpstinterface layer ...l e s 9
5.24 LT o] = = =T S 9
5.3 TYPES Of KEYWOIAS.......eeeeceiiiiiiiccccecrter s s s csmsre e e e s s s s sssmn e e e e s e s s s ssnmn e e e e eessnsss Safenisessassssnnnnnsensssnssssnnnnns 10
5.3.1 SIMPple KeYWOIAS........cceeiiiiiiiccccscrirrernsss s sssmnesesssssssssssmsssesssssssssnmnssssssstatndonsenssnnsssssnnnnssnsssnssssnnnnns 10
5.3.2 Clomposite KEYWOIdS.........coeeeiiiiiiiiiicrcressrcsssesesesssssessssssssssssssssssssssssssres dhesdhbensenssssssssssesssemesssessnenenenene 11
5.3.3 vigation/interaction (input) and verification (output)3 e 14
5.34 (eywords and test reSuUlt ..o ot hh s nnnnn 14
5.4 (Y VATYZeT e E30: T3 T N 0 F: | - T o 15
6 Application of Keyword-Driven Testingccooeeirecee iy 16
6.1 @ V= = 4T 16
6.2 Jentifying K@YWOIS ... iesscccecre e s e b de e e e s ss s smne s e e s e s s s s nmne e e e s ea s s smnnneenssnansssnnnnns 16
6.3 CIoMPOSING tEST CASES....umiiiiiiiiiiiieir i o e 17
6.4 Geywords and data-driven testing ...t it i —————— 18
6.5 odularity and refactoring ... e e ———— 18
6.6 (eyword-Driven Testing in the Test DeSigR Process ... 19
LT R © V= T 19
6.6.2 1 Identify Feature Sets...... ..ot 00
6.6.3 TP2 Derive Test Conditions........... sk oo s e 00
6.6.4 TP3 Derive Test Coverage HemS ... e 00
6.6.5 D B LY Y Iy O 1= R P1
6.6.6 TPD5 ASSEMDIE TeSt StS il i iirrrrriisssssmrrrr e e e s sss s e e e e e e s s ss s s s smne e e e s es s s s s snmn e e e e e easnsssnnnneeesssassssnnnnns D2
6.6.7 D6 Derive Test ProCeAUIES........coooiiiiiiiiiiiieeee e s e s es s s e s e s s s e s e s e s e s s s e s s s s ss s s s s ss s e s esesenessnessrssessssssssnsnssnnnennnnnnns p2
6.7 Clonverting non keyword-driven test cases into Keyword-Driven Testing..........cccoccvemniiiiiiiinnens P2
7 (eyword-Driven Testing FrameWOrKS s p2
71 DIV EIVIOW ... ehee S5 teeeeeeeeeesseesesesesssessaesessesesseeeseaeeeeeseeeeeeeeeeeeeeeeeneeeeeneeeeeeeaeeenen e e e e e e ennnnnnnnnnnnnnnnnnnnnnnnnnnnnnn p2
7.2 Clomponents of a Keyword-Driven Testing framework..........cccccccvimiiiiicccsmmmnennnnssccsseeeeeessssssssssnens D3
A7 B O V= YT D3
7.2.2 (eyWOord=ariven EdItOr i p5
720 T 0 = o 1§ Lo E=7 =Y D6
A T D =TT 1= Lo =T D6
7.2.5 c Ud C c i tdlll. ... 1:6
472 T I Yo N 4 o [= 26
7.2.7 Test execution environment and execution eNgiNecccccciimimrrinrr 26
7.2.8 KeyWOord lIDrary ... s s e s e an e n e e e e n e nnnn 27
078 T - - 27
70 L0 ST o3 o =T o o X1 o TP 27
7.3 Basic attributes of the Keyword-Driven Testing frameworkccccccmiiiiccicerieennscccceceeeee s 27
7.3.1 General information on basic attributescccovriiircii e ————— 27
7.3.2 General attribDULes ... e e e mnnns 27
7.3.3 Dedicated keyword-driven editor (t0O0l).........ccccccimiiiiiiminni e ————— 28
7.3.4 Decomposer and data SEQUENCENcoiiccceiiiiriiiiiicnrr s ssmss s s s s sms s e s s e s s s smnmn e e e s s s s s s nmnnns 29
© ISO/IEC 2016 — All rights reserved iii

© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

7.3.5 Manual test assistant (1001) ... 29
74 2T I Yo o T o - 29
4 T A == A = (=Y o U 4T o = Ve 1 5 - 29
4 8- T 4 (=34, e T (o 1o - /2 30
4 T RS 1 o3 (=Y o Lo X-1 o Y/ PPt 30
7.4 Advanced attributes of frameEWOIKScoiirimiirr e 30
7.41 General information on advanced attributes.............ccccmriiiiiicinic e —— 30
7.4.2 General attribUtes.......... e e e s e 30
7.4.3 Dedicated keyword-driven editor (t00l).........ccccccmriniiimminni e ————— 31
7.4.4 Decomposer and data SEQUENCETccccecemiiriiiiicisssmnr e s s sssssssnsne e s s s sasssssmmsae s s e s sasssssmnssesssssnsssnnnnnnes 31
7. . i t.dlll. ... 31
TH6 TOOl Bridgecoocieiiiiiii itk e s 31
7.4.7 Test execution environment and execution engine.........cccccceeerereeeieeeeeeseceseeeeeeeeeeeeesmdee Shere e e freereeeeens 32
T.HA.8 Keyword lIBrary ... ss s ssssssss s s ssesssesessssssses s s ssssssssssssssssssssssssssssssssssssséefen ionnnnnnnennnnnnnnes 33
48 - 35 T == Qo F= 1 = = 1 T o oY o e S RN 33
T7.A4.10 Script repoSIHOrY ...t ssssese e s s e ssssssssnnnsesessssssnsmnns Dhes fRasssssmnnnnennes fosssnnnenns 33
8 Data interchange ... o s e 33
Annex A (normative) CONVENLIONS........ccciiiiicccirecrrerrirscscsssnneessssssssssnsseesssssss Safonbnnensssnsssssnnnnssssssssssss]mnneennnns 34
Annex B (informative) Benefits and Issues of Keyword-Driven Testing i .. mriiiicciisscmnnnnnnnsccssfoeenennn, 35
B/1 General benefits of Keyword-Driven Testingccccccvrviiccceesfiiih e sssscsseneese s feeeeennnns 35
BJ2 Benefits of Keyword-Driven Testing for test automation.. . ..o e e, 35
BJ3 Benefits of Keyword-Driven Testing for manual testing=.}.2cccceeviiicciicininiiccccceerrenenescce e, 36
Bl4 Possible issues with Keyword-Driven Testing..........ai s sesssssssmssssessssssssss feneennnnns 36
Annex C (informative) Getting started with Keyword-Driven Testingccccceciiiicininiccnniiccscnc e 37
cl (7= 4 T - Y R 37
C|2 Identifying Keywords ... B s s e 37
C3 Composing test CASEScccccivmriiiiiiiicr e i e 38
Annex D (informative) Roles and Tasks 00k i ssssssssssssssssssssssssssss frssssssnnns 39
DI1 Overview — Roles and Taskscccc..iummmmriiiiiiieiire s s smssse s feene e 39
D|2 (9 XoT 4 F=TT 0 T =D74 o= o 0 2 A 39
DJ3 QLIRS =7 T =] Y R 39
D4 Test automation exXpert........ s e 40
Annex E (informative) Basic KeYWOrds.........cccocceiriiiiinrinniins s ssssss s ssssss s sssssss s ssssssssssssfeessnnsanes 41
E L0 Y=Y = PO RSP 41
Ej2 Basic keywords foraiGUI ... s 41
ES Example application of basic KEeywordscccciiicicmrircicnnincsr e e 45
Annex F (informative) EXampPles. mmn e s e 49
F L0 1YY - Y R 49
F.R Example:test procedure from ISO/IEC/IEEE 29119-3........ooiiiiiiiiiirrrerenscmenne e e, 49
F.3 Example: Test of shopping procedure with low-level keywords............cccooommmiiniiiiciiiccn eiiccnaes 51
F. Example for calculator with low-level keywords............cccooiiiiiniiciii e e, 52
F. Example for calculator with domain level keywordsccccoiiiiiiiiiiicnccccrreeces e, 52
P 114 T=) &€ =71 0] [T =T o o Y RS 54

© ISO/IEC 2016 — All rights reserved
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:

Foreword

ISO (the International Organization for Standardization) and IEC (the International Elect

2016(E)

rotechnical

Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees established

ALA_DArl =1le Q ecnn

h = = = = al 3 O _and
¢ommittees collaborate in fields of mutual interest. Other international organizations, government
governmental, in liaison with ISO and IEC, also take part in the work. In the field of information-tech
and IEC have established a joint technical committee, ISO/IEC JTC 1.

IEEE Standards documents are developed within the IEEE Societies and the ;Standards C
Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The |IEEE develops its
through a consensus development process, approved by the American National_Standards Insti
brings together volunteers representing varied viewpoints and interests to achieéve’the final product.
are not necessarily members of the Institute and serve without compensation, While the IEEE adm
process and establishes rules to promote fairness in the consensus development process, the IEE
independently evaluate, test, or verify the accuracy of any of the informiation contained in its standa

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, P4

The main task of ISO/IEC JTC 1 is to prepare International‘Standards. Draft International Standar

q
y

btandard requires approval by at least 75 % of the national bodies casting a vote.

A
q

\ttention is called to the possibility that implementation of this standard may require the use of suk
overed by patent rights. By publication of this*standard, no position is taken with respect to the €
alidity of any patent rights in connectiontherewith. ISO/IEEE is not responsible for identifyin
patents or patent claims for which a license’may be required, for conducting inquiries into the legg
gcope of patents or patent claims or;determining whether any licensing terms or conditions
¢onnection with submission of a Letterof Assurance or a Patent Statement and Licensing Declarat
ny, or in any licensing agreements, are reasonable or non-discriminatory. Users of this standard ar
dvised that determination of.the-validity of any patent rights, and the risk of infringement of sug
ntirely their own responsibility. Further information may be obtained from ISO or the IEEE

technical
and non-
ology, ISO

pordinating
5 standards
tute, which

Volunteers
inisters the
E does not

rds.

rt2.

ds adopted
by the joint technical committee are circulated to national-bodies for voting. Publication as an Ipternational

ject matter

Xistence or
j essential

| validity or

brovided in

on Form, if

e expressly

h rights, is
Standards

ssociation.

ISO/IEC/IEEE 29119:5'was prepared by Joint Technical Committee ISO/IEC JTC 1, Information fechnology,
ubcommittee SC€..7, Software and systems engineering, in cooperation with the Software & Systems
ngineering Standards Committee of the IEEE Computer Society, under the Partner Standards D¢velopment
rganization, €ooperation agreement between 1ISO and IEEE.

ISO/IECHEEE 29119 consists of the following parts, under the general title Software and systems ¢ngineering

Saftware testing:

Part . Concepts and definifions
Part 2: Test processes

Part 3: Test documentation

Part 4: Test techniques

Part 5: Keyword-Driven Testing

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Vi

Introduction

The purpose of the ISO/IEC/IEEE 29119 series of software testing standards is to define an internationally-

agreed set of standards for software testing that can be used by any organization when m
performing any form of software testing.

anaging or

ssists with the creation of items like keyword-driven test specifications and test automationframe
erm "keyword" refers to the elements which are, once defined, used to compose test cases, s
puilding blocks. ISO/IEC/IEEE 29119-5 will explain the main concepts and application)of Keyy
[esting. It will also define attributes of frameworks designed to support Keyword-Driven/Testing.

Fhis part of ISO/IEC/IEEE 29119 defines a unified approach for describing test cases in a modular

'he concepts and definitions relating to software testing defined in ISO/IEC/IEEE 29119-1 are alsd
o ISO/IEC/IEEE 29119-5.

he test process model on which the Keyword-Driven Testing framework'is’based is defined in IS
P9119-2 Test Processes. It comprises test process descriptions that define the software testing p
the organizational level, test management level and dynamic test level. Supporting informativ
Hescribing the processes are also provided in ISO/IEC/IEEE™29119-2. However, ISO/IEC/IEB
jescribes a specific implementation of the test design and-implementation processes of IS
P9119-2; in particular TD4 (Derive Test Cases), TD5 (Assemble Test Sets) and TD6 (Derive Test H
bs here applied to Keyword-Driven Testing.

he templates and examples of test documentation/as defined in ISO/IEC/IEEE 29119-3 are alsd
o ISO/IEC/IEEE 29119-5.

Software test design techniques that can.béZused during test design are defined in ISO/IEC/IEH
[est Techniques. The application of ISO/IEC/IEEE 29119-4 is assumed when designing test cas
then described by keywords accordingte.1SO/IEC/IEEE 29119-5.

