

Reference number
ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006

INTERNATIONAL
STANDARD

ISO/IEC
21000-10

First edition
2006-01-01

Information technology — Multimedia
framework (MPEG-21) —
Part 10:
Digital Item Processing

Technologies de l'information — Cadre multimédia (MPEG-21) —

Partie 10: Traitement d'élément numérique

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

PDF disclaimer
This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2006
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

ii © ISO/IEC 2006 – All rights reserved

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved iii

Contents Page

Foreword.. iv
Introduction ... vi
1 Scope ... 1
2 Normative references ... 1
3 Terms, definitions, and abbreviated terms .. 2
4 Overview and Conventions.. 6
4.1 Overview of Digital Item Processing... 6
4.2 Relation of Digital Item Processing with other parts of ISO/IEC 21000 .. 7
4.3 Documentation conventions ... 7
4.4 Schema wrapper ... 8
4.5 Use of namespace prefixes ... 8
5 Digital Item Methods... 9
5.1 Introduction ... 9
5.2 Digital Item Method Language... 10
5.3 Digital Item Method linkage with DID.. 11
5.4 Digital Item Base Operations... 21
5.5 Relation of Digital Item Base Operations and RDD verbs (informative) 56
5.6 Digital Item eXtension Operations .. 57
5.7 Auto run DIM ... 59
Annex A (normative) ECMAScript binding for Digital Item Base Operations .. 62
Annex B (normative) Java bindings for Digital Item Base Operations... 64
Annex C (normative) Calling MPEG-J based DIXOs from DIMs .. 74
Annex D (informative) MPEG-J based model for execution of DIXOs .. 84
Annex E (informative) XML Schema Definition for Digital Item Processing Elements 85
Annex F (informative) A media handler implementation of play DIBO ... 87
Annex G (informative) Tracking DIM execution for consistent rights checks ... 94
Annex H (informative) Profiling DIP.. 97
Annex I (informative) Digital Item Method Use Case Scenarios and Examples....................................... 101
Bibliography ... 121

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

iv © ISO/IEC 2006 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations, governmental
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of the joint technical committee is to prepare International Standards. Draft International
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as
an International Standard requires approval by at least 75 % of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 21000-10 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 21000 consists of the following parts, under the general title Information technology — Multimedia
framework (MPEG-21):

⎯ Part 1: Vision, Technologies and Strategy [Technical Report]

⎯ Part 2: Digital Item Declaration

⎯ Part 3: Digital Item Identification

⎯ Part 4: Intellectual Property Management and Protection Components

⎯ Part 5: Rights Expression Language

⎯ Part 6: Rights Data Dictionary

⎯ Part 7: Digital Item Adaptation

⎯ Part 8: Reference Software

⎯ Part 9: File Format

⎯ Part 10: Digital Item Processing

⎯ Part 11: Evaluation Tools for Persistent Association Technologies [Technical Report]

⎯ Part 12: Test Bed for MPEG-21 Resource Delivery [Technical Report]

⎯ Part 16: Binary Format

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved v

The following parts are under preparation:

⎯ Part 14: Conformance Testing

⎯ Part 15: Event Reporting

⎯ Part 17: Fragment Identification of MPEG Resources

⎯ Part 18: Digital Item Streaming

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

vi © ISO/IEC 2006 – All rights reserved

Introduction

Today, many elements exist to build an infrastructure for the delivery and consumption of multimedia content.
There is, however, no “big picture” to describe how these elements, either in existence or under development,
relate to each other. The aim for ISO/IEC 21000 (MPEG-21) is to describe how these various elements fit
together. Where gaps exist, MPEG-21 will recommend which new standards are required.
ISO/IEC JTC 1/SC 29/WG 11 (MPEG) will then develop new standards as appropriate while other relevant
standards may be developed by other bodies. These specifications will be integrated into the multimedia
framework through collaboration between MPEG and these bodies.

The result is an open framework for multimedia delivery and consumption, with both the content creator and
content consumer as focal points. This open framework provides content creators and service providers with
equal opportunities in the MPEG-21 enabled open market. This will also be to the benefit of the content
consumers, providing them access to a large variety of content in an interoperable manner.

The vision for MPEG-21 is to define a multimedia framework to enable transparent and augmented use of
multimedia resources across a wide range of networks and devices used by different communities.

A key concept of the multimedia framework is the Digital Item. In MPEG-21 a Digital Item is a structured digital
object with a standard representation, identification, and metadata. An equally important concept in the
multimedia framework is the notion of the User. In MPEG-21 a User is any entity that interacts with the
multimedia framework and as such includes all members of the value chain (e.g., creator, rights holders,
distributors and consumers of Digital Items) and include, for example, individuals, consumers, communities,
organizations, corporations, consortia, and governments.

Part 2 of MPEG-21 specifies the mechanism for declaring the structure and makeup of Digital Items. Such
Digital Item Declarations are static by nature. This 10th part of MPEG-21 specifies tools enabling Users to
provide suggested interactions with Digital Items, thereby enabling the inclusion of a dynamic aspect to the
static declaration of Digital Items.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

INTERNATIONAL STANDARD ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 1

Information technology — Multimedia framework (MPEG-21) —

Part 10:
Digital Item Processing

1 Scope

This Part of ISO/IEC 21000, entitled Digital Item Processing (DIP), specifies the syntax and semantics of tools
that may be used to process Digital Items. The tools provide a normative set of tools that specify the
processing of a Digital Item in a predefined manner.

This technology is specified in one normative clause and three normative annexes:

⎯ Digital Item Methods:

Digital Item Methods (Clause 5) specifies the set of tools enabling Digital Item Users to include
sequences of instructions for adding predefined functionality to a Digital Item. Such a sequence of
instructions is a Digital Item Method. Digital Item Methods are authored with the Digital Item Method
Language (see 5.2) which includes bindings to Digital Item Base Operations (see 5.4). For extended
functionality, Digital Item eXtension Operations (see 5.6) allow such processing to be implemented more
efficiently in a higher level programming language. Tools for integrating Digital Item Methods into Digital
Item Declarations are also specified (see 5.3).

⎯ ECMAScript bindings for Digital Item Base Operations:

Annex A specifies the ECMAScript bindings for the Digital Item Base Operations described in 5.3.

⎯ Java bindings for Digital Item Base Operations:

Annex B specifies the Java bindings for the Digital Item Base Operations described in 5.4.

⎯ Calling Java based DIXOs from Digital Item Methods:

Annex C specifies the mechanism for calling Java based Digital Item eXtension Operations. Digital Item
eXtension Operations are described in 5.6.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.

ISO/IEC 16262:2002, Information technology — ECMAScript language specification

ISO/IEC 21000 (all parts), Information technology — Multimedia framework (MPEG-21)

IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, 1996

IETF RFC 3986, Uniform Resource Identifier (URI): Generic Syntax, 2005

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

2 © ISO/IEC 2006 – All rights reserved

W3C REC-DOM-Level-3-Core-20040407, Document Object Model (DOM) Level 3 Core Specification,
Version 1.0, W3C Recommendation 07 April 2004

W3C REC-DOM-Level-3-LS-20040407, Document Object Model (DOM) Level 3 Load and Save Specification,
Version 1.0, W3C Recommendation 07 April 2004

W3C REC-xml-20040204, Extensible Markup Language (XML) 1.0 (Third Edition), W3C Recommendation
04 February 2004

W3C REC-xml-names-19990114, Namespaces in XML, World Wide Web Consortium 14 January 1999

W3C REC-xmlschema-1-20041028, XML Schema Part 1: Structures Second Edition, W3C Recommendation
28 October 2004

W3C REC-xmlschema-2-20041028, XML Schema Part 2: Datatypes Second Edition, W3C Recommendation
28 October 2004

W3C REC-xpath-19991116, XML Path Language (XPath), Version 1.0, W3C Recommendation
16 November 1999

3 Terms, definitions, and abbreviated terms

For the purposes of this part of ISO/IEC 21000, the following terms, definitions and abbreviations apply:

3.1
Argument Type
type of the Digital Item Method Argument specified by an Argument element of the associated Digital Item
Method declaration

NOTE 1 Argument Type is part of the Object Map allowing mapping of DIM Arguments to DID Objects.

NOTE 2 For further information see 5.3.5.

3.2
Digital Item
DI
structured digital object, including a standard representation, identification and metadata within the MPEG-21
framework

NOTE This entity is the fundamental unit of distribution and transaction within the multimedia framework as a whole.

[ISO/IEC TR 21000-1:2004, definition 2.3]

3.3
DIA
Digital Item Adaptation as specified by ISO/IEC 21000-7

3.4
Digital Item Base Operation
DIBO
base operation providing access to functionality implemented within an MPEG-21 environment and used in
authoring a Digital Item Method

NOTE For further information see Clause 5.4.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 3

3.5
Digital Item Base Operation implementation
manner in which a particular implementer of a Digital Item Base Operation chooses to implement the
normative semantics of the Digital Item Base Operation

3.6
Digital Item Declaration
DID
declaration of the resources, metadata and their interrelationships of a Digital Item specified by
ISO/IEC 21000-2

3.7
Digital Item Declaration Language
DIDL
XML-based language including validation rules specified by ISO/IEC 21000-2 for the standard representation
in XML of a Digital Item Declaration

3.8
Digital Item Declaration Language document
a document using the Digital Item Declaration Language to declare a Digital Item in a standard representation
in XML specified by ISO/IEC 21000-2

3.9
Digital Item Declaration Language element
XML element of the Digital Item Declaration Language specified by ISO/IEC 21000-2

3.10
Digital Item Declaration Model
set of abstract terms and concepts specified by ISO/IEC 21000-2 forming a model for declaring Digital Items

3.11
Digital Item Declaration Model entity
entity of the Digital Item Declaration Model specified by ISO/IEC 21000-2

3.12
Digital Item Declaration Object
Object
object representation in the Digital Item Method Language of a Digital Item Declaration element and
associated with an Object Type

NOTE 1 A Digital Item Declaration Object has an Object Type that allows it to be processed in a Digital Item Method
according to the Object Type. A Digital Item Declaration element is mapped to an Object Type by the Object Map.

NOTE 2 An Object Type is associated with a Digital Item Declaration element by an ObjectType element contained in
a DESCRIPTOR-STATEMENT child of the Digital Item Declaration element. For further information see 5.3.

NOTE 3 The capitalized term Object is used in this part of ISO/IEC 21000 to mean a Digital Item Declaration Object.
Other uses of the term object without an initial uppercase letter is used for an object as understood in the context of
object-oriented programming.

3.13
Digital Item eXtension Operation
DIXO
operation allowing extended functionality to be invoked from a Digital Item Method

NOTE For further information see Clause 5.6.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

4 © ISO/IEC 2006 – All rights reserved

3.14
Digital Item eXtension Operation Language
DIXL
programming language in which a Digital Item eXtension Operation is defined

3.15
DII
Digital Item Identification as specified by ISO/IEC 21000-3

3.16
Digital Item Method
DIM
tool for expressing the suggested interaction of a User with a Digital Item at the level of the Digital Item
Declaration

NOTE 1 For further information see Clause 5.

NOTE 2 A Digital Item Method is composed of a Digital Item Method definition and its declaration.

3.17
Digital Item Method Argument
argument to a Digital Item Method as represented in the Digital Item Method Language

3.18
Digital Item Method declaration
declaration of the Digital Item Method as being part of a particular Digital Item

NOTE For further information see Clause 5.3.

3.19
Digital Item Method definition
code written in the Digital Item Method Language that defines the Digital Item Method and that is either
embedded inline with the Digital Item Method declaration or located separately and referenced from the Digital
Item Method declaration

NOTE Whether the Digital Item Method definition is embedded inline or referenced from a separate location, it is the
Digital Item Method definition itself that is the resource (in terms of the Digital Item Declaration Model).

3.20
Digital Item Method Language
DIML
language providing the syntax and structure for authoring a Digital Item Method utilizing the Digital Item Base
Operations

NOTE For further information see Clause 5.2

3.21
Digital Item Processing engine
component within an MPEG-21 environment that supports ISO/IEC 21000-10 and is responsible for providing
such supporting functionality (including execution of Digital Item Methods)

3.22
DOM
Document Object Model (see W3C REC-DOM-Level-3-Core-20040407)

3.23
End User
User taking the role of consumer, i.e. being at the end of a value or delivery chain

EXAMPLE A human consumer or an agent operating on behalf of a human consumer, etc.

[ISO/IEC TR 21000-1:2004, definition 2.4]

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 5

3.24
GUI
Graphical User Interface

3.25
IPMP
Intellectual Property Management and Protection as specified by ISO/IEC 21000-4

3.26
JPEG
Joint Photographic Experts Group

3.27
MIME
Multipurpose Internet Mail Extensions (see IETF RFC 2046)

3.28
MP3
MPEG-1/2 layer 3 (audio coding)

3.29
MPEG
Moving Picture Experts Group

3.30
Object Map
map of Digital Item Declaration elements in a Digital Item Declaration to Digital Item Declaration Objects with
their associated Object Types

EXAMPLE An object map might map several ITEM elements to an Object Type of “music track”, and another ITEM
element to an Object Type of “album information”.

NOTE For further information see 5.3.5.

3.31
Object Type
type of the Digital Item Declaration Object specified by an ObjectType descriptor of the associated DIDL
element

NOTE 1 Object Type is part of the Object Map allowing mapping of DID Objects to DIM Arguments.

NOTE 2 For further information see Clause 5.3.5.

3.32
Peer
device or application that compliantly processes a Digital Item

[ISO/IEC TR 21000-1:2004, definition 2.7]

3.33
RDD
Rights Data Dictionary as specified by ISO/IEC 21000-6

3.34
REL
Rights Expression Language as specified by ISO/IEC 21000-5

3.35
URI
Uniform Resource Identifier (see IETF RFC 3986)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

6 © ISO/IEC 2006 – All rights reserved

3.36
URL
Uniform Resource Locator (see IETF RFC 3986)

3.37
User
entity that interacts in the MPEG-21 environment or makes use of Digital Items

NOTE This includes all members of the value chain (e.g., creator, rights holders, distributors and consumers of
Digital Items).

[ISO/IEC TR 21000-1:2004, definition 2.9]

3.38
W3C
World Wide Web Consortium

3.39
XML
Extensible Markup Language (see W3C REC-xml-20040204)

4 Overview and Conventions

4.1 Overview of Digital Item Processing

The Digital Item Declaration Language described in ISO/IEC 21000-2 is for creating a static declaration.
Digital Item Processing assists processing of a Digital Item by providing tools allowing a User to add User
specified functionality to a Digital Item Declaration. The standardization of Digital Item Processing enables
interoperability at the processing level.

A key component of Digital Item Processing is the Digital Item Method (see 5). A Digital Item Method is the
tool whereby a User (as defined in 21000-1) specifies suggested interactions with the Digital Item. As such,
Digital Item Methods provide a way for a User to specify a selection of suggested procedures for processing a
Digital Item at the level of the Digital Item itself.

EXAMPLE A Digital Item representing a music album can contain a Digital Item Method to add a new music track to
the album. Such a Digital Item Method can be used to ensure that the new music track is added to the Digital Item while
maintaining a suggested format for the Digital Item Declaration of such a music album Digital Item (i.e., elements added in
the correct place in the Digital Item Declaration structure, correct Descriptors are included, etc.).

A Digital Item Method is expressed using the Digital Item Method Language (see 5.2) which includes a binding
for Digital Item Base Operations (see 5.4). Digital Item eXtension Operations (see 5.6) provide a mechanism
that allows the functionality provided by the standard set of Digital Item Base Operations to be extended.

Digital Item Methods, and the Digital Item Base Operations and Digital Item eXtension Operations called by
them, can be considered as requests to the Digital Item Processing engine to process the Digital Item in some
manner, or to execute some action.