[his part of ISO/IEC/IEEE 29119-5yhas the following structure:

1— terms and definitions can-be found in clause 4

1— an introduction totKeyword-Driven Testing is given in clause 5

1— the applicationof Keyword-Driven Testing is explained in clause 6
1 frameworks for Keyword-Driven Testing are described in clause 7

1— datainterchange is covered in clause 8

way, which
works. The
ich as with
vord-Driven

applicable

D/IEC/IEEE
focesses at
b diagrams
E 29119-5
D/IEC/IEEE
Procedures)

applicable

FE 29119-4
es that are

L_N"Annex A _states nnming caonventions for knywnrdc

— Annex B names benefits that can be achieved with Keyword-Driven Testing

— Annex C gives advice on how interested parties wanting to use Keyword-Driven Testing can start

— Annex D describes roles that can be used in Keyword-Driven Testing
— Annex E contains examples of basic keywords that can be used to create test cases

— Annex F contains examples for keyword test cases

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

INTERNATIONAL STANDARD ISO/IEC/IEEE 29119-5:2016(E)

Software and Systems Engineering — Software Testing —
Part 5: Keyword-Driven Testing

1 Scope

This part of ISO/IEC/IEEE 29119 defines an efficient and consistent solution for Keyword-Driven Testing
by:

— giving an introduction to Keyword-Driven Testing;
— providing a reference approach to implement Keyword-Driven Testing;

— defining requirements on frameworks for Keyword-Driven Testing to enable testersto share their work
items, such as test cases, test data, keywords, or complete test specifications;

— defining requirements for tools that support Keyword-Driven Testing. Fhése requirements codld apply

to any tool that supports the Keyword-Driven approach (e.g., test ‘automation, test design aAnd test
management tools);

— defining interfaces and a common data exchange format. to Jensure that tools from different vendors
can exchange their data (e.g. test cases, test data and testresults);
— defining levels of hierarchical keywords, and ad¥ising use of hierarchical keywords. This |ncludes

describing specific types of keywords (e.g. Keywords for navigation or for checking a value) and
when to use "flat" structured keywords;

— providing an initial list of example generic technical (low-level) keywords, such as "inputpata" or

"checkValue". These keywords can\be used to specify test cases on a technical level, and[may be
combined to create business-levél)keywords as required.

NOTE This standard is applicable to all those who want to create keyword-driven test specificationg, create

corresponding frameworks, or.build test automation based on keywords.
2 Conformance
2.1 Intended-usage

The requiréments in ISO/IEC/IEEE 29119-5 are contained in Clause 7 and in Annex A. ISO/IEC/IEEH 29119-
5 provides'requirements on frameworks supporting the application of Keyword-Driven Testing. Itfis
recagnized that particular projects or organizations may not need to use all of the components dé¢fined
in.this standard. Therefore, implementation of ISO/IEC/IEEE 29119-5 typically involves selecting a[set of
components or parts of components suitable for the organization or project. There are two ways that an
organization can claim to conform to the provisions of this standard.

The organization or individual shall assert whether full or tailored conformance to this standard is
claimed.

2.2 Full conformance

Full conformance is achieved by demonstrating that all of the Keyword-Driven Testing requirements (i.e.
shall statements) defined in ISO/IEC/IEEE 29119-5 have been satisfied.

© ISO/IEC 2016 — All rights reserved
© IEEE 2016 — Al rights reserved 1

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

2.3 Tai

lored conformance

When ISO/IEC/IEEE 29119-5 is used for implementing components of frameworks that do not qualify for full
conformance, the subset of components for which tailored conformance is claimed should be recorded.
Tailored conformance is achieved by demonstrating that all of the requirements (i.e. shall statements) for the
recorded subset of components have been satisfied.

Where tailoring occurs, the justification shall be provided, either directly or by reference, whenever a
requirement defined in clauses 7 and Annex A of ISO/IEC/IEEE 29119-5 is not followed. All tailoring decisions
shall be recorded with their rationale, including the consideration of any applicable risks. Tailoring decisions

shall be 4

EXAMPLE
not to impl
but no key

3 Nor

The follo
indispens
the latest

ISO/IEC/I

ISO/IEC/I
Definition

ISO/IEC/I
ISO/IEC/I
ISO/IEC/I

Other sta

4 Terrn

For the p
apply.

NOTE

conforman
understang
are includ
Engineerin
29119-1 ¢
specific to

greed 1o by the relevant stakenholders.
Tool vendors may in their portfolio provide only part of a keyword-driven test framework, and thus deci

bment requirements that are covered by complementary tools (e.g. a vendor only provides an execution’ engirn
word driven editor — then the execution engine can still be conforming with the standard).

mative references

bble for its application. For dated references, only the edition cited appli€s. For undated referencs
edition of the referenced document, including any amendments, applies!

FEE 24765, Systems and software engineering — Vocabulary

FEE 29119-1, Software and systems engineering — Software Testing — Part 1: Concepts a

D
FEE 29119-2, Software and systems engineering —-Seftware Testing — Part 2: Test Processes
FEE 29119-3, Software and systems engineering~ Software Testing — Part 3: Test Documentatior

FEE 29119-4, Software and systems engineering — Software Testing — Part 4: Test Techniques

hs and definitions

irposes of this document,_the terms and definitions given in ISO/IEC/IEEE 24765 and the followi

Use of the terminology of ISO/IEC/IEEE 29119-5 is for ease of reference and is not mandatory

ce with ISO/IECHEEE 29119-5. The following terms and definitions are provided to assist with t
ing and readability of ISO/IEC/IEEE 29119-5. Only terms critical to the understanding of ISO/IEC/IEEE 29119
bd. This cladse is not intended to provide a complete list of testing terms. The Systems and Softws
g vocabulary ISO/IEC/IEEE 24765 can be referenced for terms not defined in this standard. ISO/IEC/IEH
bn be~referenced for terms related to software testing in general. ISO/IEC/IEEE 29119-5 only defines terr
Keyword-Driven Testing.

wing documents, in whole or in part, are normatively referenced in this’ document and 4dre

ndards useful for the implementation:and interpretation of this standard are listed in the bibliography.

He
e,

s’

hd

9

or
he
-5
re
FE
ns

4.1

domain layer

highest le

vel of abstraction for the test item

Note 1 to entry: Keywords on this level are chosen in a way that is familiar to domain experts.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

4.2

hi

gh-level keyword

keyword that covers complex activities that may be composed from other keywords and is used by domain
experts to assemble keyword test cases

4.3

keyword
one or more words used as a reference to a specific set of actions intended to be performed during the
execution of one or more test cases

Note—t+to Ulltly. Hre—actions-inctude-interactions-with-the Yser-interface dw;lly the test; vcl;f;uat;un, atret apcu;f; actions to
segt up a test scenario.

No¢te 2 to entry: Keywords are named using at least one verb.

N¢te 3 to entry: Composite keywords can be constructed based on other keywords.

4.4

keyword dictionary

keyword library

repository containing a set of keywords reflecting the language and level of abstraction used to |write test

C4g

B

Ses

b
byword-Driven Testing
5ting using test cases composed from keywords

§
pyword-Driven Testing framework

5t framework covering the functional capabilities\ef a keyword-driven editor, decomposer, data s
pnual test assistant, tool bridge, data and seript repositories, a keyword library and the test
vironment

7
yword execution code
plementation of a keyword that is-intended to be executed by a test execution engine

B8
yword test case

mposed to describesthe actions of a test case

Ww-level keywerd
yword thatCovers only one or very few simple actions and is not composed from other keywords

JLO

anyal testing

quence of keywords and the required values for their associated parameters (as applicable) that af

bquencer,
execution

Note 1 to entry: Automated testing uses tools, robots, and other test execution engines to perform tests. Manual testing
does not use these items.

4.
te

11
st execution engine

tool implemented in software and sometimes in hardware that can manipulate the test item to execute test
cases

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Note 1 to entry: A typical test execution engine includes unit test tool frameworks, stimulation-command systems, capture
and playback tools or hardware robots along with the software to control them.

4.12

test framework
environment that facilitates testing

4.13

test interface
interface to the test item used to stimulate the test item, to get responses (e.g. actual results), or both

Note 1 to 4
Note 2 to 4
Note 3 to ¢
4.14

test inter

lowest le
atomic (lg

5 Intrd
51 Ov
Keyword-|
automatid

automatid

In princip
testing) a

ntry: The GUI, API or SOA interfaces are typical test interfaces.

ntry: Stimulating the test item can involve passing data into it via computer interfaces or attached hardware.
ntry: Getting responses includes getting information from the test item under test or associated hardware.
face layer

el of abstraction for keywords, which interacts with the test item directly,and encapsulates t
west level) interactions at the test interface

duction to Keyword-Driven Testing

Prview

Priven Testing is a test case specification apprdoach that is commonly used to support tsg
n and the development of test automation framfeworks. However, it can also be used if

n approach is planned or established.

e, Keyword-Driven Testing can be applied at all testing levels (e.g. component testing, systg
nd for various types of testing (e.g. functional testing, reliability testing). Keyword-Driven Testi

benefits include the following:

— ease
— unde
— main
— testi

— Supp

— poter]

of use

Fstandability
ainability

hformation reuse

brt of test-attomation

tial cost and schedule savings

ne

no

m
LY

The fund

mental 1dea In Keywora-priven Tlesling IS 10 provide a sel O "Dullding DIOCKS™, reterred 10

S

keywords, that can be used to create manual or automated test cases without requiring detailed knowledge of
programming or test tool expertise. The ultimate goal is to provide a basic, unambiguous set of keywords
comprehensive enough so that most, if not all, required test cases can be entirely composed of these
keywords. The vocabulary included in these dictionaries or libraries of keywords is, therefore, a reflection of
the language and level of abstraction used to write the test cases, and not of any standard computer
programming language.

For test automation, each keyword needs to be implemented in software.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

NOTE 1

ISO/IEC/IEEE 29119-5:2016(E)

When keywords are not used, test cases are usually written using natural language or written in a computer

programming language. Compared with natural language, keywords have the advantage of being less ambiguous and
more precise. Compared with a computer programming language, when keywords are well defined and structured, they
have the advantage of being understandable by many people who do not have software engineering skills.

A

keyword is usually defined at the following two levels:

— At a low level, each keyword is associated with a detailed set of one or more actions that describe the

exact steps that are to be performed.

At o khiak

At-a-hightevelatreaningfu-pame—isused—toidentifythekeywerd—Thiskeywore—may—reguir
input parameters, which would also belong to this level in the structure. The keyword and the
together comprise a high-level description of the actions associated with a test case.

Thus, instead of describing each individual action in test cases, tests can be defined at’a highg

al
ar

A
m
ha
of
N4

Cr
ag

N
cq

straction using keywords. Higher levels of abstraction can be achieved by using composite keywo
e comprised of other keywords to describe associated actions.

h example of the benefits obtained from both manual and automated keyword-driven test cases is
pintainability. Consider a case where the precise set of actions to carry outa’commonly repeated
s changed. The modularity introduced by keywords allows modification of‘only the actions for the
eration in the relevant lower-level keyword, leaving the test cases untouched. Without modularity,
cessary to modify each occurrence of this operation in all of the test{cases.

pated to interpret manually created keyword test casesXas executable test automation script
hieved by implementing test automation code for each keyword (e.g. keyword execution code).

DTE 2 Testing tools can be used to support Keyword-Driven Testing, but the available tools may be limi
pability to support all the concepts described in this standard.

e a set of
arameters

r level of
ds, which

enhanced
operation
changed
it may be

Mpdularization has helped popularize this approach. If test.attomation is required, a framework can be

5. This is

ted in their

©
©

ISO/IEC 2016 — All rights reserved
IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

test procedure

[..

test case
]]
1..n 1 1 1..n
keyword test case . manual test case

implements X
> L
0 3]
o [0}
£ £
S T1 ..N T1 ..n g
5 keyword Lo__Ln action =
=1 describes £
E »
o 1 2

is implemented by
G test interfage/tool independent

0.1 @ test inteffdce/tool dependent

keyword execution code
is used by 1.n
1..n
framework generated manually generated
1 automated test script automated test script 1

v

automated test script

Figure 1 — Relatianships between Keyword-Driven Testing entities

A test procedure can have multiple test cases in it, and a test case can, in turn, be part of different tgst
procedurgs (Figure 1). Test eases can be either manual test cases or keyword test cases. A keyword tgst
case implements a manual fest case.

A keyword test case isitypically composed of a sequenced series of keywords. Keywords should be chosen|to
be modular and gengfic so that they can be reused in many test cases. Keywords can also be used more than
once in the same\test case. A test case is composed from test actions. Keywords represent test actions.

NOTE 3 | Itis possible to map several keywords to a single action. It is also possible to define keywords in a way that
each key\n ord rnnrnennfe one action. In these casesa one-to-one rnlnhnnehm exists between actions and I(n\lwnrrs
However, a test deS|gner can decide to structure keywords in a different way (e.g. use more than one keyword to
implement an action, or to combine two or more actions into one keyword). This relationship is not a 1:1 relationship in
Figure 1.

Test automation is an option that can be chosen when implementing Keyword-Driven Testing, but a manual
approach is also possible. If keyword test cases are automated, each keyword is implemented by keyword
execution code. Keyword execution code is specific to the chosen tool or test execution engine, and will
additionally depend on the test interface. For the manual approach, the action described by a keyword is
executed manually, so there is no keyword execution code. That is why in Figure 1 the relationship between
keyword and keyword execution code is 1 to 0..1.

6 © ISO/IEC 2016 — All rights reserved
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Test automation is typically highly technical and tool dependent since it depends on the test interface and on
the capabilities of the available tools. In general, keywords can be independent of the test interface (e.g. user
interface) and the tools used to execute the test cases.

In this context, automated test scripts may either be generated automatically by a framework or developed
manually by a test automation specialist. Automated test scripts are typically developed by testers with
programming experience.

NOTE 4

the implementation of the automated test scripts.

I
o

=

N
bg

5,

5.

K4
cd
(o7
cl
Wi
to

K4
dq

W
lor:

us
m
S

The lowest layer is thetmost detailed layer. It is commonly aligned with the names of test interface
(el

Sle
US

ur
off

The topmost layer is the most abstract*layer, which is generally aligned with the wording of the ap|

Mpst Keyword-Driven Test systems will have more than one layer due to factors such &

When developing automated test scripts, it is beneficial to align the structure (e.g. levels) of the keywords with

A keyword test case or a set of keyword test cases is automated, the framework for Keyword-Drivs
nerates the automated test script based on the keyword execution code.

DTE5 A framework for Keyword-Driven Testing does not necessarily "generate" code. The_required cod
prepared by testers and be executed by the framework.

2 Layers in Keyword-Driven Testing
P.1 Overview

bywords can represent actions at different abstraction levels. For example, one keyword can refer
mplex set of activities, like the creation of a contract, which includés’a lot of steps, while anothe
n refer to a very simple action, like pressing a button on a gfaphical user interface. The first Kk
bse to the business and end user domain, while the second is-Closer to the test interface. Keyword
itten at a similar level of detail, and have a similar relationship to the stakeholder's view, are said
the same abstraction layer.

pyword-Driven Testing can be organized by using{one or more layers. Typical layers are the
main layer and the test interface layer.

hile many implementations of Keyword-Driven’ Testing will comprise two or three abstraction layer;
ses it may be necessary to structure keywords in more layers.

ay not be required, and another, more abstract layer is used (e.g. if the test cases are suppose
veral different end user domains, a meta domain layer can be introduced).

g. "selectMenultem®. In practice, this layer is usually, but not always, the test interface laye
metimes a test(interface layer is not required, or for specific reasons, even more detailed layer
ed).

derstandable keyword test cases, maintainability and division of work relying on a multi-layer st
lyone layer is implemented, it will commonly be either at a low level, which affects the readab

ke

n Testing

e can also

to a very
r keyword
eyword is
s that are
to belong

end user

5, in some

plication's

ers. In practice, the topmost layet_is usually the domain layer. However, in some situations the domain layer

d to span

elements
r (e.g. as
s may be

s having
ructure. If
lity of the

yword test cases, or at a high level, which can result in more keyword execution code.

In Figure 2, an example is given, showing how test cases for two different test interfaces can be structured by
using two layers of keywords.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Br.
ne
ne
or

Dy

StartAPP InitializeCamera
CreateFile CreatePreview
test cases InputContents takePicture
saveFile VerifyPicture
Exit Exit
saveFile: takePicture:
. getContents initialize
domaln Iayer keywords SelectMenu InvokeAPl CameraSnapshot
selectSave finalize
InvokeAPI(API)
test |nterface layer ecttent {
_ . setupParameter()
keywords hWnd= GetWindowHandler() R
. postMsg(hWnd, MenuMsg);
(script code)) } SR
test |nterface GUI API
Figure 2 — Example for defining test cases by keywords.at.several layers
EXAMPLE In Figure 2, two test cases are shown which are designed using-adomain layer and a test interface lay
One of thg¢ examples sketches a test case for a GUI application, the other‘for a camera API. In both examples, t
implementation of the test cases in respect to test automation is done on the ‘test interface layer. From top to bottom, |
example shows a test case for each test item, shows how one of the_tised composite keywords on the domain layer
both test items could be structured, and gives an idea of how the implementation of one of the basic keywords on the tgst
interface Igyer for each test item could look.
5.2.2 D¢main layer
Keywordg in the domain layer correspond to business or domain related activities and reflect the terminolo
used by domain experts. Because of this, it can’be easier for testers at the domain or business level to creg

test cases.

Keywords
define teg

EXAMPLE
correspond

StartA
Clear

Enter

developed for the domain layer are generally implementation-independent; that is, the keywor
ts that work regardless of.the technology used to implement the test item.
1 Consider a keyword' test developed to test a word processing application. Domain layer keywor
to the activities that'are part of the “business of word processing”:
pplication <apptname>
Buffer
[ext “Hello World!”

te

ReplaceText “Hello”, “Goodbye”, “ALL_OCCURRENCES”

VerifyText “Goodbye World!”

StopApplication

This test is valid for any text editor application that provides a global replace function, (e.g. Notepad, MSWord, Notepad++,
GED, EMACS, etc.).

EXAMPLE

2 Frequently used domain layer keywords are "Login" and "CreateAccount”

© ISO/IEC 2016 — All rights reserved
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5

:2016(E)

Tests constructed using domain layer keywords are relatively immune to changes in the implementation of the
test item, and can prevent expensive rework over the lifetime of the test item.

NOTE

5.2.3 Test interface layer

Extensive changes to the application, (e.g. changes in the workflow) can require test cases to be reworked.

Keywords at the test interface layer refer to a specific type of test interface, (e.g. the graphical user interface
(GUI)). The actions needed to address the test items can usually be easily identified. The total number of
keywords is typically smaller than at the domain layer, since the test interface is limited.

E

m
cq
ny

If
H
hq

In
te
ex
be

E
sU
el
ag

5

Tq
re

bpped to a fixed set of keywords, a small number of keywords is needed. In the same case the domain4relat
n be very versatile, and may need to be extended according to the needs of the tester, which leads/fo a m
mber of keywords.

automation is desired, the keyword execution code for keywords at the test interface layer is ofte
bwever, for a keyword test case composed from keywords at the test interface layer, it may be diffi
w the interface layer keywords are related to the business domain.

ferface layer keywords usually reflect the underlying implementation teehnology for the interactio
5t item. For example, keywords such as MenuSelect and PressButton‘reflect a GUI operation.

cause they correspond to window-based operations.

KAMPLE 2 Consider a test interface that is a graphical user interface. Keywords are chosen to cover sin
ch as "Click" or "Select". These keywords are applied to different elements like lists, grids, or images, and
ement can be selected by using the keyword with a parameter (See 5.4 Keywords and Data). Some comb
tions and elements can be excluded.

2.4 Multiple layers

combine the advantages of several layers (e.g. domain layer and test interface layer), a fran

This way a high-level keyword at the blsiness level (e.g. domain layer keyword), can be built fro

lo

Fi

In
la

u

ver level keywords at a more technical level (e.g. test interface layer keywords).
gure 3 illustrates how multiple layers can be used in Keyword-Driven Testing.

complex settings, three or more layers of keywords are necessary. In the figure, additional int
yers are represented.by three dots "...".

5ing multiple layers requires composite keywords (see 5.3.2 Composite keywords).

AMPLE 1 A GUI can be used as the test interface. As the GUI controls (along with the associated ?lftions) are
e

keywords
uch bigger

n simpler.
tult to see

h with the
Using the

ample above, they would not be applicable to text editors using«a command line interface, siich as vi,

ple actions
he specific
inations of

nework is

quired, which can help manage hierarchical keywords (see section 7 for details about testing frameworks).

M several

ermediate

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

test cases e.g. ATM perform withdraw. ..
& | domain layer keywords e.g. authenticate, select_withdraw,
2 enter_amount... E
®© .. ISR S]
©
| -
®) L TR €2\ ;
; test interface layer keywords e.g. inject_card, press_key, !
() verify _cash... :
= _— [o A K
dptional: test automation e.g. automated script§ e implement|:
(keyword execution scripts) Ul-actions or feed Stubs. .. |
test interface e.g. graphicafuser interface, stubs, |!
API... |

Figure 3 — Multiple layers in Keyword-Briven Testing

NOTE 1 Figure 3 explicitly shows two keyword layers — a domain.fayer and a test interface layer — and indicates that|in
between there may be intermediate layers. It is possible, and can“be sufficient, to organize keywords in only one layer.
However, there might also be situations in which more than two layers are needed.

NOTE 2 In Figure 3, the domain layer keywords are taken/from the domain of an ATM test, and are meant to be usgd
to create test cases. The keywords from the test interface layer refer to simple actions that can be applied to the tgst
interface. The keyword "verify_cash" in this example-is*related to the test interface, and is supposed to cover only ohe
small actifity, and used as part of domain layer keywords. In another example it could be designed differently, cover
several acfions, and then be part of the domain Jayer.

5.3 Types of keywords
5.3.1 Simple keywords
Simple kdywords, which are.often used at the test interface layer (e.g. "MenuSelect" or "PressButton"), can be

the conngction between the test execution tool and higher level keywords at an intermediate layer or domgin
layer.

14
=

Using only keywords at the test interface layer can be sufficient for the definition of test cases and thei
execution|. Exclusive use of simple keywords will lead to test cases with many actions.

Dependingomthetestiten, keywordsat thetestinterface tayercould eed to interact withdifferemntsysterhs
such as databases, the system registry or SOA-Messages. This challenge would normally be supported by
the automation framework by providing a predefined set of keywords in order to make the technical
environment as clear as possible.

In a similar way, the automation framework will support access to the test interface or other interfaces on
which the keyword operates (e.g. mouse, keyboard, and touch screen).

Depending on the test interface, it can be possible to operate with a very limited number of simple keywords.
A limited vocabulary of keywords is beneficial for composing test cases, since they are easier to remember,
use and maintain. If test automation is required, a very limited number of keywords may result in an increased

10 © ISO/IEC 2016 — All rights reserved
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

effort to implement the keyword execution code. This is because if a small number of keywords still has to
cover the same complexity, an individual keyword needs to be more flexible or powerful.

EXAMPLE

An implementation is structured by the required actions such as "select". That particular action is only

implemented once due to an objective to have a small number of keywords, In this case, the single keyword "select"
needs to address several types of interface elements, such as for a GUI, lists, tables and radio buttons. The keyword
"select" will for that reason be associated with a complex implementation.

5.3.2 Composite keywords

Si

to reflect

fu

C
o
[or:

I
sq
m
“fi

—

E
cq

It
le

E
ke

It
fu

A
cd
ke
pa
in
to
frq
in

E

th
th
orn
dg

ple kewawords ara sufficient to comnose—and oexecute—taest cases but are often insufficieant
1 Lig

J
hctional features.

bmposite keywords are keywords composed from other keywords. This means that, keyword
ganized in different layers (see 5.2). For composite keywords, composite parameters (e,g! a data
n be required.

is often useful to use business-level keywords, such as “login user®. This keyword may be comp
quence of lower level keywords, such as “enter username®, “enter password* and "push login-bu
pbre complex business objects, such as large forms for the preparation, of contracts, a key

loutContractformPage1” can be valuable.

mpare it with an expected result, and log the result of the comparison in“the test execution log).

is also possible to define a keyword at a higher level (e.gk domain level) with a single keyword
el (e.g. test interface level) to express a different semantic-meaning.

AMPLE 2 For navigation purposes, a high-level keyword "GoToResultsScreen" is defined by the |
yword “Click ResultsButton”

hctionality, such as "CreateCustomerAccount”, which may include a large number of basic steps.

composite keyword is a ‘package’ containing a sequence of other keywords. The set of parame
mposite keyword can be the unien of the set of parameters of the keywords that comprise the
yword; sometimes however, the-implementer of a composite keyword may choose to ‘hide’ ong
rameters by assigning it a.literal value within the composite. This is done in the example in Figy
erface layer keyword "Enter'value" has two parameters: the id of the referenced object and the va
be inserted. Only the value (e.g. username) is visible on the top layer keyword "login", while the id
m a tester, who only- used the composite keyword. This is especially useful if the detailed
formation is irrelevant to the person who designs test cases and operates at the domain layer.

AMPLE 3 Figure 4 illustrates how a keyword for a login procedure can be designed as a composite

ee layers,.At the domain layer, this keyword can be used, (e.g. 'Login ("John","secret")'). This keyword is cd
ee keywords at the intermediate layer, "Set_User", "Set_Pwd" and "Close_Login". "Set_User" and "Set_Pwq
e of the parameters of the higher layer keyword "Login", while the keyword "Close_Login" requires no par
tacat'all. At the third layer (the interface layer), the basic keywords "Set_context", "Enter_value" and "Select

S can be
structure)

osed of a
tton“. For
word like

AMPLE 1 It is common to use composite keywords for verification, (e.g. retrieve a value from the application,

at a lower

pwer level

is also possible to combine several basic keywords to create a complex operation with a highgr level of

ters for a
composite
b or more
re 4. The
lue that is
is hidden
technical

eyword in
mposed of
" both use
bmeters or
are used.

On this third layer, literal values are used, such as "Login_Window", which has not been provided with the dg

main layer

keyword but will be used the same way every time one of the intermediate layer keywords is used.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

11

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Login (username, password)

The follov
level of k

compositg¢ keyword (Figure 5). R\

bywords that are eventually applied t%@e test item. The keyword can be low-level, high-level orn a

Set_User(username)

» Set_context(“Login_Window")
Enter_value(“Edit_User",username)

Set_context(“Login_Window") 6 v

1 Set_Pwd(password)

Close_Login()

Set_context(“Login_Window")

Salect(“Button_OK")

i Enter_value(“Edit_Pwd*,password) |

N
Figure 4 — Example for using c&ﬁposite keywords with data

ing figure explains the relationship betwe@different types of keywords, keyword test cases and the

.

12

© ISO/IEC 2016 — All rights reserved
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

keyword test case

I..

keyword
| |
low level high level composite
keyword keyword keyword
= 1.n
&
low level
keyword
s test.item 2pply

Figure 5 — Keyword test'cases composed from keywords at different levels

If composite keywords are not used; keyword test cases can be built from low-level keywords, such as from
the test interface layer. Through'this approach, testing of the test item will be accomplished by usind low-level
kgywords.

NOTE 1 In figure 5, the\eomposite keyword can be either a low-level keyword, or a high-level keyword.

Consequently, the test cases will be understandable for human testers and machine readable test [execution
engines. On the other hand, when reading such test cases, it can be hard to recognize the usg case or
buysiness case-addressed by the test case.

By exclusively using high-level keywords, such as business keywords or domain keywords, the derived
ke yword test cases WI|| generally be more understandable in respect to the addressed use cases or fest cases.
need more
mformatlon about the detalled steps needed to execute the more abstract keywords, espemally if they are not
familiar with the business domain. If execution engines are used, these execution engines need more
information about the detailed steps needed to execute the more abstract keywords as well.

After combining low-level keywords to form composite keywords at a higher level (e.g. combining keywords
from the test interface layers with composite keywords at the domain layer) the keyword test case can be
composed from these high-level keywords. Such test cases are very easy to understand, as they resemble
the related use cases or business cases.

© ISO/IEC 2016 — All rights reserved 13
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/

NOTE 2

lower level

IEEE 29119-5:2016(E)

Figure 5 shows, for composite keywords, two levels of keywords: composite high-level keywords, and low-
level keywords. It is possible to have more levels, such as intermediate composite keywords, which are composed of

keywords and are used to compose higher level keywords.