The interface through which a User interacts with a Digital Item using Digital Item Processing is
implementation dependent. Some implementations might support specification of aspects of the interface by
metadata included in the Digital Item. Some possible scenarios follow.

⎯ On receipt of a Digital Item Declaration, a list of Digital Item Methods (contained or referenced from within
the DIDL document representing the Digital Item) can be presented to the User. The User can choose a
Digital Item Method and then the Objects on which it operates. The Digital Item Processing engine then
executes the chosen Digital Item Method with the chosen Objects as arguments;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 7

⎯ On receipt of a Digital Item Declaration, a list of Objects is presented based on the presence of Identifiers
of the DII XML Namespace. The User chooses one or more of these Object(s). A list of Digital Item
Methods that takes as arguments the (set of) Object(s) is then presented to the User. The User selects a
Digital Item Method that is then executed by the Digital Item Processing engine.

4.2 Relation of Digital Item Processing with other parts of ISO/IEC 21000

Digital Item Processing is related to ISO/IEC 21000-2 by providing normative tools that enable functionality to
be included in a Digital Item.

Implementations of DIBOs might have requirements or choices of implementation related to other parts of
ISO/IEC 21000. ISO/IEC 21000-4, for instance, is expected to require that DIBO implementations accessing
governed resources are required to check for permissions before doing so. In such cases, DIBO
implementations would check for permissions and, in so doing, may take advantage of information compliant
with ISO/IEC 21000-5 and ISO/IEC 21000-6. DIBO implementations may also make use of information
compliant with ISO/IEC 21000-7, if appropriate to the DIBO semantics.

NOTE Annex G provides guidance on how to support DIP while maintaining a level of interaction with a Digital Item
that is consistent with the available rights.

Overall processing of a Digital Item remains largely at the discretion of an application. Digital Items are
intended to be used throughout the delivery chain, and thus different applications and different Users will
perform different overall processing of a Digital Item. Digital Item Methods can be regarded as a ‘menu' of
User interaction possibilities. Digital Item Methods can then be utilized during processing of Digital Items to
understand the Digital Item Method author's suggested manner of User interaction with a Digital Item.
Different Digital Item Methods can be authored such that they provide different suggested interactions
appropriate for different Users at various junctures in the delivery chain. This part of ISO/IEC 21000 specifies
how to author Digital Item Methods and integrate them in a Digital Item Declaration. It does not specify how to
restrict access to a Digital Item Method. This can be achieved, by utilizing other parts of ISO/IEC 21000 such
as ISO/IEC 21000-4 and ISO/IEC 21000-5.

4.3 Documentation conventions

Literal machine-readable character sequences are shown in fixed width font.

References to DID Model entity names are shown in italics.

References to DIDL element names are shown in FIXED WIDTH SMALL CAPS FONT.

Normative syntax for DIP tools specified by XML Schema declarations and definitions are shown in this
document using a separate font and background as follows.

EXAMPLE

<complexType name="ExampleType">
 <simpleContent>
 <extension base="string"/>
 </simpleContent>
</complexType>

XML Schema declarations and definitions as in the above example are to be considered fragments of a
complete schema within an XML schema wrapper as described in 4.4.

Normative semantics for XML Schema declarations and definitions are set out in a table as follows.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

8 © ISO/IEC 2006 – All rights reserved

EXAMPLE

Semantics of ExampleType:

Name Definition

ExampleType Example type semantics.

4.4 Schema wrapper

XML Schema declarations and definitions provided as XML fragments are to be understood as fragments of a
complete schema and contained within an XML Schema schema element as follows.

<?xml version="1.0"?>
<!-- Digital Item Processing ISO/IEC 21000-10 -->
<schema
 targetNamespace="urn:mpeg:mpeg21:2005:01-DIP-NS"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:dip="urn:mpeg:mpeg21:2005:01-DIP-NS"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

</schema>

4.5 Use of namespace prefixes

Qualified Names are written with a namespace prefix followed by a colon followed by the local part of the
Qualified Name as shown in the following example.

EXAMPLE dip:ObjectType

For clarity, consistent namespace prefixes as listed below are used in this part of ISO/IEC 21000.

Table 1 — Mapping of prefixes to namespaces

Prefix Namespace

dia urn:mpeg:mpeg21:2003:01-DIA-NS

didl urn:mpeg:mpeg21:2002:02-DIDL-NS

dii urn:mpeg:mpeg21:2002:01-DII-NS

dip urn:mpeg:mpeg21:2005:01-DIP-NS

xsd http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

xi http://www.w3.org/2001/XInclude

NOTE The prefixes xml and xmlns are normatively defined by Namespaces in XML (see W3C REC-xml-names-
19990114). All other prefixes are not normative and are used by convention for consistency in this part of ISO/IEC 21000.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 9

For informative examples provided as XML fragments without namespace declarations, the default
namespace by convention in this part of ISO/IEC 21000 is defined as urn:mpeg:mpeg21:2002:02-DIDL-NS
and the different prefixes are bound to the namespaces as listed above.

5 Digital Item Methods

5.1 Introduction

Digital Item Methods (DIMs) provide for a programmatic invocation of Digital Item Base Operations (DIBOs).
Thereby a suggested interaction of the User with the Digital Item is provided. DIMs should thus be viewed
from a User perspective; they are intended to be related to User interaction with a Digital Item.

DIMs are intended for working with parts of a DI at the DID level. DIMs are not intended to be utilized for
implementing the processing of media resources themselves.

EXAMPLE DIMs are not intended to be used for implementing transcoding of media resources. However DIMs might
be used for adaptations of the DID at the DID level.

NOTE While the intention is that media resource processing is not implemented directly within a DIM definition, DIBO
implementations, such as the adapt DIBO (see 5.4.2.4.2), might have semantics that can lead to media resource
processing. In addition media resource processing might take place in a DIXO (see 5.6).

Arguments to DIMs are DID Objects representing DIDL elements. The relationship between DIDL elements,
DID Objects and DIM Arguments is specified by the Object Map (for further information on the Object Map
see 5.3.5).

Digital Item Method tools include the following.

⎯ Digital Item Base Operations (DIBOs) – the Digital Item Base Operations specify a high level normative
interface to the basic types of interaction with a Digital Item. The set of normatively defined DIBOs have
general application across a wide range of resources, applications, etc.;

⎯ Digital Item Method Language (DIML) – the Digital Item Method Language specifies the normative
language for defining interoperable DIMs and from which the DIBOs are able to be called. The
ECMAScript binding of the DIBOs is a normative part of the DIML;

⎯ Digital Item Method linkage with DID – this clause also specifies the normative mechanisms for including
of Digital Item Methods in a DID;

⎯ Digital Item Method execution – this clause also specifies the execution environment of a DIM; and

⎯ Digital Item eXtension Operations (DIXO) – Digital Item eXtension Operations specify a normative
mechanism for enabling functionality that extends beyond the basic functionality of the normative set of
DIBOs in an efficient way.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

10 © ISO/IEC 2006 – All rights reserved

Digital Item Methoda

DIBO 1b DIBO 2 DIBO 3

X-DIXOJ-DIXO

f

Platformg

e

h

i

k

RunJDIXO RunXDIXOc

d
j

a Represents a Digital Item Method definition. The DIM definition is defined using the Digital Item Method Language and
may call DIBOs and DIXOs (via a defined DIBO to call DIXOs defined in a given DIXO Language).
b These components represent Digital Item Base Operation implementations. DIBO implementations may call other
modules provided by the platform.
c These components represent certain DIBOs that are defined to call DIXOs defined in a given DIXO Language.
Currently only a RunJDIXO DIBO is defined for calling DIXOs using Java as the DIXO Language.
d These components represent Digital Item eXtension Operation definitions. DIXO definitions may call DIBOs via the
bindings to the DIBOs in the DIXO Language as well as other modules provided by the platform.
e This represents a binding to a DIBO in the DIXO Language used for the DIXO definitions.
f This represents the API(s) to other modules provided by the platform which the DIBO implementations and DIXO
definitions may call. This could include modules providing functionality related to other parts of ISO/IEC 21000.The API(s)
available to DIBO implementations and DIXO definitions might be different.
g The platform refers to the environment in which the DIBOs are implemented and the DIMs are executed.
h This indicates calls from the DIM definition to DIBOs, including the DIBOs to call DIXOs defined in a given DIXO
Language.
i This indicates calls from the implementation of the defined DIXO calling DIBOs to the DIXO being called.
j This indicates calls from a DIXO definition to a DIBO via the binding to the DIBO in the DIXO Language.
k This indicates calls from the DIBO implementations and DIXO definitions to modules provided by the platform.

Figure 1 — Digital Item Method components

5.2 Digital Item Method Language

5.2.1 Core language

The DIML specification normatively includes the ECMAScript Language Specification defined by
ISO/IEC 16262:2002. This provides a standardized core language specification for DIML, including
specification of the following features of DIML.

⎯ Lexical conventions and syntactical structure;

⎯ Flow control structures (i.e., if/then, while, etc.);

⎯ Primitive data types (String, Boolean and Number);

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 11

⎯ Composite data types (Objects and arrays);

⎯ Standard arithmetic, logical and bitwise operators;

⎯ Exception handling;

⎯ Error definitions; and

⎯ Support for Regular Expressions.

NOTE 1 ISO/IEC 16262:2002 is equivalent to ECMA-262 (edition 3).

NOTE 2 ISO/IEC 16262:2002 defines an object as an unordered collection of properties each of which contains a
primitive value, object, or function. This part of ISO/IEC 21000 specifies DIML as an extension of ECMAScript by
specifying additional objects. The DIBOs specified by this part of ISO/IEC 21000 are specified as function properties of
these additional objects, hence in this part of ISO/IEC 21000 the term DIBO is used equivalently for the function properties
of the objects specified by DIML.

5.2.2 Digital Item Base Operations

The DIML specification includes the normative set of DIBOs specified in 5.4.

5.2.3 Digital Item eXtension Operations

The DIML specification allows the calling of DIXOs as specified in 5.6.

5.3 Digital Item Method linkage with DID

5.3.1 Introduction

This clause specifies how DIMs are incorporated into a DID.

5.3.2 XML Schema for DIP

DIMs are incorporated into a DID using DIP defined XML (W3C REC-xml-20040204) elements that are
incorporated at appropriate locations within the DIDL of the DID. W3C XML Schema (W3C REC-xmlschema-
1-20041028, W3C REC-xmlschema-2-20041028) is used to define these DIP elements and the complete XML
Schema for DIP is found in Annex E.

5.3.3 Digital Item Method declaration

5.3.3.1 Introduction

A Digital Item Method declaration is contained in a DIDL COMPONENT element which shall be constructed such
that

⎯ The COMPONENT should contain a DIM information descriptor represented by a DIP MethodInfo element
contained in a DIDL DESCRIPTOR-STATEMENT. If the DIM does not have any arguments, the MethodInfo
element need not be present;

⎯ The COMPONENT may contain a flag, represented by a DIP Label element contained in a DIDL
DESCRIPTOR-STATEMENT, indicating the DIM declaration is to be processed by the DIP engine; and

⎯ The Digital Item Method definition is referenced or embedded by a RESOURCE child of the COMPONENT.

NOTE 1 A DIM declaration can be included from an external DIDL document by utilizing provisions for document
modularity as specified in ISO/IEC 21000-2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

12 © ISO/IEC 2006 – All rights reserved

NOTE 2 An identifier can be associated with the DIM declaration using a DII Identifier (as specified by part 3 of
ISO/IEC 21000). This could be located at the level of the COMPONENT, or at the level of the ITEM containing the COMPONENT
(perhaps depending on the particular application of the DI). The RunDIM DIBO (see 5.4.2.7.11) supports both levels of
identification.

NOTE 3 Since the MethodInfo element need not be present if the DIM does not have any arguments, it is not
intended to be used to locate DIMs in a DID. For DIMs intended to be processed by the DIP engine, the Label element is
used. In other cases the mimeType attribute of the RESOURCE can be used.

5.3.3.2 MethodInfo syntax

 <!--

 ##
 # Definition of MethodInfo #
 ##
 -->
 <element name="MethodInfo" type="dip:MethodInfoType"/>
 <complexType name="MethodInfoType">
 <sequence>
 <element name="Argument" type="anyURI" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="autoRun" type="boolean" use="optional"
 default="false"/>
 <attribute name="profileCompliance"
 type="dip:ProfileComplianceType" use="optional"/>
 </complexType>
 <!--

 ##
 # Definition of ProfileComplianceType #
 ##
 -->
 <simpleType name="ProfileComplianceType">
 <list itemType="QName"/>
 </simpleType>

5.3.3.3 MethodInfo Semantics

Semantics of MethodInfo:

Name Definition

MethodInfo Content of this element is a sequence of Argument child elements. A DIDL
COMPONENT representing a DIM declaration should contain a DIP
MethodInfo element contained in a DIDL DESCRIPTOR-STATEMENT. There
shall be one Argument child element for each argument of the DIM definition.
The sequence of Argument child elements shall match the sequence of
arguments of the DIM definition. If the DIM definition has no arguments and
the MethodInfo element is still present, it shall contain zero Argument child
elements.

Argument Content of this element is a URI (IETF RFC 3986) indicating the Object Type
associated with the corresponding argument of the DIM definition. There shall
be a one-to-one mapping between the arguments of the DIM definition and a
corresponding Argument element associating an Object Type with the

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 13

Name Definition

argument. The Argument elements shall be listed in the same sequence as
the arguments of the DIM definition.

autoRun This optional attribute allows the DIM author to identify an auto run DIM. If
present and the value is true, then the declared DIM is an auto run DIM. For
further information on auto run DIM see 5.7.

profileCompliance This optional attribute allows the DIM author to signal a profile or profiles to
which the DIM conforms. If present, each member in the list is a Qualified
Name representing one such profile. If present, this attribute need not provide
a complete list of profiles. Processors may ignore this attribute. If they do
process it, they may ignore any members of the list.

NOTE Resolving the namespace prefix of the Qualified Name representing a
profile to a namespace name URI reference is done using standard XML processing.
That is, using an XML namespace declaration.

5.3.3.4 Label syntax

 <!--

 ##
 # Definition of Label #
 ##
 -->
 <element name="Label" type="dip:LabelType"/>
 <complexType name="LabelType">
 <simpleContent>
 <extension base="anyURI"/>
 </simpleContent>
 </complexType>

5.3.3.5 Label semantics

Semantics of Label:

Name Definition

Label Content of this element is a URI (IETF RFC 3986). The presence of a DIP
Label element contained in a DIDL DESCRIPTOR-STATEMENT indicates the
parent element of the DESCRIPTOR is to be processed by the DIP engine. If
present, such a DESCRIPTOR shall be the child of a COMPONENT representing
a DIM declaration or DIXO declaration.

For a DIM declaration that is to be processed by the DIP engine, the Label
element shall be present and the value of the URI shall be
urn:mpeg:mpeg21:2005:01-DIP-NS:DIM.

For a DIXO declaration that is to be processed by the DIP engine, the Label
element shall be present and the value of the URI shall be of the form
urn:mpeg:mpeg21:2005:01-DIP-NS:DIXO:x, where x is unique for the DIXO
language of the DIXO definition.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

14 © ISO/IEC 2006 – All rights reserved

Name Definition

NOTE 1 The URI value for a Label of a J-DIXO is given in C.3.2.4.

If a DIM declaration or DIXO declaration is not intended to be processed by the DIP
engine, the Label element should be absent.

NOTE 2 Processing by the DIP engine of a COMPONENT as a DIM declaration (or
DIXO declaration) makes the DIM (or DIXO) available to the User for interacting with
the DI (or calling from a DIM). If a DI is intended to be used, for example, to store or
transport DIM declarations (and/or DIXO declarations), then these declarations can
exclude a Label. When such a DI is processed, the declarations will not be
processed by the DIP engine.