To execute the tests, the high-level keywords can be decomposed into low-level keywords, usually using a
framework (see 7.2). So testing of the test item will be accomplished by only using low-level keywords, which
makes it easy for human testers or test execution engines to identify the necessary actions to perform the test
since they will have simple steps to follow.

NOTE 3
recommen

5.3.3 Navigation/interaction (input) and verification (output)

Keywordg
verificatio

Most key
prepare t
steps that

The resul

The verifi
step is no

It may be
EXAMPLE

context wt
addition is

case as "failed". However, the test designer can also decide’to mark a test case as "failed" due to the failed execution

that naviga
See reasq
Keywordg
trigger an|

another k

EXAMPLE
second ke

5.3.4 K{
Keywordg

— Test

Mixing keywords from different layers and using them in one keyword test case is possible, but not

ied_as_u_ma%be_th_&snurrp of maintenance prohlems
}

may be classified into at least two categories: navigation steps (i.e. input to the testitem) a
n steps (i.e. output from test item).

words belong to the first category, (i.e. the navigation steps) because most actions are needed
do not verify and log the test result.
is then checked by one or more other actions i.e. the verification steps.

cation steps are related to the result of the test case. For example, if the condition of a verificati
t met, then the test result will be set to "failed".

useful to allow navigation steps to be used for verification.

1 A navigation step "AddUser" is required to prepare data‘for a test case. In some cases it may be used ir]
ere the addition of a user is supposed to succeed,in, other cases it can be used in a situation where t

tion step, although the actual intent of the test'case is to verify a result which appears later in the process.
ns for tests failing in subclause 5.3.4 Keywords and test results.

will typically be semantically, independent from each other. Therefore, if a keyword is meant
expected result, the verification of this expected result will be part of the same keyword and not

pyword.

2 Pairs of keywords.like "Open the dialog" — "Verify the dialog is opened" are normally avoided when t
word is exclusively Used following the first one.

bywords and.test result

butput

ne test item or perform certain actions on it which will lead to a result. Navigation steps usually dre

can be.used to determine the test status and to capture test results. This can include the following;

hd

to

bNn

a
ne

expected to fail. Thus, the keyword can verify whether it successfully creates a user, without marking the tgst

of

to
in

ne

— Conformance to success criteria

— Test execution log files

— Hardware outputs

— System status

— Test failure(s)

14

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

There are different reasons why a test execution can fail that can include the following:

— the conducted checks in the test case reveal a mismatch between actual outputs and expected outputs,
which might indicate a software failure;

— some steps in the test case cannot be executed, because test execution is blocked.

NOTE Blocked test cases include test cases that cannot be executed due to faults in keywords, keyword execution
code or the test environment.

It f5USefulto Tecognize the cause of a fatfed execution at first gfance without having to analyse thg cause in
detail. Thus the framework will set different test results (e.g. failed and/or blocked) accordingly.

The result of an individual keyword execution will normally impact the test result, but thatimpact dgpends on
the context.

EXAMPLE A keyword is defined to enter text into an edit field. The keyword workscthe*same but the fesults are
inferpreted differently depending on context. If the text field is expected to be active and text entered successfully then the
tept result is set to passed. Conversely, if no text is entered to an active field, the test fesult is set to failed. Op the other
hgnd, if the text field is expected to be inactive and text entered successfully the result is set to failed, whefeas if text
cgnnot be entered the test result is set to passed.

The test framework can be designed to handle blocked keywords-on the test item. Keywords cap then be
optionally marked either as “may be blocked” or as “must notbe ‘blocked”. In the first case, g blocking
(unsuccessful execution) of the keyword would not affect the testresult; in the second case, the test|result will
be affected. A keyword can be marked either globally (the property is default for all applications in t¢st cases)
orloverridden when it is used in a test case.

The test framework can additionally provide an error recognition mechanism that can take care| of errors
returned by a keyword. Failures can be logged and.described as clearly as possible in order to simplify the
cqrrection of errors in the automation framework‘and investigate its cause, which may be a software-defect.

54 Keywords and Data

Keyword-Driven Testing can be enhanced if keywords are associated with data. To allow an assoclation with
data, in many cases keywords will need to have parameters which may be fixed, or list driven.

Mpst keywords will need to_have at least one parameter to specify the object they apply to. Some| will need
another parameter to specifylinput, (e.g., true/false, a string to type, an option to select in a combo pox). This
input will generally depend-on the type of control and the type of action.

NOTE In the cases’where a keyword represents a verification step, the required input for the keyword could be the
eXpected output or, a“state for the referenced object.

Some keywaords may also accept a number of optional inputs; in such cases, the framework needs to hold
default values for those that are not provided (e.g. “Click UI_Element 456,123” may refer to a specific co-
orndinatejin the Ul_Element, while “Click Ul_Element” with no specified co-ordinate may default to clicking the
canierof that element).

For composite keywords, which can cover extensive functionality, the number of parameters can grow and the
test data can become complex. It is a good practice to decouple the data from the actions. Therefore, multiple
parameters can be stored separately and a unique reference to the data is used as input for the keyword.

EXAMPLE A composite keyword "createCustomer" requires data such as first name, surname and address of the
customer. Instead of documenting the test data with the keyword test case, it is stored in a database. This allows a single
reference to the complex data in the database, and the test case can be extended by providing several sets of data which
are associated with the same sequence of actions.

© ISO/IEC 2016 — All rights reserved 15
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Data-driven testing is a method of storing test data separately from the sequence of actions, which
independent of Keyword-Driven Testing, but is frequently used in conjunction with Keyword-Driven Testing.

is
In

data-driven testing, for one test case with a defined sequence of actions, multiple sets of data can be provided.
The sequence of actions is then executed for each of the sets of data. Depending on the implementation, the
data is either stored in a table, spreadsheet or database. Data-driven testing is an option to decouple the

parameters from the test which matches very well with the concepts of Keyword-Driven Testing.

See subclause 6.4 Keywords and data-driven testing.

6 Application of Keyword-Driven Testing

6.1 Overview

This section addresses some concepts which contribute to a successful implementation of Keyword-Driv
Testing. While all of these concepts are not required for each keyword test case, test design willbenefit frg
them.
There are six concepts covered in this section.

a) ‘"ldentifying keywords" in 6.2;

b) "Conjposing test cases" in 6.3;

c) "Keyyords and data-driven testing" in 6.4;

d) "Modpularity and refactoring” in 6.5;

e) "Keyyword-Driven Testing in the Test Design Process" in®.6; and

f) "Conyerting non keyword-driven test cases into Keyword-Driven Testing" in 6.7.

6.2 ldentifying keywords

Identifying Keywords is a pivotal task in Keyword-Driven Testing as the contents, granularity and structure
the keywords can impact the way keyword test cases are defined. It is important to name keywords in a w.
that appears natural to the people who will be working with them.

When ideptifying keywords, the following steps are executed:

a) deteqmine the layers needed in the given context and define what sort of keywords (e.g. functionali
granularity) are suppesed to be assigned to the layers;

b) ident|fy keywords.in'the layer based on the definition or scope of each layer.

Generally, keywords are defined by first identifying sets of actions that are expected to occur frequently in t
testing. Al name’(e.g. the keyword) is applied to an action or group of actions. Keywords are applicable in

m

of
Ay

range of gituations. At this point it is useful to determine which of the actions are information-dependent (e.g.

time, data, situation, etc.), and so identify which keywords need to be associated with parameters.
A keyword is described by the following information:
— The name of the keyword. It tells the reader what this keyword is expected to do.

— The parameters of the keyword, which can be empty.

— Documentation on the keyword, including the layer in which this keyword is expected to be used, the
keyword type (e.g. navigation or verification), the context in which it is to be used, the actions included

16 © ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

with the keyword, either as a description, or as a reference to keywords on a lower layer (see next bullet),
and the objectives of the keyword.

— If the keyword is composed from other keywords, a list of the included keywords in the order in which they
are used.

Basic Keywords can be identified by observing different interactions available at the test input interface, such
as interactions with keyboard, mouse, touchscreen, microphone, API, etc.

Composite keywords can be identified by observing common actions that the user will perform at the Ul level.

EXAMPLE "GoTo" would be used instead of "ClickButton", or "Select" instead of "ClickRowInTable".

Typical business behaviour can be encapsulated in a composite keyword (e.g. "CreateNewUser"). Other
cgmplex manipulations like interactions with databases can also be candidate keywords nthe frameork.

The following issues should be considered:
—t Uniqueness: each keyword should be unique in its context of use.
—t Reusability: the keywords should be defined in a way that best supporis future reusability.

—t Completeness: keywords should be defined with a view to allkknown elements and possible interactions
of the test interface (e.g. all known objects in the GUI and its dialogs).

—1 Clarity: all keywords should be defined with a clear and Consistent structure.
NOTE 1 All keywords in a layer should have a similar abstraction level.

—t Specificity: keywords should not be redundant and should be mutually exclusive (i.e. keyyords will
represent distinct actions), to ease the test/design and to decrease the maintenance effort.

NOTE 2 In some environments it can be useful to use an object-oriented approach to identify and describe| keywords.
Kgywords can, in that approach, be identified-by analysing the available objects and methods on the objects in the domain.
Kgywords can then be described in a style like "OBJ.Action Parameter”, where "OBJ" refers to the object which is to be
addressed (e.g. a button in a user dialogue box), "Action" refers to the activity (e.g. "press" for a button), and "parameter”
refers to a list of additionally-needed- parameters. This approach can be useful if all stakeholders performing Keyword-
Driven Testing within that environment are familiar with object-orientation.

63 Composing test cases

Keyword test casés can be composed from previously-defined keywords. In the process of writing te¢st cases,
it £an occur that'missing keywords are discovered and can, therefore, be defined after that point.

NOTE Keyword test cases can be composed from composite keywords and used to build end-to-end tests
Wlithin-the test case specification (see ISO/IEC/IEEE 29119-3), test cases can be documented using

appropriate notation. including the use of tables or databases. The format depends on the]|available
infrastructure (e.g. availability of a test management tool and the plans for automated execution).

Keyword test cases usually contain keywords from a single layer. A clear distinction is made between the
layers. This distinction opens the option to distribute the design of different layers to different testers (see 7).

EXAMPLE 1 Test of an ATM using only basic keywords at the test interface layer:
enterValue("Card", 123000789)

enterValue(“PIN”, 1234)

© ISO/IEC 2016 — All rights reserved 17
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/

select

select

IEEE 29119-5:2016(E)

Object("Button”, "OK")

Object(“Button”, “Payment”)

enterValue(“Amount”, “200”)

select

Object(“Button”, “executePayment”)

verifyObject(“Payment”, "200”)

EXAMPLE

2 Testofan ATM ||einc domain Inynr I(nywr\rde'

signlr]
execy
verifyl
More exa

6.4 Ke

Keywords
improved
used with

keyword fest cases. The data can be stored in constructs such as tables, databases, or real-time generato

and is theg
creates n

EXAMPLE
cases are
internation
item may

The follow

— A ke
whet
place
It img

— Multi
test d

User(123000789, 1234)

tePayment(“200”)

Payment(“200”)

mples can be found in Annex F.
words and data-driven testing
combined with parameters and separate data sets for these paranieters (e.g. data-driven) may off

testing. Data-driven testing can be applied when the same sequence of keyword actions are to
different sets of data. In this combined approach, the dataycan be stored separately from t
n read into the keyword test cases. The repeated keyword sequence using different data, in effe

bw tests.

to be performed at user interfaces but with different languages. It should be kept in mind that not
hlization issues are easily addressed by data-driven, testing: in the case of lexicographical sorting, the request
ave not only have a different label but also a different position.

ing guidelines are taken into consideration for data-driven testing with keywords:

yword does not have to be “loop” aware”. In other words, a keyword will ideally work the san
ner it is part of a linear sequence or is contained within a loop (such as in a data-driven test). Th
s the burden of managingthe data file and fetching its content on the framework, not on the keywo
lies that the only method of getting data into and out of a keyword is through its parameters.

ble, non-nested loops in a test case, can be implemented, but are discouraged. Good data-driv
esign suggests thé use of a single loop in test cases that are data-driven.

type)

d data-driven loops are discouraged. Nesting data-driven loops by more than two is norma

pe
ne

il

Data-driven testing is useful for multi-lingual testing or internationalization testing, where the same tgst

all
Bd

he
is
rd.

ly

ne

. Neither does .th.is standard dictate the format of the data items within ,the file (e.,g. XML, ASCII

Unicode text, binary encoding, or any other format is permitted).

NOTE

Although Keyword-Driven Testing and data-driven testing are concepts that can be used independently

theory, in practice Keyword-Driven Testing includes data-driven testing.

18

le
or

in

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

6.5 Modularity and refactoring

Modularity in Keyword-Driven Testing is used to improve the longevity of the test cases. However, with the
passage of time, changes in the test item, new test cases or new people on the team can all lead to
maintenance issues.

Possible issues are as follows:

Redundant keywords: where two or more keywords for the same objective come into existence.

Tq

6.6.1 Overview

The TFest Design and Implementation Process defined in ISO/IEC/IEEE 29119-2 (see fiqure 6) is ap

66 Keyword-Driven Testing in the Test Design Process

Unused keywords.

Conflicts where changes in keywords (e.g. structure or semantic), which fix an issue inca“aumt
cases, create new issues in other test cases. This has associated cost factors.

Uncoordinated changes in keywords (e.g. name, semantics, parameters) causexrework or inva
cases of other testers.

avoid these issues, the following maintenance actions should be considered:

A framework for Keyword-Driven Testing should provide a way of ¢reating a cross-reference fo
keywords, allowing identification of which keywords are used in which places and how frequent!
used. This shows if, and how much, a change in a keyword withaffect existing test cases.

In some organizations, an authority is required who is ‘responsible for all keywords, additions
changes to existing keywords or how they are used: That authority assures consistency throu
project including both development and testing stages.

On a regular basis (e.g. once a month), a keyword review meeting can be held. At this meetin
can decide about the introduction or modification of keywords and discuss the structure of the
If an authority is in charge of keywords, they should also be in attendance.

A clear structure to document the keywords should be produced. Keywords can be grouped by
item and region in the test item\(e.g. dialog, objective or others). Keywords that are suppo
usable by all testers will normally be stored separately from keywords which are only useful fo
number of people.

Keywords can be subjected to configuration management practices (e.g. the authority mentiong
The ability to change: keywords would normally be limited to those who need to do chang
authority. All changes need to be well documented. Access to prior versions (e.g. the option
back) should alse’be provided.

per of test

idate test

the used

y they are

and any
ghout the

g, testers
eywords.

ayer, test
sed to be
F a limited

d above).
es or the
for rolling

plicable to

this standard. This clause describes the relationship between the activities of this process and Keyword-
Driven Testing.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

19

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

TestDesign &
Implementation Process
Test Design
Feat Specification
Identify eatur etﬁ >
” Feature —
Sets } U
(TD1)
Derive Test | Test Conditions
Conditions Test Case
(TD2) ; Test ﬁ Specification
Derive Coverage
Test Items _
Coverage ﬁ
Items U
(TD3) :
Derive Test Cases st
Test Cases
} Procedure
{TD4) &7 Specification
Test
Assemble Sets
Test Sets
(TD5) v H
. Test Procedures
Derive Test | g Test Scripts

Inputsfto activities in this process Procedures
may ingclude: z (TD6)
T e The process is shown as purely
. Tekt fan" sequential, but in practice it may
. T t?traéegy' be carried out iteratively, with
o Tdiriraras: a;d some activities being revisited(
+ Test design techniques.

The Test
six steps

The requ
Implemen

TD1 to
performin
Procedurs
6.6.2 TI
TD1 can |

6.6.3 TI

TD3 are not addressed._in ISO/IEC/IEEE 29119-5. Keyword-Driven Testing is relevant wh

Figure 6 — ISO/IEC/IEEE 29119-2 Test\Design & Implementation Process

Design and Implementation Process in subclause 8.2.1 ISO/IEC/IEEE 29119-2 (figure 6) describ
rom ‘Identify Feature Sets’ (TD1) to ‘Derive Test Procedures’ (TD6).

rements of TD4 to TD6 in ISQ/IEC/IEEE 29119-2 are most applicable to the Test Design
tation Process used in Keyword-Driven Testing.

by the activities TD4 < ‘Derive Test Cases’, TD5 — ‘Assemble Test Sets’ and TD6 — ‘Derive Tg
bs’. These will be covered in the following subclauses.
D1 Identify Feature Sets

be applied'in Keyword-Driven Testing as defined in ISO/IEC/IEEE 29119-2 and is not covered here

D2 Derive Test Conditions

&

BN
st

TD2 can be applied in Keyword-Driven Testing as defined in ISO/IEC/IEEE 29119-2 and is not covered here.

6.6.4 TD3 Derive Test Coverage Items

TD3 can be applied in Keyword-Driven Testing as defined in ISO/IEC/IEEE 29119-2 and is not covered here.

20

© ISO/IEC 2016 — All rights reserved
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

6.6.5 TD4 Derive Test Cases
6.6.5.1 Overview

In TD4, Keyword-Driven Testing is focused on composing keyword test cases of simple keywords or
composite keywords.

A keyword test case is implemented using keywords. Keywords that support the needed test cases will have
been defined prior to TD4. It is possible that new keywords may be identified during the performance of TD4
tasks and in this case iterations of TD4 are likely to be required.

According to ISO/IEC/IEEE 29119-2, test cases are derived by the following steps (TD4 task a):
—t Determine pre-conditions

—1 Select input values

— Select actions (to exercise test coverage items)

—t Determine expected results

These design activities identify the different actions that need to be performed to prepare the system for the
tept, execute the test and verify the test results. Keywords may fulfikeane or more of these actions.

Examples of keyword-driven test cases can be found in Annex F.
6.6.5.2 Determine pre-conditions

The tester determines and establishes the needed:\test pre-conditions and identifies which can be|achieved
uging keywords or other actions. Composite high:level keywords (see 5.3.2) can be appropriate in a situation
where multiple actions are required. Additionally in some testing, keywords can be used to prepafe system
canditions before establishing specific test ¢ase pre-conditions (e.g. importing data into a database|or setting
parameters for application start which can'be used over a series of test cases).

6.6.5.3 Select input values

The tester selects input values_based on test design considerations and then implements these in keywords.
In| situations where test cases*are supposed to be executed according to the same actions, but with different
sgts of data to provide different test outcomes, the keywords will normally be developed to support data-driven
tepting (see 5.6).

6.6.5.4 Select aetions

The tester idéntifies those actions required to exercise the test coverage items. If the required actiops are not
available-from existing keywords, new keywords may be needed or existing keywords can be compined into
cgmpasiteé keywords, as appropriate, to provide the needed functionality. Such changes may requirg iteration
on thisseffort.

NOTE As keywords will sometimes already be defined, the iterative nature of the Test Design and Implementation
Process suggests that keywords can be subject to refactoring.

6.6.5.5 Determine expected results
The tester will determine expected results and implement checks or feedback on results using keywords.

Keywords can be used to check the results the test item returns and log them accordingly (see 5.3.3
and 5.3.4).

© ISO/IEC 2016 — All rights reserved 21
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

6.6.6 TD5 Assemble Test Sets

Test sets can be formed from keyword test cases (TDS tasks a and b).

A framework for Keyword-Driven Testing can provide mechanisms for assembling test sets from various test
cases (see 29119-2) by applying different criteria (e.g. the same test environment set-up, or keywords with

data-driven testing).

6.6.7 TD6 Derive Test Procedures

The deve|oped keyword (est cases and test Sets become the primary mput for deriving test procedures as the
keywords|are easily read and understood (TD6 tasks a and d).

Additionally, a keyword framework can provide mechanisms to determine the execution order within.tést sats
and across test sets, thus generating the basic structure of a test procedure. The framework,can also be
designed [to ensure that required pre-conditions are set up before test execution. This may require additional
generic kgywords.

6.7 Copverting non keyword-driven test cases into Keyword-Driven Testing

If Keyworfl-Driven Testing is to be introduced into an existing project, existing test\Cases can be converted into
keyword fest cases.

In additioh to the advantages of Keyword-Driven Testing, reasons for deciding to convert existing test cases
into Keyword-Driven test cases include the following:

a) Unifdrmity: ensuring that all test cases have a similar_structure and style will enhance readability,
mainfainability and so reduce costs. Future maintenancesmay be cheaper if only one style of test caselis
to be|maintained.

b) Efficiency: keywords identified from existing test cases may be reusable in future test cases.

c) Automation: the same automation frameworksmay be used for old and new test cases.

d) Undgrstandability: test cases may be used and maintained by non-technical testers (often with busineps
knowledge).

Reasons |to keep existing test cases and not convert them into Keyword-Driven test cases include the
following:

— The pumber of existing test cases is large compared with the number of additional test cases that are
needed.

— Therg¢ is proven,and maintainable automation for the existing test cases.

— The ¢ost of converting the test cases is expected to exceed the benefits.

The decision to move to Keyword-Driven Testing for existing projects should be carefully considered.

7 Keyword-Driven Testing Frameworks
7.1 Overview
If Keyword-Driven Testing is to be applied, everything necessary to do that needs to be organized in a

Keyword-Driven Testing framework. This framework consists of concepts, documents and tools. The
framework can have more or less complexity depending on its purpose.

22 © ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

The components of a framework are described in 7.2.

This subclause addresses several points to consider when implementing or using frameworks for Keyword-
Driven Testing.

The following subclauses describe attributes for Keyword-Driven Testing frameworks:

— Basic attributes that are necessary to implement Keyword-Driven Testing (see 7.3).

Advanced attributes providing additional value and are desirable, but are not expected to be available in

A

framework as a whole needs to meet the named requirements.

7.
7.

K4
w
sy

A
fig
cq
sq
K¢
cq

all frameworks (see 7.4).

The attributes are divided into general, test design tool, and test execution engine aspects as/follows|

General aspects are mostly tool-independent.

Test design tool aspects are related to a software tool component of the-framework that i
manage keywords, compose test cases from keywords, and assign data.

Test execution engine aspects are related to a software tool componént of the framework whig
to execute the test cases as automated tests.

framework will likely be composed of a series of tools each providing parts of the needed capabi

2 Components of a Keyword-Driven Testing framework
P.1 Overview

eyword-Driven Testing is typically supported by.a framework. The framework can be realized in a
bys including by commercial tools, custopictools, and solutions in the form of script libraries
pporting elements.

Keyword-Driven Testing framework\will comprise functional units (or functional areas) which are
ure 7. This standard does not.describe how these functional units are to be implemented. In g

ftware tools, along with .cistom implementations, libraries and organizational processes ca
pyword-Driven Testing framework. Tools may have a different overall organisation. A framework
ver the requirements déscribed in subclauses 7.3 to be compliant with this International Standard

5 used to

h is used

ities. The

variety of
or other

shown in
ractice, a

mmercial or custom software tool can cover these functional units in parts or completely. Ong or more

h form a
needs to
see 2).

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

23

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

: (composite) keyword
editor :
keywords library
business level test cases eywords
fest-data K_\
decomposer data sequencer <
data

actionable test cases
built from low level keywords

manual
test assistant

Figure 7 — Components of a Keyword-Driven Testing framework.fat,manual test execution

In Figure |7, a Keyword-Driven Test framework is shown that is restricted-to the support of manual testing/| If
test automation is required, the framework would be comprised of additional elements, as shown in figure 8.[A
manual tgst assistant is not required. Instead, an execution engin€_is used to run the test cases against the
subject under test (SUT). A tool bridge is used as a link betwegn<dhe keywords and their representation in the
automatef test execution environment. The tool bridge's main‘task is to transform the necessary informatipn
into a suitable format for the execution engine.

24 © ISO/IEC 2016 — All rights reserved
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

. (composite)
editor keywords
business level test cases eywords
test-data
decomposer data sequencer <

data
actionable test cases

built from low level keywords

: (automated)
tool bridge script modiles
(automated)
(automated) test script sqript
repgsitory
execution
engine

(automated) operation/input

SUT

test execution.environment

Figure 8 — Components of:@.Keyword-Driven Testing framework for automated test execlition

The functional components-which form a Keyword-Driven Testing framework are explained in the following
sybclauses.

NOTE These component descriptions do not assume any specific implementation of the components. |n practice,
orle specific tool can cover some of these components (e.g. Keyword-driven Editor, Decomposer, Data Sequencer and
Manual Test Assistant might be included seamlessly in one test management tool). Other implementations nfay provide
orlly parts of one'of the components in one tool.

7.2 Keyword-driven Editor

Tt||e Keyword-driven Editor is required to compose keyword test cases from keywords. The keyworfls can be
taken from a keyword Tibrary (7.2.8).

In practice, the Keyword-driven Editor can be implemented in various ways.

EXAMPLE Possible implementations of a Keyword-driven Editor include, but are not limited to, a spreadsheet
application, a dedicated standalone application or can be part of a test management tool.

© ISO/IEC 2016 — All rights reserved 25
© IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

7.2.3 Decomposer

The decomposer is required if composite keywords are used. The main task of the decomposer is to transform
the keyword test case, which consists of a sequence of high-level keywords, into the appropriate sequence of
low-level keywords.

7.2.4 Data sequencer
The data sequencer is required if Keyword-Driven Testing is to be applied with several sets of data associated

with one keyword test case. The main task of the data sequencer is to transform the sequence of keywords
(e.g. low-fevetorhigh-levery which are not yet associated wWith data 1o a 11t of kKeywords with specific data.

By doing this, the original list of actions, which has been written only once in the Keyword-driven EditeFr, will be
repeated for any desired set of data. All parameters or placeholders are replaced by the final value.needed|in
the respective test case.

The data pequencer can work both on high- and low-level keywords.

NOTE Depending on the implementation, the tasks of the decomposer and the data sequencer can be performed
arbitrary ofder. Both tasks can be done by the same software implementation.

n

7.2.5 Manual test assistant

The manuyal test assistant is only required for manual test execution. Itsitask is to present the test cases as
prepared by the decomposer and data sequencer in an actionable way_to the human tester. The tester then
performs pvery single action, as well as documenting the test execution and the results.

In practice, the manual test assistant is frequently part of a testmanagement tool.
7.2.6 Tqol bridge

The tool bridge is only required for automated test@xecution and has a similar function to the manual tgst
assistant used to support manual test execution.

The task pf the tool bridge is to provide a connection between the keywords, as they appear in the keywadrd
test case pr in the keyword library, and the ‘associated implementation in the test execution environment.

For each keyword passed from the data sequencer or from the decomposer, the tool bridge will, depending ¢on
the implementation, request the test’‘execution engine to call the proper script (e.g. keyword execution codg),
functions,|and perform the rightiactions with the appropriate data, if applicable.

In practicg, a tool bridge(can be implemented as a separate software tool, as a script in a test automatipn
tool's runtime environment, or as part of a test management tool. Some bridge implementations may be
referred tp as a "generator," for example when a script or parts of scripts are generated for execution by an
automatidn tool. Additionally, a bridge may be called an "interpreter" or "engine", for example, when a script|is
executed fto interpret the sequence of keywords and calls the corresponding sub-functions.

7.2.7 Tdstexecution environment and execution engine

To support automated Keyword-Driven Testing, the test environment will contain an execution engine with
links to the item under test. The execution engine is a tool implemented either by software, hardware or both.
Its task is to execute the test cases by performing the actions associated with the keywords.

In practice, the implementation of a test execution engine varies depending on the test object and
environment. The execution engine can be a commercial test execution tool, (e.g. a capture and playback tool,
or it can also be a hardware appliance, controlled by software, such as a robot).