5.3.3.6 Digital Item Method declaration examples

EXAMPLE The following example shows several different DIM declarations. In the example the DIM declarations are
grouped together in a single DIDL ITEM, however this is not mandated by this part of ISO/IEC 21000.

The first DIM declaration provides an example of an empty MethodInfo element for a DIM that has no arguments. This
DIM declaration also shows an example of an external reference to the DIM definition by referencing the location of the
DIM definition using the ref attribute of the DIDL RESOURCE element. In addition, a second DIDL RESOURCE element
referencing an equivalent DIM definition at an alternate location is provided.

The second DIM declaration provides an example of a MethodInfo element for a DIM that has two arguments. In this
second DIM declaration, the DIM definition is embedded inline in the DIDL RESOURCE element (complete DIM definition not
included for this example). This second DIM declaration also shows the use of a DIDL CONDITION element for conditional
availability of this DIM declaration.

Both DIM declarations also show an example of including a plain text DIDL DESCRIPTOR-STATEMENT for containing a short
human readable description of each DIM.

The third DIM declaration shows an example of signalling a DIM that is compliant with the acme:basic profile.

A fourth DIM declaration shows an example of using the provisions for document modularity specified in ISO/IEC 21000-2
to include elements of a DIM declaration contained in an external document.

Each of the DIM declarations discussed above contain a DIDL DESCRIPTOR-STATEMENT containing a DIP Label, indicating
that these DIM declarations are to be processed by a DIP engine. Hence the DIMs declared by these DIM declarations will
be available for User interaction with the DI containing this ITEM.

The DIM declaration in the external document otherDI.xml does not contain a DIP Label. In this example the otherDI.xml
is being used only to store DIM declarations, and these DIM declarations are not intended to be processed by a DIP
engine on processing of the otherDI.xml DI itself.

…
<Item id="DIMs">
 <Descriptor>
 <Statement mimeType="text/plain">DIM Declarations</Statement>
 </Descriptor>
 <Choice>
 <Selection select_id="selection1"/>
 <Selection select_id="selection2"/>
 </Choice>
 <Component id="dim_01">
 <Descriptor>
 <Statement mimeType="text/plain">Description of DIM 1</Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 15

 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:MethodInfo/>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"
 ref="http://www.somewhere.near/DIM#dim_01"/>
 <Resource mimeType="application/mp21-method"
 ref="http://www.somewhere.far/DIM#dim_01"/>
 </Component>
 <Component id="dim_02">
 <Condition require="selection1"/>
 <Descriptor>
 <Statement mimeType="text/plain">Description of DIM 2</Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:MethodInfo>
 <dip:Argument>urn:foo:type1</dip:Argument>
 <dip:Argument>urn:foo:type2</dip:Argument>
 </dip:MethodInfo>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"><![CDATA[
 function dim_02(arg1, arg2)
 {
 /* rest of DIM definition goes here */
 }
]]></Resource>
 </Component>
 <Component id="dim_03">
 <Condition require="selection2"/>
 <Descriptor>
 <Statement mimeType="text/plain">Description of DIM 3</Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:MethodInfo xmlns:acme="urn:acme:demo" profileCompliance="acme:basic">
 <dip:Argument>urn:foo:type3</dip:Argument>
 </dip:MethodInfo>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"><![CDATA[
 function dim_03(arg1)
 {
 /* rest of DIM definition goes here */
 }
]]></Resource>
 </Component>
 <Component>
 <xi:include href="otherDI.xml" xpointer="element(dim_04/1)"/>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <xi:include href="otherDI.xml" xpointer="element(dim_04/2)"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

16 © ISO/IEC 2006 – All rights reserved

 <xi:include href="otherDI.xml" xpointer="element(dim_04/3)"/>
 </Component>
</Item>
…

otherDI.xml:

…
<Component id="dim_04">
 <Descriptor>
 <Statement mimeType="text/plain">Description of DIM 4</Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:MethodInfo/>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"><![CDATA[
 function dim_04()
 {
 /* rest of DIM definition goes here */
 }
]]></Resource>
</Component>
…

5.3.4 Digital Item Method definition

5.3.4.1 Introduction

A DIM definition is embedded in or referenced from a DIDL RESOURCE element. Such a RESOURCE element
shall be contained in a DIM declaration as specified in 5.3.3.

The DIM definition itself is the sequence of operations authored using the DIML as specified in 5.2. This
includes calling DIBOs, as specified in 5.4, to access the functionality available for User interactions with the
DI provided by the implementation of the DIBO semantics.

5.3.4.2 Embedded

A DIM definition may be embedded inline in a DID by base64 encoding the DIM definition prior to embedding
or by placing the DIM definition in a CDATA section.

EXAMPLE 1 DIM definition embedded as base64 encoded data

…
<Component id="dim_04">
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method" encoding="base64">
 cj5QUkVWMTk5MTQxMDkwNDQ5PC9BY2Nlc3Npb25OdW1iZXI+PERhdGVQcm9kdWNlZD4xOTkxPC9E
 YXRlUHJvZHVjZWQ+PE93bmVyPkNvcHlyaWdodCBCSU9TSVMgMjAwMzwvT3duZXI+PFByb2RJc3N1
 ZVllYXI+MTk5MTwvUHJvZElzc3VlWWVhcj48QWJzdHJhY3RQcmVzZW50WU4+TjwvQWJzdHJhY3RQ
 </Resource>
</Component>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 17

…

EXAMPLE 2 DIM definition embedded in a CDATA section

…
<Component id="dim_04">
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"><![CDATA[
 function dim_04()
 {
 /* rest of DIM definition goes here */
 }
]]></Resource>
</Component>
…

5.3.4.3 Referenced

A DIM definition is referenced from a DIDL RESOURCE element by utilizing the ref attribute of the RESOURCE
element. Referencing the DIM definition from the RESOURCE element allows the DIM definition to be located in
a separate location from the DID (for example in a separate file).

EXAMPLE

…
<Component id="dim_05">
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:MethodInfo>
 <dip:Argument>urn:foo:bar</dip:Argument>
 </dip:MethodInfo>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"
 ref="foop://some.where/dims/05"/>
</Component>
…

NOTE A file containing a DIM definition can contain more than one DIM definition provided that a URI can uniquely
identify the required DIM definition.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

18 © ISO/IEC 2006 – All rights reserved

5.3.5 Object Map

5.3.5.1 Introduction

An Object in a DID is associated with an Object Type using an Object Type descriptor. An Object Type
descriptor is represented by a DIP ObjectType element contained in a DIDL DESCRIPTOR-STATEMENT. Any
DIDL element that may contain a DESCRIPTOR may be associated with an Object Type. A single Object may
be associated with zero or more Object Types. An Object Type descriptor is required for each Object Type
associated with the Object.

An Object Type is associated with an argument of a DIM definition by a DIM arguments descriptor of the DIM
declaration (see 5.3.3). An argument of a DIM shall be associated with only a single Object Type.

The Object Map is a map consisting of 2 parts (including their inter-relationship). The first part is a list of DID
Objects (i.e., DIDL elements in a DIDL document that have a DESCRIPTOR-STATEMENT construct containing a
DIP ObjectType element). The second part is a list of DIMs (that have zero or more DIM Arguments). When
the value of an ObjectType element of a DID Object, and the value of the Argument element of a DIM are
equal, then the DIM can be applied to that DID Object. Given a DIDL document, the Object Map describes
these relationships between the DID Objects and the DIMs.

Thus the Object Map provides the link between the arguments of a DIM associated with a given Object Type,
and the actual Objects in the DID that are associated with the same Object Type. An Object shall be allowed
to be utilized as an argument to a DIM only if the Object is associated with the same Object Type as the
argument.

Conceptually, an Object can be seen as a DIDL element that is mapped by the Object Map to an Object Type.
The MethodInfo of the DIM declaration then describes what Object Type is associated with each argument of
a DIM (see 5.3.3). This then determines which Objects (that is which DIDL elements that map to the required
Object Type) may be used as actual arguments when the DIM is invoked.

EXAMPLE 1 In a DI representing a digital music album, one or more ITEM elements in the DID can be mapped to a
“music track” Object Type. A “play track” DIM that plays a track of the music album can be authored such that it accepts
an argument of Object Type “music track”. Any ITEM element assigned the Object Type “music track” can be utilized as an
argument to the “play track” DIM.

EXAMPLE 2 The figure below depicts the Object Map of a DID, called “sample”, consisting of 3 Objects and 2 DIMs.
The left hand side and right hand side of the figure depict two different views of this same DID. On the left hand side, each
Object of the DID “sample” can be associated with an Object Type by using the DIP ObjectType element (see below)
contained in a DIDL DESCRIPTOR-STATEMENT. The Object Type value of Object 1 and Object 2 is “urn:foo:bar:001”;
Object 3 has Object Type “urn:foo:bar:002”. On the right hand side, the arguments to the DIMs contained in the DID
“sample” are declared by a DIP Argument element (see 5.3.3). The Argument values of DIM 1 and DIM 2 are
“urn:foo:bar:001” and “urn:foo:bar:002”, respectively. The centre of the figure depicts the Object Map which
determines, via the Object Type, which Objects in the DID can be used as arguments to the DIMs in the DID. When the
value of an ObjectType element of an Object, and the value of the Argument of a DIM are equal, then the DIM can be
applied to that Object. From the left hand side view, Object 1 and Object 2 can be used as the Argument to DIM 1, while
Object 3 can be used as the Argument to DIM 2. From the right hand side view, DIM 1 can be applied to Object 1 and
Object 2; while DIM 2 can be applied to Object 3. IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 21

00
0-1

0:2
00

6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 19

Figure 2 — Conceptual overview of Object Map

5.3.5.2 ObjectType syntax

 <!--

 ##
 # Definition of ObjectType #
 ##
 -->
 <element name="ObjectType" type="dip:ObjectTypeType"/>
 <complexType name="ObjectTypeType">
 <simpleContent>
 <extension base="anyURI"/>
 </simpleContent>
 </complexType>

5.3.5.3 ObjectType Semantics

Semantics of ObjectType:

Name Definition

ObjectType Content of this element is a URI (IETF RFC 3986) indicating the Object Type
associated with the parent DIDL element of the DIDL DESCRIPTOR containing
the DIP ObjectType element.

5.3.5.4 ObjectType examples

The following example shows the use of ObjectType to associate several different DIDL elements with one or
more Object Types.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

20 © ISO/IEC 2006 – All rights reserved

EXAMPLE

…
<Item id="track1">
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:MusicTrack</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Choice>
 <Selection select_id="audiobitrate_192k"/>
 <Selection select_id="audiobitrate_64k"/>
 </Choice>
 <Component id="track1audio_192k">
 <Condition require="audiobitrate_192k"/>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:Audio</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:Audio192k</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:AudioMP3</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Resource mimeType="audio/mpeg" ref="mysong192kbps.mp3"/>
 </Component>
 <Component id="track1audio_64k">
 <Condition require="audiobitrate_64k"/>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:Audio</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:Audio64k</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:AudioMP3</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Resource mimeType="audio/mpeg" ref="mysong64kbps.mp3"/>
 </Component>
 <Component id="track1score">
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:MusicScore</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/pdf" ref="mysongScore.pdf"/>
 </Component>
</Item>
…

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 21

5.4 Digital Item Base Operations

5.4.1 Introduction

The Digital Item Base Operations (DIBOs) are the functional building blocks utilized by a Digital Item Method
(DIM). They can be considered somewhat analogous to the standard library of functions of a programming
language.

Subclause 5.4 specifies the set of normatively defined DIBOs. The DIBOs are the functions (of the global and
local objects) from which a DIM is built and they provide the interface between the DIM and the DIBO
functionality provided by a DIP engine.

A DIBO is described by

⎯ a normatively defined interface; and

⎯ normatively defined semantics.

The interface specifies the DIBO name, the parameters of the DIBO, and whether the DIBO returns a value.
The semantics of the DIBO specify the functionality of the DIBO, in addition to the semantics of the
parameters and the return value, if any.

DIBO parameters may include

⎯ DID Objects representing DIDL elements mapped to Object Types, and

⎯ parameters bound to a type provided by the Digital Item Method Language described in 5.2.

NOTE 1 Types provided by DIML include standard ECMAScript types such as primitive values (e.g., Boolean, Number,
or String values) and native objects (e.g., String, Number, Boolean and Array objects).

While a DIBO has a normative interface and normative semantics, this does not mean that DIBOs shall be
implemented in a normative way. The DIBO implementation is left to the implementer of the DIBO. The DIBO
implementation can thus be viewed as being the decision of the DIBO implementer as to how they have
decided to provide the functionality defined by the DIBO semantics (with the functionality accessed from a
DIM via the normative DIBO interface).

EXAMPLE The play DIBO (see 5.4.2.7.8) requests the playing of a component or descriptor, but implementers of
the DIBO are able to play the specified DID Model entity in a manner of their choosing.

The DIBO implementer shall ensure that rights, if present are evaluated and enforced. This rights related
functionality is not intended to be implemented within Digital Item Methods (by the DIM author), but instead
shall be implemented by the DIBO implementer. Hence it is normative behaviour of the DIBO implementations
that they execute according to the rights that are associated with the Digital Item under consideration.

Exceptions listed in the interface for each DIBO are those related specifically to the DIBO. Additional
exceptions, such as runtime exceptions, may also be generated.

Most of the DIBOs described in this clause fall into one of the following categories.

⎯ Operations that access and manipulate the DID at the DIDL level;

EXAMPLE DIBOs that add child nodes, remove child nodes, modify element attributes, etc. The interface and
semantics for these operations are provided by including the DOM Level 3 Core API in DIML.

⎯ Operations that load and serialize DID instance documents. The interface and semantics for these
operations are provided by including the DOM Level 3 Load and Save API in DIML; and

⎯ Operations related to particular parts of ISO/IEC 21000.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

22 © ISO/IEC 2006 – All rights reserved

EXAMPLE DID related operations dealing with the state of DIDL CHOICE, SELECTION, and CONDITION elements. The
interface and semantics for these operations are defined in following subclauses of this part of ISO/IEC 21000.

In addition Digital Item eXtension Operations, described in 5.6, enable extended functionality that cannot
easily be realized in a DIM by making use of DIBOs in the above categories.

NOTE 2 The DIBOs defined in subclauses 5.4.2.4 to 5.4.2.8 are DIBO properties of the global objects specified in
5.4.2.1.

Figure 3 — Operations available to DIMs

5.4.2 Global objects, DIBOs and constants

5.4.2.1 Introduction

The DIML specification includes a normative set of DIP specific host-defined properties of the global object
(see 15.1 of ISO/IEC 16262:2002). These DIP specific global properties include value properties and object
properties, and are listed below. Unless otherwise stated these properties have the attributes { ReadOnly,
DontDelete }.

Table 2 —DIML global values and objects

Value
Properties:

MSG_INFO

This global property is a number value (1) and may be used as a value for
the messageType parameter of the alert DIBO to indicate the message is
of a general informational nature. This property also has the attribute
{ DontEnum }.

 MSG_WARNING

This global property is a number value (2) and may be used as a value for
the messageType parameter of the alert DIBO to indicate the message is
providing a warning. This property also has the attribute { DontEnum }.

 MSG_ERROR

This global property is a number value (3) and may be used as a value for
the messageType parameter of the alert DIBO to indicate the message is
indicating some error condition has occurred. This property also has the
attribute { DontEnum }.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 23

 MSG_PLAIN

This global property is a number value (4) and may be used as a value for
the messageType parameter of the alert DIBO to indicate the message is
generic in nature. This property also has the attribute { DontEnum }.

Object
Properties:

didDocument

This global object property is a DOM Document object representing the
current DID instance document. This is the DID containing (directly in the
DID or by inclusion) the DIM declaration that is currently executing. In the
case where a series of DIMs are in the execution stack (via one or more
calls to the RunDIM DIBO) it is the DID containing the DIM declaration of
the first DIM on the execution stack.

NOTE This is analogous to the global document object specified in
client-side JavaScript in web browsers.

 DIA

This global property is an object that contains DIBOs providing DIA related
functionality (see 5.4.2.4).

 DID

This global object property is an object that contains DIBOs providing DID
related functionality (see 5.4.2.5).

 DII

This global property is an object that contains DIBOs providing DII related
functionality (see 5.4.2.6).

 DIP

This global object property is an object that contains DIBOs providing DIP
related functionality (see 5.4.2.7).

 REL

This global object property is an object that contains DIBOs providing REL
related functionality (see 5.4.2.8).

5.4.2.2 DIDL document access and manipulation

The hierarchical DID Model defined in part 2 of ISO/IEC 21000 reflects the structured nature of a Digital Item.
This hierarchical DID Model is preserved by the hierarchical XML based representation (DIDL) of a DID also
defined in part 2. The Document Object Model (DOM) defined by W3C is designed for the accessing and
manipulation of such hierarchical documents.

Hence for Digital Item Methods the syntax and semantics of base operations for accessing and manipulating
the DIDL document elements are those specified by the DOM Level 3 Core API as defined by W3C REC-
DOM-Level-3-Core-20040407.

Since DIML is based on ECMAScript, the ECMAScript bindings of the DOM Level 3 Core API are included as
part of the DIML specification.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

24 © ISO/IEC 2006 – All rights reserved

5.4.2.3 DIDL document loading and saving

The syntax and semantics for operations for loading and saving a DIDL document are those specified by the
DOM Level 3 Load and Save API as defined by W3C REC-DOM-Level-3-LS-20040407.

Since DIML is based on ECMAScript, the ECMAScript bindings of the DOM Level 3 Load and Save API are
included as part of the DIML specification.

5.4.2.4 DIA related operations

5.4.2.4.1 Introduction

These DIBOs provide access to DIA related functionality. The DIBOs are provided as function properties of a
DIA object. DIML includes such a DIA object as a property of the global object (see 5.4.2.1).

EXAMPLE Calling a DIA DIBO

function foo(arg1)
{
 …
 DIA.adapt(component, metadata);
 …
}

5.4.2.4.2 adapt

5.4.2.4.2.1 Interface

Syntax: adapt(element, metadata)

Description: Adapts a specified COMPONENT, or DESCRIPTOR element.

Parameters: element

A DOM Element object representing the COMPONENT, or DESCRIPTOR
element to be adapted.

 metadata

Null or an array of DOM Element objects representing additional
information that can be considered when adapting the element.

Return value: A DOM Element object representing the adapted DIDL element or null if
the element was not adapted.

Exceptions: DIPError

With DIP error code

⎯ ADAPTATION_FAILED if an error occurs during adaptation of the
resource; or

⎯ INVALID_PARAMETER if

⎯ element is not a COMPONENT, or DESCRIPTOR; or

⎯ or if metadata is not null nor an array of DOM Element objects.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 25

5.4.2.4.2.2 Semantics

This DIBO allows a DIM author to explicitly request an adaptation of the DIDL element represented by the
element parameter.

The metadata parameter is an array of Element objects representing additional information the DIM author
suggests can be considered when adapting the resource. The metadata parameter may be null if the DIM
author does not wish to provide any such suggestions. If the metadata parameter is not null and is not an
array of DOM Element objects then an invalid parameter exception is generated.

If an adaptation of the element does take place and is successful, then an Element object representing the
DIDL element for the adapted element is returned. This can then be utilized as a parameter to other
appropriate DIBOs. The original element remains unchanged.

If an adaptation of the element is attempted but an error occurs during the adaptation, then a DIPError is
generated.

If no adaptation of the element is attempted, then null is returned.

NOTE 1 An adaptation might not be attempted if, for example, adaptation is not supported, or the available metadata
for adaptation is not supported.

NOTE 2 For an implementer of this DIBO, the available metadata to guide the adaptation can be sourced from the
metadata parameter provided by the DIM author in the call to adapt, or else directly accessed from the DID from within
the DIBO implementation. For example, if the DIBO is implemented in a Java environment that has standard DOM access
to the DID, the DIBO implementer can directly inspect the DESCRIPTORS, if any, associated with the element for hints on
adaptation. Also, metadata to guide the adaptation is not limited to the metadata parameter or metadata within the DID.
For example metadata from a preferences or configuration file stored separately from the DID could be utilized, if the
DIBO implementer has access to such information.

NOTE 3 The adaptation need not be implemented directly within the DIBO. For example, an implementer of this DIBO
might choose to send a request along with relevant information to a remote server to do the adaptation.

NOTE 4 This DIBO allows the DIM author to explicitly request an adaptation. An adaptation of an element might still
occur when the element is, for example, passed to the play DIBO. This would be a decision of the play DIBO
implementer. In addition, such adaptations might still occur when elements are accessed without any interactions with the
DI using DIP.

NOTE 5 ISO/IEC 21000-7 provides the following tools related to resource adaptation which an implementer of this
DIBO can consider supporting.

⎯ Usage Environment Descriptions;

⎯ Bitstream Syntax Description based adaptation;

⎯ Terminal and network quality of service;

⎯ Usage Constraints Descriptions; and

⎯ DIA Configuration.

5.4.2.4.2.3 Example use

EXAMPLE This DIBO would be required if a DIM author wanted to author a DIM that created a derived Digital Item
containing a single resource created by adapting a resource from the original DI such that the resource in the derived DI is
“pre-adapted” to the current environment.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

26 © ISO/IEC 2006 – All rights reserved

5.4.2.5 DID related operations

5.4.2.5.1 Introduction

These DIBOs provide access to DID related functionality. The DIBOs are provided as function properties of a
DID object. DIML includes such a DID object as a property of the global object (see 5.4.2.1).

EXAMPLE Calling a DID DIBO

function foo(arg1)
{
 …
 choice = didDocument.getElementByID("bitrate_choice");
 DID. configureChoice(choice);
 …
}

5.4.2.5.2 areConditionsSatisfied

5.4.2.5.2.1 Interface

Syntax: areConditionsSatisfied(element)

Description: Tests whether conditions for a specified DIDL element are satisfied.

Parameters: element

A DOM Element object representing the DIDL element for which
conditions will be tested.

Return value: A boolean value. A value of true is returned if the conditions are satisfied.
A value of false is returned if the conditions are not satisfied or the state
of the conditions cannot be resolved.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER if element is not a DIDL
element.

5.4.2.5.2.2 Semantics

This DIBO tests whether the conditions for a specified DIDL element are satisfied.

The element parameter specifies the DIDL element whose conditions are to be tested. It is an error to invoke
this DIBO without specifying a DIDL element by the element parameter, in which case an invalid parameter
exception is generated.

The return value is a boolean value indicating whether the conditions for the specified DIDL element are
satisfied.

The conditions for the specified DIDL element are those described by any CONDITION child elements (as
specified in ISO/IEC 21000-2) of the specified element. For the conditions of the specified element to be
satisfied the rules for resolving CONDITION child elements as specified in ISO/IEC 21000-2 shall be evaluated.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 27

EXAMPLE Multiple CONDITION child elements are evaluated in an “or” fashion based on the resolved state of each
individual CONDITION.

If the specified DIDL element contains no child CONDITION elements, the conditions for the specified element
are considered to be satisfied in context of this DIBO and a true value is returned.

In the context of this DIBO, the inability to resolve a CONDITION is interpreted as the condition being not
satisfied. If all child CONDITION elements cannot be resolved or are false, a false value is returned.

If the specified DIDL element is a CONDITION element, then the predicates of the CONDITION are evaluated and
the resulting value returned. If the CONDITION predicates cannot be resolved, false is returned.

NOTE The DIP engine usually will need to maintain its own internal state reflecting the state of the CHOICES and
SELECTIONS of a DID. See also configureChoice (5.4.2.5.3) and setSelection (5.4.2.5.4).

5.4.2.5.2.3 Example usage

EXAMPLE An example where this DIBO can be used is at steps j), p), and u) in the scenario described in I.2.2.

5.4.2.5.3 configureChoice

5.4.2.5.3.1 Interface

Syntax: configureChoice(choice)

Description: Requests the User to configure a CHOICE element in the DID.

Parameters: choice

A DOM Element object representing the CHOICE element to be configured.

Return value: Returns a boolean value. A value of true indicates the CHOICE
configuration was modified, a value of false indicates the CHOICE
configuration was not modified.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER if choice is not a CHOICE.

5.4.2.5.3.2 Semantics

This DIBO requests the User to configure a specified DIDL CHOICE element.

The choice parameter specifies the DIDL CHOICE element to be configured by the User. It is an error to
invoke this DIBO if the choice parameter does not specify a CHOICE element, in which case an invalid
parameter exception is generated.

The DIBO allows the User to configure the CHOICE in compliance with ISO/IEC 21000-2 by making decisions
about the predicates embodied by the SELECTION child elements of the CHOICE. If a SELECTION is chosen, its
predicate becomes true, if it is rejected, its predicate becomes false, if it is unresolved, its predicate is
undecided.

The boolean return value indicates whether the CHOICE configuration was modified or not.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

28 © ISO/IEC 2006 – All rights reserved

NOTE 1 The manner of configuring the CHOICE is a DIBO implementation decision. For example, one DIBO
implementation might present the CHOICE in a GUI to a human allowing the human to select or deselect SELECTION
elements. Another implementation might be intended to process a DI without human intervention and implement some
form of automated CHOICE configuration.

NOTE 2 The DIP engine will usually need to maintain its own internal state reflecting the state of the CHOICES and
SELECTIONS of a DID. See also setSelection (5.4.2.5.4) and areConditionsSatisfied (5.4.2.5.2).

5.4.2.5.3.3 Example use

EXAMPLE An example where this DIBO can be used is at step m) in the scenario described in I.2.2

5.4.2.5.4 setSelection

5.4.2.5.4.1 Interface

Syntax: setSelection(selection, state)

Description: Sets the state of a given SELECTION element.

Parameters: selection

A DOM Element object representing the SELECTION element whose state
is to be set.

 state

A string value specifying the state to set the SELECTION element. Valid
values are true, false, or undecided.

Return value: None.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER if

⎯ selection is not a SELECTION; or

⎯ state is not a string with value true, false, or undecided.

5.4.2.5.4.2 Semantics

This DIBO sets the state of a specified DIDL SELECTION element as maintained by the DIP engine.

The selection parameter specifies the DIDL SELECTION element whose state is to be set. It is an error to
invoke this DIBO if the selection parameter does not specify a SELECTION element, in which case an invalid
parameter exception is generated.

The state parameter specifies the value for the state of the SELECTION. This state is maintained by the DIP
engine for subsequent reference in other DIBOs that rely on the configuration state of SELECTION elements (for
example, areConditionsSatisfied 5.4.2.5.2). The valid values for the state parameter correspond to those
SELECTION states described in ISO/IEC 21000-2, which are: true, false, undecided. It is an error to invoke
this DIBO with any other value for the state parameter, in which case an invalid parameter exception is
generated.

NOTE The DIP engine will usually need to maintain its own internal state reflecting the state of the CHOICES and
SELECTIONS of a DID. See also configureChoice (5.4.2.5.3) and areConditionsSatisfied (5.4.2.5.2).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 29

5.4.2.5.4.3 Example use

EXAMPLE An example where this DIBO can be used is when a DIM utilizes some input data to determine the state
of a SELECTION, and then needs to call this DIBO to set the state of the SELECTION within the DIP engine execution
environment.

5.4.2.6 DII related operations

5.4.2.6.1 Introduction

These DIBOs provide access to DII related functionality. The DIBOs are provided as function properties of a
DII object. DIML includes such a DII object as a property of the global object (see 5.4.2.1).

EXAMPLE Calling a DII DIBO

function foo(arg1)
{
 …
 elements = DII.getElementsByIdentifier(null, "urn:acme:foo:bar123");
 …
}

5.4.2.6.2 getElementsByIdentifier

5.4.2.6.2.1 Interface

Syntax: getElementsByIdentifier(sourceDID, value)

Description: Retrieves from the source DID existing DIDL elements that have a
descriptor containing a DII Identifier with the specified value.

Parameters: sourceDID

The DOM Document object representing the source DID from which the
DIDL elements are to be retrieved.

 value

A string value specifying the value of the DII Identifier identifying the DIDL
elements to be retrieved.

Return value: An array of DOM Element objects representing the retrieved DIDL
elements. May be empty if no DIDL elements matching the specified
criteria are retrieved.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER

⎯ if sourceDID is not a DOM Document representing a DIDL instance
document; or

⎯ value is not a string value.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

30 © ISO/IEC 2006 – All rights reserved

5.4.2.6.2.2 Semantics

This DIBO retrieves from the specified DID existing DIDL elements based on a DII Identifier.

The sourceDID parameter is a DOM Document object representing the source DIDL document from which the
elements are to be retrieved. It is an error to invoke this DIBO if the sourceDID parameter is not a DOM
Document object, in which case an invalid parameter exception is generated.

The value parameter specifies the value of the DII Identifier required to identify the DIDL elements to be
retrieved. The syntax and semantics of DII Identifier are specified in part 3 of ISO/IEC 21000. It is an error to
invoke this DIBO if the value parameter is not a string value, in which case an invalid parameter exception is
generated.

The retrieved elements are available to the invoking DIM via the returned array of Element objects. The
elements can then be utilized as a parameter to other DIBOs. Only DIDL elements shall be returned. If no
DIDL elements are identified by the specified criteria an empty array is returned.

5.4.2.6.2.3 Example use

EXAMPLE An example where this DIBO can be used is when a DIM author might not know where an element is
located in the structure of a DID, but can determine a DII Identifier for the element. In this case the DIM author can utilize
the getElementsByIdentifier DIBO to retrieve the element.

5.4.2.6.3 getElementsByRelatedIdentifier

5.4.2.6.3.1 Interface

Syntax: getElementsByRelatedIdentifier(sourceDID, value)

Description: Retrieves from the source DID existing DIDL elements that have a
descriptor containing a DII RelatedIdentifier with the specified value.

Parameters: sourceDID

The DOM Document object representing the source DID from which the
DIDL elements are to be retrieved.

 value

A string value specifying the value of the DII RelatedIdentifier associated
with the DIDL elements to be retrieved.

Return value: An array of DOM Element objects representing the retrieved DIDL
elements. May be empty if no DIDL elements matching the specified
criteria are retrieved.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER

⎯ if sourceDID is not a DOM Document representing a DIDL instance
document; or

⎯ value is not a string value.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 31

5.4.2.6.3.2 Semantics

This DIBO retrieves from the specified DID existing DIDL elements based on a DII RelatedIdentifier.

The sourceDID parameter is a DOM Document object representing the source DIDL document from which the
elements are to be retrieved. It is an error to invoke this DIBO if the sourceDID parameter is not a DOM
Document object, in which case an invalid parameter exception is generated.

The value parameter specifies the value of the DII RelatedIdentifier associated with the DIDL elements to be
retrieved. The syntax and semantics of DII RelatedIdentifier are specified in part 3 of ISO/IEC 21000. It is an
error to invoke this DIBO if the value parameter is not a string value, in which case an invalid parameter
exception is generated.

The retrieved elements are available to the invoking DIM via the returned array of Element objects. The
elements can then be utilized as a parameter to other DIBOs. Only DIDL elements shall be returned. If no
DIDL elements are identified by the specified criteria an empty array is returned.