26 © ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

7.2.8 Keyword library

The keyword library stores keyword definitions for one or more projects or portions of those projects. It is used
to store the core information on keywords, such as: name, description, parameters and, in the case of
composite keywords, the list of keywords from which the respective keyword is composed or derived. For test
automation, it also contains necessary information for the tool bridge to associate the Keywords with the
keyword execution code. The keyword library can help the tester to find a keyword.

In practice, a keyword library is supported by a test management tool.

7.9 Data

The data element in the Keyword-Driven Testing framework refers to the test data used for the keyword test
c3ses.

Keyword test cases can be designed so the test data is included in the test cases. In"this case, exjernal test
data is not be required. In other implementations, the keyword test case does not, contain actual|data, but
cgntains placeholders which need to be substituted with data before the test case can be executed. In this
cgse, the test data needs to be stored. In practice, it is common to store thatdata in files, in a spfeadsheet
application, in a dedicated database, or in a test management tool.

7.2.10 Script repository

The Script repository stores keyword execution code. It is only required if Keyword-Driven Testing is [done with
the aim of executing the test cases automatically.

For automation of Keyword-Driven Testing, each keyword/needs to be associated with at least one gommand,
tept script or function, which implements the actions assgociated with that keyword. The script repositpry stores
the technical implementations of the keywords.

In| practice, the script repository is frequently-implemented by either a test automation tool or sfored at a
defined location in the file system.

713 Basic attributes of the Keyw@rd-Driven Testing framework

7.8.1 General information on basic attributes

Tlis clause defines framework attributes that are generally necessary for the application of Keywgrd-Driven
sting. It describes attributes which are required in Keyword-Driven Testing frameworks and are pecessary

foF compliance with this International Standard.

TIe following subclauses structure these attributes and requirements by the components of Keyward-Driven

Testing frameworks according to subclause 7.2.
NOTE Requirements concerning data interchange format are not discussed in the following subclauses, ipstead see
clause 8.

782 General attributes

General attributes that apply to Keyword-Driven Testing frameworks include the following:
a) There shall be documentation recorded describing each keyword.

NOTE 1 This is necessary for people to understand and use the defined keywords appropriately to build their test
cases. The description is improved by the inclusion of an example.

b) There shall be documentation recorded for the parameters of each keyword.

© ISO/IEC 2016 — All rights reserved 27
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

NOTE 2

Keyword and parameter documentation includes naming of the keywords and how they are described, the
parameters' maximum length, allowed characters, optionally reserved names or characters, and documentation rules.

c) A default value shall be documented for every parameter in case a value for a parameter is missed in the

keyw

ord test case definition.

d) There shall be high-level documentation recorded describing the hierarchy of the keywords that can be

used

e) There shall be high-level documentation recorded describing how data is stored and referenced for data-

drive
EXAMPLE|

The docu
(see ISO/

There ar¢
7.3.3 Dd

When cre
cases.

Requirem

a) Withi
actio

EXAMPLE
"enter pasj

NOTE 1
the tester |

4 ry
I'tColo.
Data could be stored in a database or in a spreadsheet, and could be organized in columns or rows

mentation described above can be part of the Test Plan, Test Policy, Organizational-Test Strate
EC/IEEE 29119-3) or a standalone document with references to/from other test documents.

several options of recording this information, such as word processors or test mapagement tools.
pdicated keyword-driven editor (tool)

ating keyword test cases, it is recommended that a tool be used whijeh’ supports the building of tg

ents that apply to the dedicated Keyword-driven editor include the following:

h the keyword-driven editor, non-composite keywords shall be displayed with their associat
NS.

1 A keyword "login" could be associated with, the-'actions "press button >>login<<", "enter user nam
word" and "press button >>submit<<".

A keyword like "login" can be designed to be composite or non-composite. In this example it is assumed th
as decided to define "login" as a non-composite keyword.

eywords which have been definegd with lower level keywords, the user shall be able to access th
tion within the keyword-driven editor.

eyword-driven editor shall allow the use of keywords with parameters to support data-driven testin
eyword-driven editershall provide the capability to enter comments.

eyword-driven, editor shall offer the capability to connect to data sources that are to be used
n values to'parameters.

Through» this capability test cases become keyword-driven and data-driven. While it is possible to u
riven, Testing without data-driven testing, in practice data-driven testing is so important for efficient Keywo

jy

b

at

S

to

e
d-

ting.that frameworks for Keyword-Driven Testing are expected to offer the option of data-driven testing.

b) For K
defin
c) Thek
d) TheH
e) The
assig
NOTE 2
Keyword-0O
Driven Teg
EXAMPLE

2 A data source could be a database or a spreadsheet.

f) Within the keyword-driven editor, multiple uses of keywords shall be implemented by reference.

NOTE 3

Copying implementations of keywords can be avoided by using references.

g) The keyword-driven editor shall provide the capability to define the order in which the test cases are to be
executed.

NOTE 4

28

The test execution order is part of deriving test procedures.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

7.3.4 Decomposer and data sequencer
Requirements that apply to the decomposer and data sequencer include the following:

a) The decomposer shall be able to process parameters, including assuring that the parameters associated
with the higher level keywords are decomposed and associated with the lower-level keywords.

b) The data sequencer shall be able to process parameters.

7.3.5 Manual test assistant (tool)

Requirements that apply to the manual test assistant include the following:

a) The manual test assistant shall support manual test execution based on the defined test cases.
b) The manual test assistant shall provide support for tracking any defect associated with a test failure.
7.8.6 Tool bridge

Requirements that apply to a tool bridge include the following:

a) The tool bridge shall provide the test execution engine with the appropriate execution code to execute the
test cases.

7.8.7 Test execution engine
Test execution engines are designed to execute test cases by addressing one or more test interfacgs (e.g. an
API, a GUI or a hardware interface). A test execution.engine can be implemented by software, by hgrdware or
bath. A common example of this class of tools is "JUnit".

Requirements that apply to the test execution engine include the following:

a) Keywords that do not express conditions or loops within a test case shall be executed sgquentially
starting with the first keyword.

NOTE 1 This is in general; but exception handling can require non-sequential execution to process an abort.
b) The execution engine shall be able to identify unimplemented keywords.

NOTE 2 A keyword is.unimplemented if there is no execution code for that keyword.

c)| The execution engine shall provide support for both literal values and variables in parameters.
NOTE 3 Variable definition can be implemented by configuration files, or by other means.

d) The execution engine shall provide execution results at the keyword level for each execution of each
keyword implementation.

NOTE 4 By that, a user will be able to tell from the test results whether a keyword was executed successfully, or, if
execution of the keyword failed, why (e.g. text field not writeable, field not present, etc.).

e) The test execution engine shall be able to store the timestamp of its executions with the duration of its
execution.

f) The execution engine shall provide an error recognition mechanism as described in subclause 5.3.4.

NOTES5 As a consequence, the execution engine either limits the number of cycles in a loop or provides another
means to make sure that unlimited loops are impossible (e.g. by terminating each loop after a predefined time).

© ISO/IEC 2016 — Al rights reserved 29
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

g) The execution engine shall provide a clear definition of PASS/FAIL for a test case whenever there are
passed and failed executions in one loop.

NOTE 6 If a loop contains a verification, it could happen that the verification fails for some, but not all loop cycles. The
PASS/FAIL definition indicates if this situation will be either "PASS" or "FAIL" for the test case.

h) The execution engine shall include the unique identifier of the execution in the execution logs.
i) The execution engine shall include the unique identifier of the test environment in the execution logs.

) The . : ot e terter-oft N orroas

k) The [execution engine shall support multi-application keywords by providing a mechanism .16 \selgct
betwgen multiple implementations of a keyword.

D
=

NOTE 7 | This allows a test case to manipulate more than one application using keywords written forreach applicatid
For example, a test case that verifies interoperability of an office application suite should be able to use.keywords writt
for each of{the two applications in a single test case.

[) The fest results shall be available to the user.

NOTE 8 [Other components include test design or test management components.
7.3.8 Keyword library

Requirements that apply to the keyword library include the following:

a) The keyword library shall support the definition of keywards: that includes the basic attributes of name,
descyiption and parameters.

7.3.9 Sgript repository
Requirements that apply to the script repository include the following:
a) The gcript repository shall support the storage of keyword execution code.

b) The pcript repository shall support(the inclusion of references to allow keyword execution code to be
assogiated with its corresponding-kéyword in the keyword library.

7.4 Adyanced attributes of frameworks
7.4.1 General informatiorron advanced attributes
This subglause defines* additional attributes that are recommended to achieve the full benefits of Keyword-

Driven Tagsting. Basic Keyword-Driven Testing is possible without these attributes. This subclause does rot
identify rgquirements necessary for compliance with this International Standard.

The following”sub-clauses structure these attributes in terms of the components of Keyword-Driven Testihg
frameworks according to subclause 7.2.

7.4.2 General attributes
Keyword-Driven Testing frameworks should support documentation with the following information:

a) There should be high-level documentation recorded that describes the rules of how the keywords can be
composed into test cases.

30 © ISO/IEC 2016 — Al rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

b)

c)

d)

ISO/IEC/IEEE 29119-5:2016(E)

There should be high-level documentation recorded which describes the rules of how parameters are

described.

There should be high-level documentation recorded which describes the rules of how parameters are

passed.

There should be high-level documentation recorded describing how keywords are defined.

7.4.3 Dedicated keyword-driven editor (tool)

R

a

A.4 Decomposer and data'sequencer

ecommendations that apply 10 the dedicated Keyword-driven editor Include the toliowing:

The Keyword-driven editor should provide a function for checking the syntax of the test cases ¢
of the keywords.

The Keyword-driven editor should provide the capability to track keyword usage.and provide
reference to indicate in which test cases and composite keywords each keywordis used.

During any syntax checking the Keyword-driven editor should check that-only defined keywords
in test cases

DTE 1 For keywords that have parameters, the Keyword-driven editor-should check the correctnes
rameter count, and type.

DTE 2 The parameter count is the number of parameters which.are provided when using a keyword. EX
rameter types can be (not limited to) a number, text string or something as complex as an address.

Undefined keywords should be rejected or at leastimarked as undefined by the Keyword-driven

There should be a capability to define exceptien-handling (e.g. if an exception occurs on test ex
should be possible to define which clean-up steps are executed) within the Keyword-driven editg

The Keyword-driven editor should allow ‘auto-completion or drag and drop for allowed keywords
parameters.

The Keyword-driven editor should support versioning of keyword test cases.

bcommendations thattapply to the decomposer and data sequencer include the following:

The decomposer and data sequencer should allow users to implement new keywords (hi
keywords) using existing keywords.

The decomposer and data sequencer should allow users to create hierarchical structured
values or other structured data.

7.

omposed

a Cross-

are used

s of each

amples for

editor.

ecution, it
r.

and their

erarchical

data from

4.5 Manual test assistant

Recommendations that apply to the manual test assistant include the following:

a) The manual test assistant should provide the capability to attach screenshots or other outputs of the test

item to the test log.

7.4.6 Tool bridge

No advanced attributes are defined for the tool bridge.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

31

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/

IEEE 29119-5:2016(E)

7.4.7 Test execution environment and execution engine

Recommendations that apply to the test execution environment and execution engine include the following:

a) Keyword execution code should be able to read, store and process data from test items.

b) Varia

NOTE 1

ble name space support should be provided.

Variables defined in configuration files for individual applications could otherwise conflict if the keywords
are used in the same test case i.e. a multi- application test case.

c) Context switching when moving between applications in a test case should be supported.

d) Implgmentations should manage the switch between namespaces (e.g. when changing, applicati
refergnces).

e) Testihg that multiple users of an application can access the same shared data incparallel should
suppprted.

f) The ¢xecution engine should handle blocked keywords on the test item by continding test execution w

the n

NOTE 2
the next kg

g) The g
and'

h) The éxecution engine should support data-driven tests,

NOTE 3
using data

i) Thene should be a capability to define conditional actions.

j) Supp

NOTE 4
tests in theg

k) An in
sche

I) When an exception'is handled, there should be a capability to skip actions and ensure that defined clea

up st

NOTE 5

bxt appropriate keyword (see 5.3.4)

The next appropriate keyword is either defined by the test designer, or\Nif*ho such definition has been dor
yword in the test case.

bxecution engine should be capable of handling keywords-Wwith attributes such as "may be blocke
must not be blocked" (see 5.3.4)

This includes, at a minimum, a looping construct that allows iteration over a set of one or more keyworg
values read from an external data file. See 6.4 for‘@ detailed discussion.

ort for an application level configuration file should be implemented.

The configuration file contaifs-zero or more variable/value pairs. The scope of the variables extends to
test set that executes againstjthe specified test item.

hplementation should* support at least one instance of a configuration, but is free to support
me where more thar’one configuration file is used.
bps are executed.

This_includes the ability for the keyword execution code to request that the test case abort, i.e. tho

bN

pe

th

»

2N

subsequen

tkKeywords should not be executed, usually as a result of an unrecoverable situation detected in the requesti

keyword.

m) Each execution code for a keyword should be able to allocate the information needed to perform the
required actions, such as input parameters or the object of the action. Each step contains all information
for performing the action.

n) The execution engine should be able to verify whether keywords received by tables, test management
tool etc., match their keyword execution code by comparing count and type of parameters.

0) The execution engine should ensure that all loops in keyword test cases are restricted in a way that
infinite loops are prevented.

32

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

P)

q)

ISO/IEC/IEEE 29119-5

The execution engine should support loops limited by a given number of passes.

The execution engine should support loops limited by a fixed time period.

EXAMPLE Limit a loop to wait for a maximum time of 2 seconds, until an event occurs or is expected not

an

ymore.