5.4.2.6.3.3 Example use

EXAMPLE This DIBO can be used when a DIM author has an identifier for some information and wants to retrieve
any elements in the DID that identify that information as related information. For example, consider a Digital Item
representing a collection of numerous musical pieces, with different sub-items for audio recordings, musical score, lyrics,
and music videos, some of which might or might not be present for any individual musical piece. Given the identifier for a
musical piece, the DIM author might want to retrieve in a single call all of the related sub-items. In this case the DIM author
can utilize the getElementsByRelatedIdentifier DIBO to retrieve those elements (provided they utilize a DII
RelatedIdentifier to identify the musical piece as being related).

5.4.2.6.4 getElementsByType

5.4.2.6.4.1 Interface

Syntax: getElementsByType(sourceDID, value)

Description: Retrieves from the source DID existing DIDL ITEM elements that have a
descriptor containing a DII Type with the specified value.

Parameters: sourceDID

The DOM Document object representing the source DID from which the
DIDL elements are to be retrieved.

 value

A string value specifying the value of the DII Type of the DIDL ITEM
elements to be retrieved.

Return value: An array of DOM Element objects representing the retrieved DIDL ITEM
elements. May be empty if no DIDL ITEM elements matching the specified
criteria are retrieved.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER

⎯ if sourceDID is not a DOM Document representing a DIDL instance
document; or

⎯ value is not a string value.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

32 © ISO/IEC 2006 – All rights reserved

5.4.2.6.4.2 Semantics

This DIBO retrieves from the specified DID existing DIDL elements based on a DII Type.

The sourceDID parameter is a DOM Document object representing the source DIDL document from which the
elements are to be retrieved. It is an error to invoke this DIBO if the sourceDID parameter is not a DOM
Document object, in which case an invalid parameter exception is generated.

The value parameter specifies the value indicating the DII Type of the DIDL ITEM elements to be retrieved.
The syntax and semantics of DII Type are specified in part 3 of ISO/IEC 21000. It is an error to invoke this
DIBO if the value parameter is not a string value, in which case an invalid parameter exception is generated.

The retrieved elements are available to the invoking DIM via the returned array of Element objects. The
elements can then be utilized as a parameter to other DIBOs. Only DIDL ITEM elements shall be returned. If
no DIDL ITEM elements are identified by the specified criteria an empty array is returned.

5.4.2.6.4.3 Example use

EXAMPLE An example where this DIBO can be used is when Digital Item is used as a container of several sub-
items of different DII Types. In this case the DIM author can utilize the getElementsByType DIBO to retrieve all ITEM
elements representing sub-items of a given DII Type.

5.4.2.7 DIP related operations

5.4.2.7.1 Introduction

These DIBOs provide access to DIP related functionality. The DIBOs are provided as function properties of a
DIP object. DIML includes such a DIP object as a property of the global object (see 5.4.2.1).

EXAMPLE Calling a DIP DIBO

function foo(arg1)
{
 …
 DIP.Play(component, false);
 …
}

5.4.2.7.2 alert

5.4.2.7.2.1 Interface

Syntax: alert(message, messageType)

Description: Alerts the User with a message.

Parameters: message

A string value containing the message to be displayed.

 messageType

A number value indicating the generic nature of the message.

Valid values are MSG_INFO, MSG_WARNING, MSG_ERROR and MSG_PLAIN
which are defined as value properties of the DIML global object
(see 5.4.2.1).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 33

Return value: None

Exceptions: DIPError

With DIP error code INVALID_PARAM

⎯ If message is not a string value; or

⎯ if messageType does not specify a valid value.

5.4.2.7.2.2 Semantics

This DIBO provides simple textual feedback to the User.

EXAMPLE To notify the User of an error condition.

The textual message is specified by the message parameter. It is an error to invoke this DIBO if the message
parameter is not a string value, in which case an invalid parameter exception is generated.

The messageType parameter indicates the nature of the message. It is an error to invoke this DIBO if the
messageType parameter is not a valid number value, in which case an invalid parameter exception is
generated (a valid number value is one of the values MSG_INFO, MSG_WARNING, MSG_ERROR, or MSG_PLAIN
defined as number properties of the DIML global object).

NOTE The implementation of the alert is a DIBO implementation decision. For example, one DIBO implementation
might present the message in a GUI to a human user. Another implementation might be intended to process a DI without
human intervention and log the message to a log file.

5.4.2.7.2.3 Example use

EXAMPLE An example where this DIBO can be used is at step z) in the scenario described in I.2.2.

5.4.2.7.3 execute

5.4.2.7.3.1 Interface

Syntax: execute(element)

Description: Executes the resource associated with a specified COMPONENT, or
DESCRIPTOR.

Parameters: element

A DOM Element object representing the COMPONENT, or DESCRIPTOR
element containing the executable resource.

Return value: A boolean value of true if the resource execution was successfully
initiated, or false if resource execution was not initiated.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

34 © ISO/IEC 2006 – All rights reserved

Exceptions: DIPError

With DIP error code

⎯ INVALID_PARAMETER if

⎯ element is not an COMPONENT, or DESCRIPTOR; or

⎯ more than one executable digital resource is found to be
associated with the specified element; or

⎯ EXECUTE_FAILED if an error occurs during the execution.

5.4.2.7.3.2 Semantics

This DIBO causes execution to be initiated for the executable resource associated with the DIDL element
represented by the element parameter.

The element parameter shall be a DOM Element object representing a COMPONENT or DESCRIPTOR containing
the executable digital resource to be executed. It is an error to invoke this DIBO if the element parameter is
not a DOM Element object representing a COMPONENT or DESCRIPTOR, in which case an invalid parameter
exception is generated.

The manner of executing the associated resource, appropriate to its media type, is left as an implementation
choice of the DIBO implementer.

NOTE 1 It is the responsibility of the DIBO implementation and DIP engine to ensure security related issues are
addressed when executing executable resources.

NOTE 2 When determining the associated executable digital resource, the case where there is a COMPONENT with
multiple RESOURCE child elements still represents a single resource.

5.4.2.7.3.3 Example use

EXAMPLE An example where this DIBO can be used is when a DI author might want to include as a resource in a
Digital Item an executable program that is capable of presenting other resources in the Digital Item that are in a proprietary
format understood only by the executable resource and that utilizes descriptors attached to the resources containing
proprietary metadata to determine the presentation.

5.4.2.7.4 getExternalData

5.4.2.7.4.1 Interface

Syntax: getExternalData(mimeTypes, requestMessages)

Description: Requests the User to select resources located external to the DI.

Parameters: mimeTypes

An array of arrays of string values specifying the media formats required.

 requestMessages

An array whose elements are either string values or null.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 35

Return value: Returns an array whose elements are string values specifying the URLs
that describe the location of the resources.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER

⎯ if mimeTypes is not an array of arrays of string values, or

⎯ if requestMessages is not null and is not an array the same size as
mimeTypes with each array member being a string value or null.

5.4.2.7.4.2 Semantics

This DIBO requests the User to select resources external to the current DID.

EXAMPLE An, audio or video resource.

The mimeTypes parameter specifies allowable MIME types (IETF RFC 2046) of the resources to be selected.
It is an array with an element for each resource which is to be selected. Each element is another array of
string values. The string values in one array specify the allowed MIME types for a single resource for which
the User is to select.

The MIME type values are given in the form type/subtype. The values for the type and subtype of the
MIME type should be valid values as specified by IETF RFC 2046.

EXAMPLE A value of image/jpeg specifies a JPEG image is allowed to be selected.

It is an error to invoke this DIBO if the mimeTypes parameter is not an array where each array entry is itself an
array of string values, in which case an invalid parameter exception is generated.

The requestMessages parameter is an array of string values that contains a request message for each of the
resource selections indicated by the members of the mimeTypes array. The requestMessages parameter may
be null, in which case no explicit request messages are specified. If the requestMessages parameter is not
null, it is an error if the number of members in the requestMessages parameter is not equal to the number of
members in the mimeTypes parameter. However one or more of the members of the requestMessages
parameter may be null. It is an error if a member of the requestMessages parameter is not null and is not a
string value.

The selected resources are identified to the invoking DIM by the URLs returned by the DIBO. A null return
value indicates that no resource was selected.

NOTE The presentation and selection of the resource is a DIBO implementation decision. For example, one DIBO
implementation might present the resource selection in a GUI to a human allowing the human to select the resource.
Another implementation might be intended to process a DI without human intervention and implement some form of
automated resource selection.

5.4.2.7.4.3 Example use

EXAMPLE An example where this DIBO can be used is when a RESOURCE element is created and a DIM needs to
set the ref attribute and requests the User to locate a resource to which the ref attribute will refer.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

36 © ISO/IEC 2006 – All rights reserved

5.4.2.7.5 getObjectMap

5.4.2.7.5.1 Interface

Syntax: getObjectMap(document)

Description: Retrieves the Object Map from a DID instance document.

Parameters: document

A DOM Document representing the DID instance document containing the
Object Type information.

Return value: An ObjectMap object (see 5.4.3.3) representing the Object Map
(see 5.3.5) of the DID instance document.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER if document is not a DOM
Document object representing a DIDL instance document.

5.4.2.7.5.2 Semantics

This DIBO allows the retrieval of an Object Map (see 5.4.3.3 and 5.3.5) from a DID instance document.

The document parameter shall be a DOM Document object representing the DIDL instance document with the
Object Type information needed to construct the Object Map. The Object Map is represented in DIML by an
ObjectMap object (see 5.4.3.3). It is an error to invoke this DIBO if the document parameter is not a DOM
Document object representing a DIDL document, in which case an invalid parameter exception is generated.

5.4.2.7.5.3 Example use

EXAMPLE An example where this DIBO can be used is if a DIM author wants to process all DID Objects of a
particular Object Type. For example, in a music album Digital Item, to get all Objects associated with a music track Object
Type, the DIM author can use the getObjects operation of the ObjectMap object. Prior to this, the DIM author would
need to call the getObjectMap DIBO to first retrieve the ObjectMap.

5.4.2.7.6 getObjects

5.4.2.7.6.1 Interface

Syntax: getObjects(objectTypes, requestMessages)

Description: Provides the User with one or more selections of Objects of given Object
Types. The Objects for each selection are those elements identified in the
Object Map contained in the DI to be of the given Object Types (see also
5.4.3.3 and 5.3).

Parameters: objectTypes

An Array of string values specifying the Object Type names.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 37

 requestMessages

An array whose elements are either string values or null.

Return value: Returns an array whose elements are either a DOM Element object or
null. A DOM Element object represents the selected element of the
corresponding Object Type as specified in the objectTypes array.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER

⎯ if .objectTypes is not an array of string values, or

⎯ if requestMessages is not null and is not an array the same size as
objectTypes with each array member being a string value or null.

5.4.2.7.6.2 Semantics

This DIBO requests the User to select DIDL elements of specified Object Types from the current DID
containing or referencing the DIM from which the DIBO is invoked.

DIM authors should provide DID Objects, representing DIDL elements, to be operated on in a DIM as DIM
Arguments declared by the DIM declaration (see 5.3.3). DIM authors should only use the getObjects DIBO
when it is not possible to provide a DID Object as an Argument.

NOTE 1 Use of the getObjects DIBO prevents DIP engines that, for example, present the User with a list of DID
Objects, and then a list of DIMs that accept those Objects as Arguments, from identifying DIMs that operate on Objects
that are not specified as the Arguments of a DIM in the DIM declaration.

The objectTypes parameter is an array of string values that specifies the Object Type for each element that
the User will be requested to select. The Object Type is an Object Type that is found in the Object Map
(see 5.4.3.3 and 5.3) for the current DID. It is an error to invoke this DIBO if the objectTypes parameter is not
an array of string values, in which case an invalid parameter exception is generated.

For each Object Type specified in the objectTypes parameter, the DIBO allows the User to select one
element that maps to that Object Type.

The requestMessages parameter is an array of string values that contains a request message for each of
the element selections indicated by the members of the objectTypes array. The requestMessages parameter
may be null, in which case no explicit request messages are specified. If the requestMessages parameter is
not null, it is an error if the number of members of the requestMessages parameter is not equal to the number
of messages in the objectTypes parameter. However one or more of the members of the requestMessages
parameter may be null. It is an error if a member of the requestMessages parameter is not null and is not a
string value.

The selected elements of the specified Object Types are available to the invoking DIM via the returned array
of Element objects. These can then be used as parameters to other DIBOs.

NOTE 2 The presentation and selection of the elements is a DIBO implementation decision. For example, one DIBO
implementation might present the element selection in a GUI to a human allowing the human to select the elements.
Another implementation might be intended to process a DI without human intervention and implement some form of
automated element selection.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

38 © ISO/IEC 2006 – All rights reserved

5.4.2.7.6.3 Example use

EXAMPLE An example where this DIBO can be used is at steps h) and r) in the scenario described in I.2.2

5.4.2.7.7 getValues

5.4.2.7.7.1 Interface

Syntax: getValues(dataTypes, requestMessages)

Description: Requests the User for input data of one of the primitive data types.

Parameters: dataTypes

An Array of string values specifying the data type of each datum.

 requestMessages

An array whose elements are either string values or null.

Return
value:

Returns an array whose elements are null or values of type boolean,
string or number, corresponding to the data type specified in the
dataTypes array.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER if

⎯ dataTypes contains an invalid data type (not one of Boolean,
String, or Number); or

⎯ requestMessages is not null and is not an array the same size as
objectTypes with each array member being a string value or null.

5.4.2.7.7.2 Semantics

This DIBO requests the User to enter data values of one of the primitive DIML data types.

The dataTypes parameter is an array of string values that specifies primitive data type for each data value
that the User will be requested to enter. The data type shall be one of: Boolean, String, or Number. It is an
error to specify an invalid data type, in which case an invalid parameter exception is generated.

For each data type specified in the dataTypes parameter, the DIBO allows the User to enter a data value of
that data type. The DIBO implementation should execute some basic validation on the value entered, at least
to ensure the value is of the correct data type. It is an error to invoke this DIBO if the dataTypes parameter is
not an array of string values, in which case an invalid parameter exception is generated.

The requestMessages parameter is an array of string values that contains a request message for each of
the data values indicated by the members of the dataTypes array. The requestMessages parameter may be
null, in which case no explicit request messages are specified. If the requestMessages parameter is not null,
it is an error if the number of members of the requestMessages parameter is not equal to the number of
messages in the dataTypes parameter. However one or more of the members of the requestMessages
parameter may be null. It is an error if a member of the requestMessages parameter is not null and is not a
string value.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 39

The User entered data values of the specified data types are available to the invoking DIM via the returned
array of values. If a value was not entered for a requested datum then the corresponding entry in the returned
array of values will be null. If no data values at all were entered then a null is returned by the DIBO.

NOTE The data entry mechanism for the requested data is a DIBO implementation decision. For example, one DIBO
implementation might present a data entry GUI to a human allowing the human to enter the values. Another
implementation might be intended to process a DI without human intervention and implement some form of automated
data entry.

5.4.2.7.7.3 Example use

EXAMPLE An example where this DIBO can be used is at step t) in the scenario described in I.2.2.

5.4.2.7.8 play

5.4.2.7.8.1 Interface

Syntax: play(element, async)

Description: Plays a specified COMPONENT, or DESCRIPTOR and optionally waits for
completion before returning control to the calling DIM.

Parameters: element

A DOM Element object representing the COMPONENT, or DESCRIPTOR
element to be played.

 async

A boolean value indicating if the COMPONENT, or DESCRIPTOR should be
played asynchronously or not. If true then the element is played
asynchronously and the DIBO should return control immediately to the
calling DIM after playing of the element is initiated. If false then the
element is played synchronously and control is not returned to the calling
DIM until the element media end time has been reached (if applicable).

Return value: Returns a PlayStatus (see 5.4.3.4) object to identify the playing element.
This is included so that the playing instance of the elements can be
released at a later time.

Exceptions: DIPError

With DIP error code

⎯ INVALID_PARAMETER if

⎯ element is not a COMPONENT, or DESCRIPTOR; or

⎯ async is not a boolean value; or

⎯ PLAYBACK_FAILED if an error occurs during playback.

5.4.2.7.8.2 Semantics

This DIBO causes the DIDL element represented by the element parameter to be rendered into a transient
and directly perceivable representation.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

40 © ISO/IEC 2006 – All rights reserved

The element parameter shall be a DOM Element object representing a COMPONENT or DESCRIPTOR to be
played. It is an error to invoke this DIBO if the element parameter is not a DOM Element object representing
a COMPONENT or DESCRIPTOR, in which case an invalid parameter exception is generated.

The manner of playing the element, appropriate to its content, is left as an implementation choice of the DIBO
implementer.

The async parameter shall be a boolean value indicating whether the element is to be played asynchronously
or synchronously. It is an error to invoke this DIBO if the async parameter is not a boolean value, in which
case an invalid parameter exception is generated.

For an asynchronous playing, once playing of the element is initiated, the DIBO should return execution
control to the invoking DIM.

For synchronous playing, the DIBO should not return execution control to the invoking DIM until the play
status transitions to STATICPLAY or RELEASED.

For time based media the play status on successful playing of the element will be TIMEPLAY. When the media
end time is reached, the status will transition to STATICPLAY.

For non time based media the play status on successful playing of the element will be STATICPLAY.

If the element could not be successfully played the play status will be RELEASED.

The DIBO returns a PlayStatus (see 5.4.3.4) object which provides a handle to the playing instance of the
element and its status. This handle is used as a parameter to other DIBOs to control the status of the playing
instance of the element.

NOTE 1 Time based media is media that changes over time, such as animations, audio clips, and video clips. The
MIME media type of resources associated with the element can be retrieved from the MIMETYPE attribute of any DIDL
RESOURCE elements. In many cases this will allow the DIBO implementation to determine whether the resource is time
based or not. For example, resources with a top-level media type of audio or video (such as audio/mpeg for MP3) are
generally time based.

NOTE 2 For a synchronous call to the play DIBO for time based media, the play status transition through the
TIMEPLAY state is effectively hidden from the invoking DIM, since the play DIBO will not return until the play status has
transitioned to STATICPLAY.

NOTE 3 It is the responsibility of the DIBO implementation to locate the appropriate technology for playing of the
element and to inform the User if this cannot be found. For example the resource could be played internally or a
mechanism to locate and use some external “third party” software to play the resource could be provided. The MIME
media type of resources associated with the element can be retrieved from the MIMETYPE attribute of any DIDL RESOURCE
elements. This will enable the DIBO implementation to determine how to play the associated resources.

NOTE 4 While the manner of playing the element is a DIBO implementation choice, it could be guided by additional
available information, for example information contained within descriptors associated with the element to be played.

5.4.2.7.8.3 Example use

EXAMPLE An example where this DIBO can be used is steps f), k), p), and bb) of the use case scenario described
in I.2.2

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 41

5.4.2.7.9 print

5.4.2.7.9.1 Interface

Syntax: print(element)

Description: Prints a specified COMPONENT, or DESCRIPTOR.

Parameters: element

A DOM Element object representing the COMPONENT, or RESOURCE
element to be printed.

Return value: A boolean value of true if the element was successfully printed, or false
if it was not printed.

Exceptions: DIPError

With DIP error code

⎯ INVALID_PARAMETER if element is not a COMPONENT, or DESCRIPTOR;
or

⎯ PRINT_FAILED if an error occurs during the printing.

5.4.2.7.9.2 Semantics

This DIBO causes the DIDL element represented by the resource parameter to be rendered into a fixed and
directly perceivable representation.

The element parameter shall be a DOM Element object representing a COMPONENT or DESCRIPTOR to be
printed. It is an error to invoke this DIBO if the element parameter is not a DOM Element object representing
a COMPONENT or DESCRIPTOR, in which case an invalid parameter exception is generated.

The manner of printing the element, appropriate to its content, is left as an implementation choice of the DIBO
implementer.

5.4.2.7.9.3 Example use

EXAMPLE In some cases the DIM author might want to allow the User to print a resource contained in a component.
For example, the lyrics of a song included as a text resource in a music digital item.

5.4.2.7.10 release

5.4.2.7.10.1 Interface

Syntax: release(playStatus)

Description: Stop playback of a COMPONENT or DESCRIPTOR and release related
playback state information.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

42 © ISO/IEC 2006 – All rights reserved

Parameters: playStatus

The PlayStatus object that was generated as a return value when
playback of the DIDL element began.

EXAMPLE As the result of an asynchronous call to the play (5.4.2.7.8)
DIBO.

Return value: None.

Exceptions: DIPError

With DIP error code INVALID_PARAMETER if playStatus is not a
PlayStatus.

5.4.2.7.10.2 Semantics

This DIBO causes playing of the DIDL element associated with the specified playStatus to be stopped and
any state information to be released.

The playStatus parameter shall be an object of type PlayStatus (see 5.4.3.4) that was returned by a call to
the play DIBO to play the associated element which is to be stopped.

After calling this DIBO the play status will transition to RELEASED.

If the current status is already RELEASED, then this DIBO does nothing.

5.4.2.7.10.3 Example use

EXAMPLE In some cases a DIM might play a component asynchronously, do some other operations, and then
release the component before exiting. For example, if a Digital Item represents an electronic travel brochure, and an ITEM
contains several components that contain information about a specific destination, a DIM could be authored such that it
starts playing some background audio asynchronously, displays synchronously the information components, then prior to
exiting, releases the asynchronously playing component containing the audio resource.

5.4.2.7.11 runDIM

5.4.2.7.11.1 Interface

Syntax: runDIM(itemIdType, itemId, componentIdType, componentId,
arguments)

Description: Runs a DIM declared in an identified COMPONENT.

Parameters: itemIdType

A string value indicating the type of identifier (DII Identifier or URI) that is
given by the itemId parameter.

Valid values are dii to indicate a DII Identifier, or uri to inciate a URI.

 itemId

A string value identifying the ITEM that contains the DIM declaration of the
DIM to be run or null.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 43

 componentIdType

A string value indicating the type of identifier (DII Identifier or URI) that is
given by the componentId parameter.

Valid values are dii to indicate a DII Identifier, or uri to indicate a URI.

 componentId

A string value identifying the COMPONENT that contains the DIM
declaration of the DIM to be run or null.

 arguments

An array of zero or more objects that are to be the arguments to be
passed on to the invoked DIM.

Return value: None.

Exceptions: DIPError

With DIP error code

⎯ INVALID_PARAM if

⎯ either the itemIdType or componentIdType parameters do not
specify a valid value;

⎯ both the itemId and componentId parameters are null;

⎯ the itemId or componentId are not string values or null values;

⎯ either the itemId parameter, if not null, identifies an element that
is not an ITEM, or the componentId parameter, if not null,
identifies an element that is not a COMPONENT;

⎯ both an ITEM is identified and a COMPONENT is identified, but the
COMPONENT is not a child of the ITEM; or

⎯ if the arguments array does not contain objects of the required
Argument Types for this DIM; or

⎯ NOT_FOUND if, given an identified ITEM and/or COMPONENT, a DIM to
run cannot be determined; or

⎯ GENERAL_EXCEPTION if the DIM cannot be run for any other reason.

5.4.2.7.11.2 Semantics

This DIBO allows a DIM to be invoked from within another DIM.

Without the runDIM DIBO it would not be possible to call one DIM from within another DIM. The runDIM DIBO
provides the DIM author with this capability.

EXAMPLE An example where this capability could be used, is the calling of a PlayTrack DIM from a PlayTracks DIM.
The runDIM DIBO can then also be used from other DIMs that require playing a track.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

44 © ISO/IEC 2006 – All rights reserved

The itemIdType parameter shall contain a value of either dii or uri to indicate the type of identifier given by
the itemId parameter. A value of dii indicates the itemId parameter contains the value of a DII Identifier
(part 3 of ISO/IEC 21000). A value of uri indicates the itemId parameter contains the value of a URI
(IETF RFC 3986).

The itemId parameter shall contain a value that identifies the ITEM in which the DIM to be invoked is declared.
If the value of the itemIdType parameter is dii, then the value of the itemId parameter shall match the value
contained in a DII Identifier identifying the ITEM. If the value of the itemIdType parameter is uri, then the
value of the itemId parameter shall be a URI identifying the ITEM.

The DIM to be invoked shall be directly declared within the identified ITEM, not in a sub-ITEM. If the DIM to be
invoked is declared in a sub-ITEM, then that sub-ITEM should be the identified ITEM.

If the itemId parameter is null, then only the componentId is used.

The componentIdType parameter shall contain a value of either dii or uri to indicate the type of identifier
given by the componentId parameter. A value of dii indicates the componentId parameter contains the value
of a DII Identifier (part 3 of ISO/IEC 21000). A value of uri indicates the componentId parameter contains the
value of a URI (IETF RFC 3986).

The componentId parameter shall contain a value that identifies the COMPONENT in which the DIM to be
invoked is declared. If the value of the componentIdType parameter is dii, then the value of the componentId
parameter shall match the value contained in a DII Identifier identifying the COMPONENT. If the value of the
componentIdType parameter is uri, then the value of the componentId parameter shall be a URI identifying
the COMPONENT.

If both the itemId and the componentId parameters are not null, then the identified COMPONENT shall be a
child of the identified ITEM, and the DIM declared in the identified COMPONENT shall be run.

If the itemId parameter is null and the componentId parameter is not null, then the DIM declared in the
identified COMPONENT shall be run.

If the itemId parameter is not null and the componentId parameter is null, then the DIBO implementation may
choose any DIM declared directly in the identified ITEM (i.e., in a COMPONENT that is a child of the ITEM).

If both the itemId and the componentId parameters are null, then a DIPError exception is generated.

If the DIM to be invoked requires arguments, then the arguments parameter is an array of objects containing
the arguments required by the DIM.

If the DIM cannot be invoked or an unhandled exception occurs during execution of the DIM, then a DIPError
exception is generated.

5.4.2.7.11.3 Example use

EXAMPLE An example where this DIBO can be used is when a DI author would like to have a message, included as
a resource in the DI, displayed prior to the playing of any one of a number of other resources. The display of the message
might be determined by certain conditions. A DIM to check the conditions and if required display the message can be
authored. This DIM can then be invoked by the runDIM DIBO from other DIMs prior to playing any other resources for
which the message might be required.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 45

5.4.2.7.12 wait

5.4.2.7.12.1 Interface

Syntax: wait(timeInterval)

Description: Waits for a given length of time.

Parameters: timeInterval

A number value indicating the time in milliseconds for the Wait operation
to pause execution of the DIM.

Return value: None.

Exceptions: DIPError

With DIP error code INVALID_PARAM

⎯ if timeInterval is not a positive number value

5.4.2.7.12.2 Semantics

This DIBO causes a pause in execution of the invoking DIM. On invocation of the DIBO, execution control is
not returned to the DIM until the specified time interval has elapsed. It is an error to invoke this DIBO if the
waitInterval parameter is not a positive number value, in which case an invalid parameter exception is
generated.

The pause applies only to the execution of the invoking DIM.

The DIBO implementer should ensure the actual elapsed interval is as close as possible to the specified time
interval, but is not obliged to ensure the exact specified time interval.

5.4.2.7.12.3 Example usage

EXAMPLE An example where this DIBO can be used is when several resources are played asynchronously, and
then the author wants to pause the execution of the DIM for an interval, before stopping one or more of the resources. For
example, a Digital Item representing a travel brochure might contain an audio resource, a video resource, and an HTML
resource representing a “brochure” of a travel destination. A DIM can be authored such that it plays all three resources
asynchronously, and then waits for an interval of time, after which the audio and video resources are released.

5.4.2.7.13 Calling DIXOs

Calling DIXOs (see 5.6.5) requires a DIBO unique to the DIXO Language. Such DIBOs are also DIBO
properties of the global DIP object (see 5.4.2.1).

A DIBO for calling a Java based DIXO is specified in C.2.

5.4.2.8 REL related operations

5.4.2.8.1 Introduction

These DIBOs provide access to REL related functionality. The DIBOs are provided as function properties of a
REL object. DIML includes such a REL object as a property of the global object (see 5.4.2.1).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

46 © ISO/IEC 2006 – All rights reserved

EXAMPLE Calling an REL DIBO

function foo(arg1)
{
 …
 license = REL.getLicense(resource);
 …
}

5.4.2.8.2 getLicense

5.4.2.8.2.1 Interface

Syntax: getLicense(resource)

Description: Gets licenses associated with the given resource.

Parameters: resource

The DOM Element object that represents the DIDL RESOURCE element.

Return value: An array of DOM Element objects that represent any licenses or null if
there is no license associated with the resource.

Exceptions: DIPError with DIP error code INVALID_PARAM if the resource parameter
is not an Element object that represents a DIDL RESOURCE element.

5.4.2.8.2.2 Semantics

This DIBO provides an interface to retrieve licenses associated with a resource that are expressed as
specified in ISO/IEC 21000-5 (REL).

The resource parameter shall be a DOM Element object representing a RESOURCE. It is an error to invoke
this DIBO if the resource parameter is not a DOM Element object representing a RESOURCE, in which case
an invalid parameter exception is generated.

NOTE 1 A license can be

⎯ located within the DI;

⎯ referenced from the DI;

⎯ accessed via a service referenced from the DI; or

⎯ none of the above.

The DIBO may return more than one license since there is the possibility that a resource has more than one
license attached to it for different rights/actions.

NOTE 2 This DIBO provides an interface for the DIM author to be able to retrieve license information. However it is
not intended that this DIBO is to be used to protect a resource. Any entity supporting processing of Digital Items as
specified by ISO/IEC 21000 is expected to always check and enforce rights regardless of whether a Digital Item is
interacted with via a DIM or not. In the case a Digital Item is interacted with via a DIM, the protection is performed by the
underlying library of DIBO implementations. Annex G describes in more detail one way this could be done.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 47

NOTE 3 The underlying implementation of this DIBO could call on the same library of modules used to manage rights
in general within a particular MPEG-21 environment.

5.4.2.8.2.3 Example use

EXAMPLE This DIBO could be used to get licenses to pass to the QueryLicenseAuthorization DIBO. It is also
possible to get licenses from various documents using the DOM API, but the output of the GetLicense DIBO would likely
be a better approximation to the set of licenses that will eventually be used by the security implementation (such as the
one in Annex G) anyway.

This DIBO could also be used to retrieve licenses to pass to a DIXO.

5.4.2.8.3 queryLicenseAuthorization

5.4.2.8.3.1 Interface

Syntax: queryLicenseAuthorization(license, resource, rightNs,
rightLocal, additionalInfo)

Description: Checks for the existence of an authorization proof for an authorization
request formed according to the semantics of this DIBO given below.

Parameters: license

The DOM Element object that represents the license information.

 resource

The DOM Element object that represents the DIDL RESOURCE element.

 rightNs

The string value that represents the namespace of the right to be checked
or null

 rightLocal

The string value that represents the localname of the right to be checked
or the value of the definition attribute of sx:rightUri, depending on
whether rightNs is a String or null, respectively.

 additionalInfo

An array containing DOM Element objects representing additional
information that can be considered when validating the license.

This parameter may be null, in which case no additional information is
provided by this parameter.

Return value: Boolean value with value true if a corresponding authorization proof is
found and false if a corresponding authorization proof does not exist or
could not be found.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

48 © ISO/IEC 2006 – All rights reserved

Exceptions: DIPError

With DIP error code INVALID_PARAM if

⎯ the license parameter is not an Element or does not contain any
license information;

⎯ the resource parameter is not an Element that represents a
RESOURCE element;

⎯ the rightNs parameter is not a string value or null value;

⎯ the rightLocal parameter is not a string value or null value; or

⎯ the additionalInfo parameter is not an array of DOM Element
objects or a null value.