7.4.8 Keyword library

Recommendations that apply to the keyword library include the following:

:2016(E)

to happen

a
b

c)

R

8

K4
te
(9

K4
sq

D

4.9 Test data support

J.10 Script repository

The keyword library should support the construction of composite keywords from keywords.
The keyword library should support versioning of keywords.

The keyword library should support the implementation of aliasing, synonyms and. internationa
facilitate the creation of test cases.

bcommendations that apply to the test data support provided by the‘\Keyword-Driven Testing f
Clude the following:

The framework should support versioning of test data.

The framework should allow the definition of hierarchicat-data types.

bcommendations that apply to the script repository include the following:

The framework should support versioning 'of keyword execution code.

Data interchange
byword-Driven Testing can be supported by software tools which are components of the Keywd
5t framework. The applicatiof;of the tools requires the capability of the tools to receive (input) an
utput) the necessary datd. The requirements on test data interchange are discussed in this clause.

pyword-Driven Testsdata can be interchanged between tools. Data interchange between humg
ftware tool, mostly.at the user interface, will not be addressed here.

DTE The'term "tool" can refer to both commercial tools and custom-built (non-commercial) parts a frame

bta interchange in Keyword-Driven Testing should be done by using a standard publishe
ernatignally-recognized standardization body (e.g. ISO, IEEE or OMG).

ization to

ramework

rd-Driven
d provide

ns and a

vork.

d by an

©
©

ISO/IEC 2016 — All rights reserved
IEEE 2016 — All rights reserved

33

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Annex A
(normative)

Conventions

The following are conventions for keywords:

a) Keyw
b) Keyw
c) Keyw
d) Keyw

e) Keyw
when

NOTE 1
f) Every
The follow

EXAMPLE
keyword i
parameter
understang
from the td
refers to th

NOTE 2
ambiguous

NOTE 3
abstract or]

ords should contain a verb.
ords should use the imperative form.
ords shall provide a description of the associated set of actions.

ord descriptions should be unambiguous.

designing test cases.
This can be verified by reviewing the keywords with the stakeholders.
keyword shall be unique in its meaning within a framework.

ing example is meant to illustrate items a) to f).

e same activities.

test cases.

cases canmot be assumed.

ords should be defined in a way that they are understandable by the stakeholders who will use thgm

The keyword "pressButton" contains a verb (a) if/imperative form (b). The description could be "This
used to trigger an element of class <button> in the.graphical user interface" (c). If it is associated with| a
that identifies the button (e.g. "pressButton <cancel>™'it is unambiguous (d)). This keyword is assumed to pe
able (e) by English speaking stakeholders, as the’words "press" and "button" in the keyword's name are takpn
sters' usual vocabulary. Uniqueness of meaning (f) is given as long as no other keyword is introduced which

Natural language can be ambiguous;* contain synonyms and homonyms, and can result in unclear ahd

Deriving keywords from programming languages is not advisable. Programming languages can be tpo
difficult to understand. Knowledge of a programming language by the domain experts who will specify the test

34

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Annex B
(informative)

Benefits and Issues of Keyword-Driven Testing

B.1 General benefits of Keyword-Driven Testing

BY
fol

composing all of the test cases from a fixed and defined set of keywords, the benefits candin

lowing:

Keywords can be defined in natural language meaning that, test cases can be written-with mo
detail, depending on the project's needs.

Test cases become clear and understandable. This supports efficient manual test execution.
Using unambiguous and precisely defined keywords allows the option/io select whether the ex
a test case is done manually, or is done with automation. In the case'of‘automation, it is expects

keywords will be implemented as keyword-scripts.

Testers working at the business level do not require techni¢al understanding of the test a
framework to be able to create and edit test cases.

Testers working at the technical level can implementor perform keyword-driven test cases, ey
have limited or no understanding of the business,demain.

Testers on a technical level can implement test cases using a language that is understandable
experts and that can be reviewed by themyfor business correctness. If this is done, then Keywq
Testing can help to close a frequently perceived gap between the business level and the technic

Maintenance of the keyword scripts<at the technical level is unlikely to affect the test cases. So,
there is no need in re-specifying, or re-formulating the keyword test case if the technical implemg
the keywords is adjusted.

Sensitivity to changes (which can create the need for maintenance effort) is reduced.

Portability of test suites is easier to achieve, (e.g. if a similar system with almost the same busin
has to be tested.then many of the keywords can be reused).

Test cases.composed of keywords can be created faster than those written in natural language.

Refactoring of test cases is cheaper.

clude the

re or less

ecution of

d that the

utomation

en if they

o0 domain
rd-Driven
al level.

n general,
ntation of

ESS cases

Bl2.Benefits of Keyword-Driven Testing for test automation

Benefits of Keyword-Driven Testing in the case of test automation can include:

Automated functional tests can be implemented before the test item actually exists, either

by using

existing keyword libraries with their corresponding automation scripts, or by defining new keywords and

adding the automation scripts later as the test interface is defined.

— A limited set of keywords implies a limited effort for implementing test automation, (e.g. usually, one

automated keyword script for each keyword will be sufficient).

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

35

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

As long as test cases are constructed from the established set of keywords, once these keywords have

been

implemented, new test cases do not need any additional implementation effort to be automated.

Maintenance of test cases for business reasons will not affect the implementation of the keyword scripts,
as long as the set of keywords and the semantics of the keywords are not changed.

B.3 Benefits of Keyword-Driven Testing for manual testing

When using Keyword-Driven Testing with manual testing the benefits can include the following:

NOTE
achieving 1

B.4 Poj

Using Ke
which can
the benefits listed earlier in this annex, including faster implementation(of ‘additional test cases and savi
time whe
require a

Using Ke
While the
the follow

NOTE

36

Fastd
keyw|

Testd

In the
of de
be cq

Pers
Cont

be ag
may

r test execution can be achieved because the tester remembers the functionality of a reds
ord and no interpretation effort is needed for reused keywords.

rs are guided more precisely to achieve test-to-test repeatability and consistency.

Keyword-Driven Testing is one approach of gaining these benefits. There can be other approaches
imilar benefits.

5sible issues with Keyword-Driven Testing

yword-Driven Testing can result in additional costs and also in a delay in constructing test cas
equate to higher project costs. In later project phases, these initiahinvestments can pay off due

h editing test cases. Realizing these benefits may be more difficult for short-term projects that on
very limited number of test cycles.

word-Driven Testing instead of traditional test specification in natural language affects project cos
benefits mentioned in the previous clauses of this\annex are expected to reduce the project cos
ng possible issues may add to the project efforts:

e initial phase, when Keyword-Driven Testing“is started, keywords need to be identified, and in ca
Sired test automation, implemented and tested. This is a considerable additional effort that needs
nsidered in planning.

bnnel has to be trained to use keywords for test case specification.

nuous maintenance and support of the keyword library will require support staff, budget and time
signed. These will need te’be considered when designing the keyword library. The additional effi
result in delay for constructing test cases.

The additional effort pays off the more often the keywords and the implementation can be reused.

to

PS
to
g
ly

to
brt

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

C

ISO/IEC/IEEE 29119-5:2016(E)

Annex C
(informative)

Getting started with Keyword-Driven Testing

.1 General

TILis annex provides assistance for applying Keyword-Driven Testing. It is offered to help thosew

gF:

In
th

Al

ve experience with Keyword-Driven Testing but want to learn how to start doing it.

many cases, Keyword-Driven Testing will be done by performing two major activities.that are de
e following subclauses:

Identifying Keywords
Composing Test Cases

though these activities can be conducted sequentially, they will often.be applied iteratively or cor

ho do not

scribed in

currently.

This is especially true if Keyword-Driven Testing is already established, and, while defining new t¢st cases,

th

H
fol

C

K4

e test designer recognizes the need for further Keywords.

bwever, in principle, both activities are required, and when starting Keyword-Driven Testing, it is ad
cus on these activities.

.2 ldentifying Keywords

pyword-Driven Testing requires the identification and definition of Keywords.

There are several sources which can be used to identify Keywords, which include the following:

a

Exploratory testing

During exploratory testing, the-tester observes which steps are performed. Some steps are re
are performed together. Acnew keyword is defined by assigning a meaningful name to this co
steps.

If the sequence of.steps can be used with different data, the keyword will take parameters ac
that data.

To documient that keyword, the name, the steps, a description, and when applicable, the paran
noted -ONce these activities are completed, when defining new test cases, instead of using the
nameé.of the keyword will be used.

Business experts

visable to

lated and
llection of

cording to

neters are
steps, the

business expert. These questions can be "what should the application do?", "how can | ver
behaviour?" or "what needs to be tested?". The answers provided by the business experts wil

1 (] 1 I} (I L - o - - L - . A n b 1 b 1 s
NCYWUIUS LdlT diSU UE UTIITICU Uy TTIETVICWITTY UUSITICSS TAPCTLS. A IESL dlldlySt dSRS qUUbllbns Of the

ify proper
| naturally

be formulated in a business or domain related language. A test analyst can now identify keywords by

finding core terms which probably occur frequently.

It is possible that there are different terms (used by business experts) referring to the same set of

activities; a test analyst needs to be aware of that and try to identify duplicates.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

37

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/

IEEE 29119-5:2016(E)

Starting from the names of the keywords which have been agreed on with the business experts, the test
analyst needs to work out which steps are involved with that keyword. The documentation is performed

asin

a) above.

c) Testinterface
Keywords can also be defined starting from the test interface. As the number of interface elements is
limited and usually small, a limited number of keywords can be defined addressing these interface
elements. And contrary to a) and b) above, which define high-level keywords on a domain layer, this
approach will define low-level keywords on a test interface layer.

This
can

spec
perfg

d) Docu
Avail
test ¢
thess
best

If sor
highe

It can be

In all casgs, it can happen that the created pool of keywords is €ot sufficient to describe test cases, as the

may be a
missing k

C.3 Co

Once a basic set of keywords has been defined, these keywords can be used to describe test cases.

The test

with the process steps defined in ISO/IEC/IEEE 29119-2 (e.g. the activities of TD4 which are document

according

While wri
language

If several
be joined

e matched with keyword execution code. If a proper Keyword-Driven test framework is availab
fied test cases can be available as automated tests almost immediately. The documentation
rmed as in a) above.

mented test procedures and test cases

hble test procedures and test cases can also be a valuable source of keywords[he actions in t
ases are examined. As a first step, each action can be treated as a new keyword: If two or more
keywords turn out to refer to the same activities, they will be replaced by only one keyword, whi
Hescribes the activities.

ne of the keywords only occur in a certain sequence with others, they.can be replaced either by o
r level keyword, or by a hierarchical keyword. The documentation is.performed as for a) above.

sufficient to use only one of these sources, but usually informatien from several sources is used.

Ctivities that were not recognized as requiring a keyword. These "gaps" will be filled by defining t
bywords as test effort progresses.

mposing test cases

ases first need to be identified using test techniques as defined in ISO/IEC/IEEE 29119-4, and alo
to ISO/IEC/IEEE 29119-3).

ting down the actions for the test cases, instead of describing the necessary activities in natu
the predefined keywords are used.

test cases share-the same sequence of actions or keywords, but their test data is different, they c
into one keyword test case along with different sets of test data.

he
of
Ch

ne

re
ne

g
bd

al

AN

38

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Annex D
(informative)

Roles and Tasks

D.1 Overview — Roles and Tasks

A
wi

D

te

processes.
Tasks for the domain expert can include the following:

—t Provide parts of the test basis by.defining use cases, business cases, or paths through the 3

—t Design test cases, and contribute to the test design specification.
—t Identify business keywords.

The domain expert will closely cooperate with the test designer to perform these tasks.

D

The test-designer analyses complex use cases, requirements documents, and specifications. From

te

be able to distinguish relevant and irrelevant information.

knowledge or test skills for the domain layer. This clause describes different roles in Keyword-Driven

egpecially helpful in cases where a single person with all the required skills.is/not available.

The domain expert is often the actual or future user of thé-test item. A domain expert has in-depth K
oflhow the test item should behave. This knowledge can)be focussed on business cases, but can g

sound framework for Keyword-Driven Testing allows different tasks to be performed by differe
hich can require different skills, such as test automation skills for the test interface layer,~and

DTE 1 More roles can be involved in Keyword-Driven Testing or in the test process in general. In this ¢
Dse roles which are specific for the division of labour supported by Keyword-Driven Testing.are discussed.

single person can be assigned one, several or even all of these roles; but fop best efficiency, ang
e different capabilities of team members, it can be advisable to assign theoles to different peop

DTE 2 The following roles can be named differently in practice and the roles’/activities can vary.

.2 Domain expert

chnical aspects. A person assuming this role ideally should have basic knowledge of test techn

which need to be considered.

.3 Test designer

5t designer derives test cases and subsequently the useful business level keywords. Therefore it is

nt people,
business
Testing.

ause, only

to reflect
e. This is

nowledge
so reflect
ques and

pplication

hese, the
crucial to

The test designer should be in close dialogue with a subject matter expert in addition to analysing
requirements or other product information (operation concepts, user guides, etc.) in order to derive useful
business-level keywords.

Tasks for the test designer can include the following:

— Define keywords and their interfaces.

— Specify keywords composition and application in test cases.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

39

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

— Create test cases based on the test basis.

— Rework any rough test cases from domain experts to create test cases and test procedure specifications.

The test designer will closely cooperate with the domain expert to make sure that keywords reflect the
domain's language and the test cases are appropriate.

The test designer will closely cooperate with the test automation expert to make sure that the interfaces of the

keywords

are consistent and that the keyword execution code reflects the keywords in the right way.

D.4 Teq
This role
The test
The test
supports
communi
Tasks for

— Impld

— Build
implg

— Toge

t automation expert

s only needed if test execution is to be automated.

butomation expert needs to have experience in programming and knowledge about‘the test too
automation expert needs to understand the scripting languages used in the_framework whi
the automated test execution. Furthermore experience as a tester is beneficial and simplifi
fation with other testers.

the test automation expert can include the following:

ment the low-level keywords as executables and help ensure theirfunctionality for test automation

the framework by selecting and combining appropriate toolshon a technical level by adopting
menting libraries.

ther with the test designer, the test automation expertydecides how to combine low-level keywor

with ligher level keywords and provides the technical means to support this from the automation side.