5.4.2.8.3.2 Semantics

This DIBO checks for the existence of an authorization proof for an authorization request having the following
members.

a) A principal representing the User running this DIBO;

b) A right as specified by the rightNs and rightLocal parameters to this DIBO;

c) The resource specified by the resource parameter to this DIBO;

d) A time interval of zero length that occurs during the execution of this DIBO;

e) An authorization context that is chosen non-normatively by the DIBO implementation, possibly with the
guidance of the additionalInfo parameter to this DIBO;

f) A set of licenses with one member, that member being the license specified in the license parameter to
this DIBO; and

g) A set of grants chosen non-normatively by the DIBO implementation to serve as root grants, possibly with
the guidance of the additionalInfo parameter to this DIBO.

NOTE 1 The utility of this DIBO is limited with respect to the number of licenses supported. e.g., This DIBO does not
intend to support the case where there are two licenses: one that allows a group to play and one that assigns a User
named Alice to that group.

The return value of this DIBO depends on how the authorization context and trust root are decided and
therefore this DIBO should not be used when the mechanism to determine the authorization context and trust
root are not known by the DIM author.

NOTE 2 The authorization context information (such as a User's location, payment history, and usage history) can be
obtained in ways such as:

⎯ Automatically, e.g., by examining the terminal properties.

⎯ Asking assistance from the user, e.g., by popping up an input window.

⎯ Using additional information given in the additionalInfo parameter.

NOTE 3 In some instances, implementations of this DIBO can knowingly construct a false authorization context to try to
meet this DIBO's goals of providing a preliminary screening of User intent before continuing on with the DIM. For example,
if the license is conditioned upon a per-use payment of $3, the DIBO implementation might ask a human if he wants to pay
$3 for the associated right on the associated resource. Then, without charging the user $3, the DIBO implementation

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 49

might still use an authorization context that says the user paid $3 so that the result value that gets returned reflects
whether the user would be authorized if he were to pay $3.

NOTE 4 The status of the result is at the time and in the authorization context that the check is evaluated. For example,
it is possible in some circumstances that an authorization proof exists at the time that the DIBO is invoked, but not at a
time subsequent to the invocation of the DIBO due to conditions included in the license information. It is also possible in
some circumstances that an authorization proof exists using the (likely false or outdated) authorization context and trust
root chosen by the DIBO implementation but does not exist using the correct updated authorization context and trust root
chosen by the security subsystem.

NOTE 5 This DIBO provides an interface for the DIM author to be able to retrieve license information. However it is
not intended that this DIBO is to be used to protect a resource. Any entity supporting processing of Digital Items as
specified by ISO/IEC 21000 is expected to always check and enforce rights regardless of whether a Digital Item is
interacted with via a DIM or not. In the case a Digital Item is interacted with via a DIM, the protection is performed by the
underlying library of DIBO implementations. Annex G describes in more detail one way this could be done.

5.4.2.8.3.3 Example use

EXAMPLE This DIBO could be used to, before allocating system resources for a decoding process, check that at
least the User has some non-expired license to play a particular Digital Item and is willing to pay $3 to do so. The ultimate
enforcement of the expiration and $3 for the playing of that Digital Item would take place by the security system using a
technique such as that described in Annex G. The same thing could be done without this DIBO by pre-processing the
entire DIM before allocating system resources for a decoding process.

This DIBO could also be used to filter licenses retrieved via the GetLicense DIBO before passing them on to
a DIXO.

5.4.3 Local objects, DIBOs and constants

5.4.3.1 Introduction

The following additional supporting object types are also normatively included in the DIML specification.

The DIML object types are specified by the object properties (including primitive values, other objects, and
functions), and attributes of those properties.

5.4.3.2 DIPError

This DIML object inherits from the ECMAScript Error (see 15.11 of ISO/IEC 16262:2002) object and is
thrown as an exception whenever a runtime error specific to DIP occurs. In addition to the properties inherited
from the Error object it has the properties specified below.

Other exceptions may also be thrown during execution of a DIM. These include ECMAScript native errors
(see 15.11.6 of ISO/IEC 16262:2002) and exceptions derived from DIPError that are specified in this or other
parts of ISO/IEC 21000.

EXAMPLE A DIML syntax error will generate an ECMAScript native SyntaxError exception.

Value
Properties:

GENERAL_EXCEPTION

A number value of 1.

This indicates a general DIP error not covered by any other error code has
occurred.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

50 © ISO/IEC 2006 – All rights reserved

 INVALID_PARAM

A number value of 2.

This indicates a parameter passed to a DIBO is invalid.

EXAMPLE A DIPError returning this value from the getDIPErrorCode()
DIBO will be generated if the element parameter passed in a call to the play
DIBO is not an Element object representing a DIDL,COMPONENT, or DESCRIPTOR
element.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

 INVALID_PERMISSION

A number value of 3.

This indicates that an attempt was made to execute an operation for which
required permission in the host environment is unavailable.

EXAMPLE If the host environment does not allow execution of resources in
a Digital Item, a DIPError returning this value from the getDIPErrorCode()
DIBO will be generated if the Execute DIBO is called.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

 NOT_FOUND

A number value of 4.

This indicates something required to complete an operation was not
found. The missing entity is dependent on the operation that was
attempted.

EXAMPLE A DIPError returning this value from the getDIPErrorCode()
DIBO will be generated if a DIM with the required name is not found in the
identified Item when the runDIM DIBO is called.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

 ADAPTION_FAILED

A number value of 5.

This indicates an error occurred during an attempt to adapt a resource.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

 PLAYBACK_FAILED

A number value of 6.

This indicates an error occurred during an attempt to play.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 51

 EXECUTE_FAILED

A number value of 7.

This indicates an error occurred during an attempt to execute.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

 PRINT_FAILED

A number value of 8.

This indicates an error occurred during an attempt to print.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

Object
Properties:

None

DIBO
Properties:

getDIPErrorCode()

This DIBO returns a number value indicating the specific error that caused
the exception represented by this error object to be thrown.

The value returned may be one of the specified values above, or some
other value specified by other parts of ISO/IEC 21000.

5.4.3.3 ObjectMap

This DIML object represents the DIP Object Map as defined in 5.3. It has the properties specified below.

Value
Properties:

None

Object
Properties:

None.

DIBO
Properties:

getArgumentList(index)

This DIBO returns an array of string values representing the list of
Argument Types.

The index parameter is a number value that indicates the index of the
Argument list in the Object Map. The order of the Argument lists in the
Object Map corresponds to the document order of the lists of DIP
Argument children of all MethodInfo descriptors in the DIDL document
and with subsequent instances of duplicate lists removed.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if the index parameter is

⎯ not a number value; or

⎯ not a valid index (a valid index is a number ranging from 0 to one less
than the value returned from getArgumentListCount()).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

52 © ISO/IEC 2006 – All rights reserved

 getArgumentListCount()

This DIBO returns a number value and is the number of Argument lists
with Arguments in a specific order that are defined in the Object Map
(see 5.3.5). This corresponds to the number of unique permutations for all
lists of DIP Argument children of all MethodInfo descriptors in the DIDL
document.

 getMethodCount(argumentList)

This DIBO returns a number value and is the number of DIMs that are
defined to accept as parameters the Arguments listed in argumentList.
This corresponds to the number of DIM declarations in the DIDL
document that have a DIP MethodInfo descriptor with zero or more child
Argument elements such that the number and values of those Argument
elements match the number and names of the specified Argument Types.

The argumentList parameter is an array of string values that indicates
the Argument Types. A zero length array passed as the argumentList
parameter indicates DIMs declared to accept no Arguments.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if the argumentList parameter is not an array of string
values.

 getMethodsWithArgs(argumentList)

This DIBO returns an array of Element objects representing the DIDL
COMPONENT elements representing the DIM declaration for DIMs that
accept as parameters the Arguments listed in argumentList. This
corresponds to the list of DIDL Component elements, in document order,
in the DIDL document that have a DIP MethodInfo descriptor with zero or
more child Argument elements such that the number and values of those
Argument elements match the number and names of the specified
Argument Types.

The argumentList parameter is an array of string values that indicates
the Argument Types. A zero length array passed as the argumentList
parameter indicates DIMs declared to accept no arguments.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if the argumentList parameter is not an array of string
values.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 53

 getMethodWithArgs(argumentList, index)

This DIBO returns an Element object representing the DIDL COMPONENT
element representing the DIM declaration for a DIM that accepts as
parameters the Arguments listed in argumentList.

The argumentList parameter is an array of string values that indicates
the Argument Types. A zero length array passed as the argumentList
parameter indicates DIMs that are declared to accept no Arguments.

The index parameter is a number value that indicates the index of the
DIM in the list of DIMs that accept as parameters the Arguments listed in
argumentNames. The order of the DIMs in the list of DIMs corresponds to
the document order of the DIM declarations in the DIDL document that
have a DIP MethodInfo descriptor with zero or more child Argument
elements such that the number and values of those Argument elements
match the number and names of the specified Argument Types.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if

⎯ the argumentList parameter is not an array of string values;

⎯ the index parameter is not a number value; or

⎯ the index parameter is not a valid index (a valid index is a number
ranging from 0 to one less than the value returned from
getMethodCount(argumentList)).

 getObjectOfType(typeName, index)

This DIBO returns an Element object of a given Object Type.

The typeName parameter is a string value that indicates the Object Type
name.

The index parameter is a number value that indicates the index of the
Object in the list of Objects of the given Object Type. The order of the
Objects in the list of Objects corresponds to the document order of the
elements in the DIDL document that have a child descriptor containing a
DIP ObjectType descriptor with a value matching the specified Object
Type.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if

⎯ the typeName parameter is not a string value;

⎯ the index parameter is not a number value; or

⎯ the index parameter is not a valid index (a valid index is a number
ranging from 0 to one less than the value returned from
getObjectsOfTypeCount(typeName)).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

54 © ISO/IEC 2006 – All rights reserved

 getObjectsOfType(typeName)

This DIBO returns an array of Element objects of a given Object Type.
This corresponds to the list of elements, in document order, in the DIDL
document that have a child DIP ObjectType descriptor with value
matching the specified Object Type. If there are no objects of the given
Object Type, a zero length array shall be returned.

The typeName parameter is a string value that indicates the Object Type
name.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if the typeName parameter is not a string value.

 getObjectsOfTypeCount(typeName)

This DIBO returns a number value and is the number of Objects that are
defined in the Object Map (see 5.3.5) to be of a given Object Type. This
corresponds to the number of elements in the DIDL document that have a
child DIP ObjectType descriptor with value matching the specified Object
Type.

The typeName parameter is a String that indicates the Object Type name.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if the typeName parameter is not a string value.

 getObjectTypeCount()

⎯ This DIBO returns a number value and is the number of Object Types
that are defined in the Object Map (see 5.3.5). This corresponds to
the number of unique values for all DIP ObjectType descriptors in the
DIDL document.

 getObjectTypeName(index)

This DIBO returns a string value representing the Object Type name.

The index parameter is a number value that indicates the index of the
Object Type in the Object Map. The order of the Object Types in the
Object Map corresponds to the document order of the DIP ObjectType
descriptors in the DIDL document and with subsequent instances of
duplicate values removed from the list.

This DIBO generates a DIPError exception with error code
INVALID_PARAM if the index parameter is

⎯ not a number value; or

not a valid index for an Object Type in the Object Map (a valid index is a
number ranging from 0 to one less than the value returned from
getObjectTypeCount()).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 55

5.4.3.4 PlayStatus

This object is returned by the play DIBO to enable subsequent operations on the particular instance of the Act
invoked. It has the properties specified below.

Value
Properties:

RELEASED

A number value of 0.

This value indicates the associated resource is not currently playing.

NOTE A resource can be in the RELEASED state because an error prevented
a request to play the resource from successfully completing, or as a result of an
explicit request to release the resource.

A RELEASED resource has no other preserved state information. Playing a
RELEASED resource will commence with relevant state information in an
initial state.

EXAMPLE For a resource with time based media, playing a RELEASED
resource will commence from the media start time.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

 STATICPLAY

A number value of 1.

This value indicates the associated resource is currently playing.

Time based state information related to playing the resource, if relevant, is
paused for a STATICPLAY resource.

NOTE For time based media, this status is equivalent to a state typically
considered as 'paused'.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

 TIMEPLAY

A number value of 2.

This value indicates the associated resource is currently playing.

Time based state information related to playing the resource, if relevant, is
advancing for a TIMEPLAY resource.

NOTE Only time based media can have a status of TIMEPLAY.

This property has the attributes { ReadOnly, DontEnum, DontDelete }.

Object
Properties:

None.

DIBO
Properties:

getStatus()

This DIBO returns a number value indicating the status of the resource
associated with the PlayStatus object. The returned value is one of the
value properties specified above for the PlayStatus prototype.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

56 © ISO/IEC 2006 – All rights reserved

Figure 4 — State transition diagrams for PlayStatus

5.5 Relation of Digital Item Base Operations and RDD verbs (informative)

In some cases the functionality of the DIBOs specified in 5.4 can be characterized by association with a
Rights Data Dictionary (RDD) verb (see ISO/IEC 21000-6).

The following table shows a mapping between DIBOs described in 5.4 and RDD verbs.

Table 3 — DIBO mapping to RDD verbs

Digital Item Base Operations Rights Data Dictionary verb

LSSerializer.write Adapt, Diminish, Enhance, Enlarge,
Modify, Reduce

LSSerializer.writeToURI Adapt, Diminish, Enhance, Enlarge,
Modify, Reduce

DIA.adapt Adapt, Diminish, Enhance

DIP.execute Execute

DIP.play Play

DIP.print Print

Those DIBOs not listed in the above table typically would not require any rights checks.

For the DIBOs that are listed, it should be understood that

a) the list of rights that might need to be checked for that DIBO is not exhaustive;

b) not all the rights listed need to be checked every time that DIBO is called; and

c) it might be necessary to check rights associated with another DIBO when a DIBO is called if the latter
DIBO operates on a result of the former DIBO.

For instance, since the result of a call to DIA.adapt is not perceivable until, for example, it is passed to
DIP.play, it might not be necessary to check Adapt or Diminish or Enhance rights during the call to
DIA.adapt. However in the call to DIP.play it might be necessary to check for both the rights associated with
the adaptation and the Play right. If the adaptation was to, for example reduce the size of a resource, it might
only be necessary to check either Adapt or Enhance.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 57

Considering another case, if LSSerializer.writeToURI is called for a DIDL document with an item that has
had a component removed, it might only be necessary to check either Adapt or Diminish. Checking Enhance
in that case would not do any good. However, if the same DIBO were to be called with a component added by
copying a component from a second item, it would be necessary to check both Enhance and Adapt. The
Enhance check would be to see if the first item can be enhanced. The Adapt check would be to see if the
second item can be copied from in order to enhance the first one.

Annex G gives implementation guidance on how to support DIP while maintaining a level of interaction with a
Digital Item that is consistent with the available rights.

5.6 Digital Item eXtension Operations

5.6.1 Introduction

Digital Item eXtension Operations (DIXOs) are operations that may be used to extend the available DIBOs.
DIXOs are provided by Users, packaged along with DIs, and acquired similar to DIMs. DIXOs, like DIBOs, can
be used by DIMs but are not normatively defined. However, the mechanism to include DIXOs in Digital Items,
and the mechanism to invoke DIXOs from DIMs are normatively defined.

NOTE The execution environment within an MPEG-21 environment for DIXOs is informative.