— Main
reliak

The test 4

ain test implementation scripts or the relevant-parts of the scripts help ensure the availability a
ility of the test automation to avoid making.a.guarantee.

utomation expert will closely cooperate,with the test designer.

Ch
BS

[©)

r

s

nd

40

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

E.1 Overview

ISO/IEC/IEEE 29119-5:

Annex E
(informative)

Basic keywords

TILis annex provides a basic list of keywords as an example. These keywords can be applied onc@
5t interface. The set of keywords is supposed to be generic and usable for most applications' o
erface. In practice, a test item may require more or different keywords than provided here-s The

te
in
S€

This set of keywords can be useful as an example for other test interfaces, and is effered as a quid

t of keywords is extendable.

2016(E)

GUl as a

h this test
efore this

k start for

inguished

ntified by

uging Keyword-Driven Testing.

E|2 Basic keywords for a GUI

In|the following, basic keywords are listed for testing a GUI. A GUI typically has dialogs that are disl
by unique titles. Within a dialog there are various GUI-objects. The dialog and its GUI-objects are id
an identifier (id).

Keyword Description

clearContext (id) Removes the ¢ontext from a component.

Parameters:
id (IN)xid of the component

click (id) Simple click with left mouse button on a given component.
Parameters:
id (IN): id of the target component
clickWithOptions (id, Extended click with additional options on a given component.

M(
M(

USE_BUTTON, times,
DIFIER, x, Y)

Parameters:

id (IN): id of the target component
MOUSE_BUTTON (IN): one of the values which are defined in parametg
MOUSE_BUTTON

times (IN) OPTIONAL: how many times to click

MODIFIER (IN) OPTIONAL: one of the values which are defined in
parameter MODIFIER

X (IN) OPTIONAL: x-coordinate relative in component

y (IN) OPTIONAL: y-coordinate relative in component

=

doulleClick (id)

Double click with left mouse button on a given component.

Parameters:
id (IN): id of the target component

drag (id,
MOUSE_BUTTON, KEY)

item,

Drag.

The parameter item is provided for selecting the drag source from a tree or

list.
Other components are normally not dragable.

Parameters:

©
©

ISO/IEC 2016 — All rights reserved
IEEE 2016 — All rights reserved

41

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Keyword Description

id (IN): id of the target component

item (IN) OPTIONAL: in case of a tree or list the id of the treeNode or the
listitem

MOUSE_BUTTON (IN): one of the values which are defined in parameter
MOUSE_BUTTON

KEY (IN): one of the values which are defined in parameter KEY

drop (id, item) Drop.

Parameters:
id (IN): id of the target component
item (IN) OPTIONAL: in case of a tree or list the id of the treeNode or the

listitem
getCaptfion (id, Writes the caption of target component (id) into varCaptionValue,
varCaptjionValue)

Parameters:

id (IN): id of the target component

varCaptionValue (IN): variable with caption of compgonent
getProperty (id, Writes the value of the given property (PROPERT.YNAME) of the target
PROPERT)_NAME, component (id) into varPropertyValue.
varPropgrtyValue)

HINT: In case of no hit the interaction fails,and the parameter gets the value

UNDEFINED.

Parameters:

id (IN): id of the target conipanent

PROPERTY_NAME (IN); one of the properties which are defined in

parameter PROPERTY: NAME

varPropertyValue (IN): variable with value of property
getText| (id, varText) Writes the text-af-the target component (id) into varText.

Parameters:
id (INJ: id of the target component
varText (IN): variable with text of component

moveMouse (target_id, Move the mouse to the component with id target_id.
target _fitem)
Parameters:

target_id (IN): id of the target component

target_item (IN) OPTIONAL: in case of a tree or list the optional id of the
treeNode or the listltem

openConextMenu ¢id) Opens the context menu of the given component.

Parameters:
id (IN): id of the component

pressKey.{(¥d, MODIFIER, KEY) | Presses akey or key combination (with modifier).

Please note: this interaction is intended for testing keyboard commands and
shortcuts. For entering text into a text area or text field, please use the
"setText" interaction instead.

Parameters:

id (IN): id of the target component or the value "UNUSED" in which case the
key press happens on the currently focussed component

MODIFIER (IN) OPTIONAL: a combination of one or more modifier keys
(such as "shift" or "alt")

KEY (IN): the key to be pressed

42 © ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Keyword

Description

setContext (id)

Sets the context 'passively' for the given component (programming
construct).

IMPORTANT: This is in contrast to setWindowActive which brings a window /
dialog 'actively' to the foreground.

Parameters:
id (IN): id of the component

setFocus (id)

Sets the focus on the given component

IMPORTANT: For cells, tree items, list items and menu items it isn't posible
to set the focus. The focus can only be set for tables, trees, lists and mepus,
respectively.

Parameters:
id (IN): id of the component

S¢

ptText (id, text)

Sets or clears text in the given component.

Parameters:
id (IN): id of the component
text (IN): the text

V§

erifyCaption (id,

ORPTION_PATTERN_MATCHING,

e

pectedCaptionValue)

Verifies the expected caption (expectedCaptionValue) of the target
component (id) regarding search algorithm
(OPTION_PATTERN_MATCHING).

Parameters:

id (IN): id of theltarget component

OPTION, PATTERN_MATCHING (IN): specifies the format of search
algorithm

expectedCaptionValue (IN): expected caption

\Y:
PH

erifyProperty (id,
ROPERT_NAME,

ORPTION_PATTERN_MATCHING,

e

pectedPropertyValue)

\erifies the expected property value (expectedPropertyValue) of the target
component (id) regarding search algorithm
(OPTION_PATTERN_MATCHING).

Parameters:

id (IN): id of the target component

PROPERTY_NAME (IN): one of the properties which are defined in
parameter PROPERTY_NAME

OPTION_PATTERN_MATCHING (IN): specifies the format of search
algorithm

expectedPropertyValue (IN): variable with value of property

rifyText/~Cid,
TION_PATTERN_MATCHING,
pectedCaptionText)

Verifies the expected text (expectedText) of the target component (id)
regarding search algorithm (OPTION_PATTERN_MATCHING).

Parameters:

A AN AP PN 2 SN -V S aRarant

L%} \II\I}. U uUruaic I.G.IUCI. bUIIIpUIICIIL

OPTION_PATTERN_MATCHING (IN): specifies the format of search
algorithm

expectedCaptionText (IN): expected caption

waitForExist (id,
maxTimeToWait)

Waits until a component exist.

Parameters:
id (IN): id of the target component
maxTimeToWait (IN): waiting period in milliseconds

waitForNotExist (id,

Waits until a component does not exist.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

43

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

Keyword Description

maxTimeToWait) Parameters:
id (IN): id of the target component
maxTimeToWait (IN): waiting period in milliseconds

Table E.1 — Example of generic basic keywords

There are further GUI objects that require specific, specialized or extensible keywords.

44 © ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

Examples can be found in the table below:

ISO/IEC/IEEE 29119-5:2016(E)

Keyword

Description

selectMenul tem(id,
OPTION_NUMBER_OR_NAME,
menultem)

Selects a menu item (depends on value of
OPTION_NUMBER_OR_NAME).

Parameters:
id (IN): id of the target menu
OPTION NUMBER_OR_NAME (IN): defines whether the following

parameter is defined by its name or number
menultem (IN): name or number of menu item dependent onvalue
OPTION_NUMBER_OR_NAME

=

se¢lectListltem (id,
OPTION_NUMBER_OR_NAME,
stltem)

MODIFIER,

Selects one list item. MODIFIER allows to define a multiselect
interaction by repeating this interaction. The list items-can be given &
name or number (dependent on the value of
OPTION_NUMBER_OR_NAME) .

Alist can be a list view, a combobox, a dropdovin list, radio button o
tabcard.

Parameters:

id (IN): id of the target list

MODIFIER (IN) OPTIONAL:0ne of the values which are defined in
parameter MODIFIER

OPTION_NUMBER*OR_NAME (IN): defines whether the following
parameter is defined by its name or number

listitem (IN)fiame or number of list item dependent on value of
OPTION_NUMBER_OR_NAME

startApplication
(¢urrentClientlD,
propertyFile)

Starts theapplication, using a property file for application settings. T
property file is expected to be in the directory properties.

Parameters:
currentClientID (IN): id of the application
propertyFile (IN): filename of the property file

e

Table E:2 — Example of specialized basic keywords

E|3 Example application of basic keywords

The following example shows a keyword test case structured in three layers: low-level keywords a
the test interface layer, an intermediate layer combines the low-level keywords to an applicatipn-related
vgcabulary-afid business keywords use these keywords from the intermediate layer at the domain |

e used at

er.

Each Keyword is written in a function-like style, i.e. it consists of a unique name followed by none, one or more
parameters placed in braces. The parameters used at the domain layer are passed through the intermediate

I E'S +h + USRS P |
a CrHivuuic ot mnerravc iaycrt.

This test of a car’s configuration program addresses the use case for configuring a car with some accessories.
As a final action, the calculated price will be verified.

In practice, in this example a test case would be written using only domain layer keywords. The other layers
are provided for a better understanding.

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

45

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

ISO/IEC/IEEE 29119-5:2016(E)

domain layer

intermediate layer

test interface layer

startCarConfigurator

" ou

(“login”, “password”, “english”)

startCarConfiguratorCmdLine()

startApplication (“carConfigurator”,
“E:\CarConfigurator.ini”)

nou

login (“login”, “password™)

setText (“userField”, “login”)

setText (“pwdField”, “password”)

click (“loginBtn”)

setLanguage (“english”)

selectMenultem
NAME, “Language”)

(“mainMenu”,

selectMenultem (“menuLanguage”,
NAME, “english”)

selectVehicle

(“Rolo”, “req”) selectTabcard (“Cars”)
setContext (“carConfig”)
selectListltem (“tabbedPane”,
UNUSED, NAME, “Vehicles”)

selectVehicleByNameAndColour (“Rolo”, “red”)

selectListltem (“vehicleList",
UNUSED, NAME, “Rolo”)
selectListltem (“colourList”,
UNUSED, NAME, “red”)

selectAccedsories

(“[Steering Wheet; brow, feather}, [SelectTabcard (“ACCesSores”)

“[Mats, black, textile]”)

setContext (“carConfig”)

selectListltem (“tabbedPane”,
UNUSED, NAME, “Accessories”)

selectAccessoriesByNameColourMaterial

LT nu

(“Steering wheel”, “brown”, “leather”)

selectListitem
(“accessoryNameList”,
NAME, “Steering wheel")

UNUSED,

46

© ISO/IEC 2016 — All rights reserved
© |IEEE 2016 — All rights reserved

https://iecnorm.com/api/?name=1bfcfa47a78ceb83cf4bfe5071bf69ea

	1 Scope
	2 Conformance
	2.1 Intended usage
	2.2 Full conformance
	2.3 Tailored conformance

	3 Normative references
	4 Terms and definitions
	5 Introduction to Keyword-Driven Testing
	5.1 Overview
	5.2 Layers in Keyword-Driven Testing
	5.2.1 Overview
	5.2.2 Domain layer
	5.2.3 Test interface layer
	5.2.4 Multiple layers

	5.3 Types of keywords
	5.3.1 Simple keywords
	5.3.2 Composite keywords
	5.3.3 Navigation/interaction (input) and verification (output)
	5.3.4 Keywords and test result

	5.4 Keywords and Data

	6 Application of Keyword-Driven Testing
	6.1 Overview
	6.2 Identifying keywords
	6.3 Composing test cases
	6.4 Keywords and data-driven testing
	6.5 Modularity and refactoring
	6.6 Keyword-Driven Testing in the Test Design Process
	6.6.1 Overview
	6.6.2 TD1 Identify Feature Sets
	6.6.3 TD2 Derive Test Conditions
	6.6.4 TD3 Derive Test Coverage Items
	6.6.5 TD4 Derive Test Cases
	6.6.5.1 Overview
	6.6.5.2 Determine pre-conditions
	6.6.5.3 Select input values
	6.6.5.4 Select actions
	6.6.5.5 Determine expected results

	6.6.6 TD5 Assemble Test Sets
	6.6.7 TD6 Derive Test Procedures

	6.7 Converting non keyword-driven test cases into Keyword-Driven Testing

	7 Keyword-Driven Testing Frameworks
	7.1 Overview
	7.2 Components of a Keyword-Driven Testing framework
	7.2.1 Overview
	7.2.2 Keyword-driven Editor
	7.2.3 Decomposer
	7.2.4 Data sequencer
	7.2.5 Manual test assistant
	7.2.6 Tool bridge
	7.2.7 Test execution environment and execution engine
	7.2.8 Keyword library
	7.2.9 Data
	7.2.10 Script repository

	7.3 Basic attributes of the Keyword-Driven Testing framework
	7.3.1 General information on basic attributes
	7.3.2 General attributes
	7.3.3 Dedicated keyword-driven editor (tool)
	7.3.4 Decomposer and data sequencer
	7.3.5 Manual test assistant (tool)
	7.3.6 Tool bridge
	7.3.7 Test execution engine
	7.3.8 Keyword library
	7.3.9 Script repository

	7.4 Advanced attributes of frameworks
	7.4.1 General information on advanced attributes
	7.4.2 General attributes
	7.4.3 Dedicated keyword-driven editor (tool)
	7.4.4 Decomposer and data sequencer
	7.4.5 Manual test assistant
	7.4.6 Tool bridge
	7.4.7 Test execution environment and execution engine
	7.4.8 Keyword library
	7.4.9 Test data support
	7.4.10 Script repository

	8 Data interchange
	Blank Page