The following subclause explains the purpose of DIXOs and subsequent subclauses specify how DIXOs are
defined, executed and how they interact with other components of DIP.

5.6.2 Purpose of DIXOs

DIBOs abstract out complicated operations by providing a high level interface for DIMs to access native
functionality. On a number of occasions a User might need access to operation abstractions that are not
normatively defined as DIBOs. Such operation abstractions can be highly specific to the application area of
the DI or useful only for this DI and hence need not be normatively defined. In such situations, implementing
the functionality using DIML is a possibility. However, this might neither be easy nor optimal in terms of
execution efficiency and size. Thus, there is a need for a mechanism that enables the User to easily extend
base operation functionality without compromising on efficiency. This is the purpose of DIXOs.

To summarize, DIXOs can be used when Users need to extend base operations when such operations are

⎯ not normatively defined by thus part of ISO/IEC 21000;

⎯ unique to the application space;

⎯ useful only for this DI; and

⎯ more optimally implemented in a DIXO.

DIXOs can be implemented using the DIXO language, and packaged in DIs. The DIP engine, which is capable
of handling DIXOs in that specific DIXO language, would then identify these DIXOs and make them available
for use from DIMs.

5.6.3 Relationship between DIMs, DIBOs, and DIXOs

The DIMs call the DIBOs and the DIXOs to delegate processing to keep the DIM script simple. DIMs may
choose to use DIBOs when they are available and DIXOs when the required functionality is not available as a
DIBO.

The invocation mechanisms for DIBOs and the DIXOs from DIMs are different. The DIBOs have a mapping to
DIML and this is used to call the DIBOs from within a DIM. The invocation mechanism for DIXOs is unique to
the DIXO Language used to write the DIXOs. The same call for a given DIXO Language is used to invoke all
the DIXOs in that DIXO Language from a DIM, where the name and the arguments of the DIXO are all in turn
arguments to that invocation call.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

58 © ISO/IEC 2006 – All rights reserved

DIXOs while implementing the extended processing may call normatively defined DIBOs and other DIXOs.
The invocation mechanism of DIBOs and other DIXOs from any DIXO is direct using the bindings of DIBOs in
that particular DIXO Language.

5.6.4 DIXO Language

The DIXO Language used to implement DIXOs may be chosen by the DIXO implementer. However, to
execute a DIXO that is called from a DIM (and hence to execute the DIM itself), an execution environment for
the DIXO Language in which the DIXO is implemented is required in the MPEG-21 environment in which the
DIM is being executed.

A Java DIXO Language is specified in Annex B.

5.6.5 Calling DIXOs

DIXOs are called by an operation call unique to the DIXO Language. To call a DIXO from a DIM (and hence to
execute the DIM itself), an implementation for the DIXO calling operation for the DIXO Language in which the
DIXO is implemented is required in the MPEG-21 environment in which the DIM is being executed.

The syntax of the DIXO calling operation for a given DIXO Language shall conform to the following pattern.

runxxxDIXO(DIXOidentifier, arguments)

where xxx is a unique string of characters for the DIXO Language.

The DIXOidentifier parameter (or parameters) identifies the DIXO to be called. The actual values to be
used for the identifier are dependent on the DIXO Language.

The arguments parameter is an array of zero or more arguments that shall be passed on as arguments to the
called DIXO.

The DIXO calling operation, if supported by a DIP engine, shall be implemented as a DIBO property of the
global DIP object (see 5.4.2.1).

EXAMPLE To call a DIXO taking three arguments, identified by the identifier myDIXOid, and implemented in the
DIXO Language MYDIXL, the DIXO calling operation could be DIP.runMYDIXLDIXO("myDIXOid", dixoArgs).

The specification of a DIXO Language shall include the specification of the DIXO calling operation.

The calling procedure of a Java DIXO Language is specified in Annex C.

5.6.6 DIXO execution environment

The Digital Item Processing engine is responsible for the execution of the DIMs. Since the DIMs can invoke
DIXOs which are downloaded, the requirements of the execution environment for DIXOs need to be well
understood. As the DIXO Language is not uniquely identified and is left as a choice to the user, the execution
environment for the chosen DIXO Language needs to exist in an MPEG-21 environment supporting the DIXO
Language.

EXAMPLE An MPEG-J based execution environment for the Java DIXO Language is specified in Annex D.

5.6.7 DIXO examples

5.6.7.1 TypeText

EXAMPLE A TypeText DIXO could implement the functionality of displaying text character by character (i.e., one
letter at a time). Other possible uses are: fading in and/or fading out; font effects; blinking; colour; etc. In other words, the
TypeText DIXO can allow for text display with extended functionality, as opposed to the base (text) display mechanisms
that are provided by the normatively specified DIBOs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 59

A possible Java-based interface for such a TypeText DIXO could look like:

TypeText(TextArea textBox, String text)

5.6.7.2 IMGTree

EXAMPLE An IMGTree DIXO could implement the functionality of displaying images hierarchically by using a tree
component.

A possible Java-based interface for such an IMGTree DIXO could look like:

IMGTree(String[] ImgPath, int[] StructInfo, String[] ImgExplain)

5.6.7.3 SearchHighlightText

EXAMPLE A SearchHighlightText DIXO could implement the functionality of searching for specific words or
strings in textual resources, and highlighting the words (or strings) that are found.

5.7 Auto run DIM

5.7.1 Introduction

Subclause 5.7 describes a mechanism for automatically running a DIM.

5.7.2 Identification

The DIM to be automatically run can be identified by the autoRun attribute of the MethodInfo element in the
DIM declaration (see 5.3.3). If the autoRun attribute is present and has a value of true, then the DIM declared
in that DIM declaration is an auto run DIM.

5.7.3 Time of execution

If the User wishes to automatically run a DIM without knowing any of them in particular, the User should
request to run the DIM identified as the auto run DIM, as described above. In this case this DIM is executed
before any other DIM is executed. If there is more than one auto run DIM available the User decides which
one to run.

NOTE CHOICE/SELECTIONs and CONDITIONs can be used to configure different auto run DIMs for different cases. It is
up to the author of the DID to make sure that only one auto run DIM is available if the author wants to have a single
predefined entry point.

5.7.4 Examples

EXAMPLE The example below illustrates how an auto run DIM can be used to automatically start the playback of the
music tracks that are declared in the DID. On receipt, the listTracks DIM is run. This DIM searches for music tracks
and automatically plays them by calling the playTrack DIM.

<?xml version="1.0" encoding="UTF-8"?>
<DIDL xmlns="urn:mpeg:mpeg21:2002:02-DIDL-NS"
 xmlns:dii="urn:mpeg:mpeg21:2002:01-DII-NS"
 xmlns:dip="urn:mpeg:mpeg21:2005:01-DIP-NS">
 <Item>
 <Component>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:MusicTrack</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Resource ref="track1.mp3" mimeType="audio/mpeg"/>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

60 © ISO/IEC 2006 – All rights reserved

 </Component>
 <Component>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:ObjectType>urn:foo:MusicTrack</dip:ObjectType>
 </Statement>
 </Descriptor>
 <Resource ref="track2.mp3" mimeType="audio/mpeg"/>
 </Component>
 <Component>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:MethodInfo autoRun="true"/>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"><![CDATA[
 function listTracks()
 {
 var objTypes = ['urn:foo:MusicTrack'];
 var messages = ['Please select a track'];
 var tracks = DIP.getObjects(objTypes, messages);
 for (var i = 0; i < tracks.length; i++)
 {
 DIP.runDIM("dii", null, "dii", "urn:foo:id:0146:4596X6745058", tracks[i]
);
 }
 }]]>
 </Resource>
 </Component>
 <Component>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dii:Identifier>urn:foo:id:0146:4596X6745058</dii:Identifier>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIM</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:MethodInfo>
 <dip:Argument>urn:foo:MusicTrack</dip:Argument>
 </dip:MethodInfo>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/mp21-method"><![CDATA[
 function playTrack(arg)
 {
 var cmp = arg.getElementsByTagName("Component").item(0);
 DIP.Play(cmp, false);
 }]]>
 </Resource>
 </Component>
 </Item>
</DIDL>

5.7.5 Conformance points (informative)

There are two different conformance points relating to the auto run DIM.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 61

a) Ability to recognize and run the auto run DIM (e.g., at time of choosing of User).

b) Always runs the auto run DIM.

Levels of conformance are

⎯ None;

⎯ a); or

⎯ a) plus b)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

62 © ISO/IEC 2006 – All rights reserved

Annex A
(normative)

ECMAScript binding for Digital Item Base Operations

ECMAScript is the basis of the DIML (see 5.2). Since the syntax for the DIBOs specified in 5.4 is provided
conformant to DIML, the ECMAScript bindings for each DIBO is as specified by the syntax for each DIBO. A
list of supporting global objects and their methods (DIBOs) is provided below (constant values can be found in
the corresponding subclauses).

Table A.1 —List of ECMAScript bindings for DIBOs of global objects

object DIBO

DIA adapt(element,metadata)

DID areConditionsSatisfied(element)

 configureChoice(choice)

 setSelection(selection,state)

DII getElementsByIdentifier(sourceDID,value)

 getElementsByRelatedIdentifier(sourceDID,value)

 getElementsByType(sourceDID,value)

DIP alert(message,messageType)

 execute(element)

 getData(dataTypes,requestMessages)

 getExternalData(mimeTypes,requestMessages)

 getObjectMap(document)

 play(element,async)

 print(element)

 release(playStatus)

 runDIM(itemIdType,itemId,componentIdType,componentId,arguments)

 runJDIXO(itemIdType,itemId,componentIdType,componentId,className,arguments)

 wait(timeInterval)

REL getLicense(resource)

 queryLicenseAuthorization(license,resource,rightNs,rightLocal,addiontalInfo)

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 63

A list of supporting local objects and their DIBO properties is provided below (value and object properties can
be found in the corresponding subclause).

Table A.2 —List of ECMAScript bindings for DIBOs of local objects

object DIBO

DIPError getDIPErrorCode()

ObjectMap getArgumentList(index)

 getArgumentListCount()

 getMethodCount(argumentNames)

 getMethodWithArgs(argumentNames,index)

 getMethodsWithArgs(argumentNames)

 getObjectOfType(typeName, index)

 getObjectsOfType(typeName)

 getObjectsOfTypeCount(typeName)

 getObjectTypeCount()

 getObjectTypeName(index)

PlayStatus getStatus()

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

64 © ISO/IEC 2006 – All rights reserved

Annex B
(normative)

Java bindings for Digital Item Base Operations

B.1 Introduction

Java bindings for DIBOs are specified so that Java based DIXOs (J-DIXOs) may invoke DIBOs directly from
Java for optimal performance.

Each DIBO is bound to a Java interface in the package org.iso.mpeg.mpeg21.mpegj.dibo. The Java
interface name is the same as the DIML object name that contains the DIBO as a member function as
specified in 5.4.

Each interface defines a set of methods as the designated J-DIBO methods for each corresponding DIBO in
the DIML object. The arguments to these designated methods are Java types corresponding to the DIML
object types of the arguments of the bound DIBO. Refer to B.2 for the mapping from DIML object types to
Java types. Refer to the J-DIBO interfaces in B.4 for the actual arguments to each J-DIBO method.

If the bound DIBO as specified in clause 5.4 throws the DIPError exception, the corresponding J-DIBO
throws the Java exception org.iso.mpeg.mpeg21.mpegj.dibo.DIPError.

An MPEG-21 environment that supports J-DIXOs shall provide an implementation for each of the Java
bindings for DIBOs.

A DIP engine shall also provide an implementation of a J-DIBO factory. The J-DIBO factory is used in a
J-DIXO to obtain an instance of an object that implements the Java binding for a DIBO. Refer to B.3 for the
interface for a J-DIBO factory.

NOTE The J-DIBO factory is specifically required to support J-DIXOs, hence there is no corresponding interface
relating to invoking DIBOs from DIMs.

Refer to B.4 for the Java interface binding for each DIBO as specified in Clause 5.4.

EXAMPLE The following is the J-DIBO defined for the configureChoice DIBO.

package org.iso.mpeg.mpeg21.mpegj.dibo;

import org.w3c.dom.*;

/**
 * Java Binding interface for the DID related DIBOs
 */
public interface DID {

 /**
 * Designated method for the ConfigureChoice Java Binding interface
 * @param choice
 * @return true if Choice configuration was modified, false if Choice configuration
was not modified
 */
 public boolean configureChoice(Element choice) throws DIPError;
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 65

B.2 Java data type bindings for DIML object types

B.2.1 Introduction

B.2 specifies the Java data type bindings for the corresponding DIML object types specified in Clause 5.4.3
(and including ECMAScript object types).

Table B.1 — Mapping of DIML object types to Java data types

DIML object type Java data type

DIPError org.iso.mpeg.mpeg21.mpegj.dibo.DIPError

ObjectMap org.iso.mpeg.mpeg21.mpegj.dibo.ObjectMap

PlayStatus org.iso.mpeg.mpeg21.mpegj.dibo.PlayStatus

String java.lang.String

Number Appropriate Java primitive data type (int, long, float, double, etc.)
as per context.

Boolean boolean (Java basic datatype)

Array An array [] of the corresponding Java data type.

B.2.2 DIPError

See 5.4.3.2.

A DIPError implementation is presented below. Those data members and function members corresponding
to the properties specified for the DIML DIPError object in 5.4.3.2 are normative. In addition, a Java binding
of a DIPError object shall extend the Java Exception class and any constructors shall call the corresponding
superclass constructor. Other specific implementation details are presented here for informative purposes only.

package org.iso.mpeg.mpeg21.mpegj.dibo;

/**
 * Java class for the DIPError. Can be used as base class
 * for DIXO based exceptions.
 *
 */
public class DIPError extends Exception {

 /* Normative */
 /**
 * General DIP error not covered by other defined error codes.
 */
 public static final int GENERAL_EXCEPTION = 1;

 /* Normative */
 /**
 * A parameter passed to a DIBO or other DIP function is invalid.
 */
 public static final int INVALID_PARAM = 2;

 /* Normative */
 /**

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

66 © ISO/IEC 2006 – All rights reserved

 * A required permission to execute an operation is unavailable.
 */
 public static final int INVALID_PERMISSION = 3;

 /* Normative */
 /**
 * Something required to complete an operation was not found.
 */
 public static final int NOT_FOUND = 4;

 /* Normative */
 /**
 * An error occurred during an attempt to adapt a resource.
 */
 public static final int ADAPTATION_FAILED = 5;

 /* Normative */
 /**
 * An error occurred during an attempt to play a resource.
 */
 public static final int PLAYBACK_FAILED = 6;

 /* Normative */
 /**
 * An error occurred during an attempt to execute a resource.
 */
 public static final int EXECUTE_FAILED = 7;

 /* Normative */
 /**
 * An error occurred during an attempt to print a resource.
 */
 public static final int PRINT_FAILED = 8;

 /* Informative */
 /**
 * Protected member variable to record error codes.
 */
 protected int errorCode;

 /* Informative */
 public DIPError(int code, String mesg) {
 super(mesg); // Normative
 errorCode = code;
 }

 /* Informative */
 public DIPError(int code, String mesg, Throwable cause) {
 super(mesg, cause); // Normative
 errorCode = code;
 }

 /* Normative */
 public int getDIPErrorCode() {
 return errorCode;
 }
}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 67

B.2.3 ObjectMap

See 5.4.3.3.

package org.iso.mpeg.mpeg21.mpegj.dibo;

import org.w3c.dom.*;

/**
 * Java interface for the ObjectMap DIML Object Type
 */
public interface ObjectMap {

 /** Returns array of Argument Types of an argument list */
 public String[] getArgumentList(int index) throws DIPError;

 /** Returns number of unique argument lists with Arguments in a specific order */
 public int getArgumentListCount();

 /** Returns number of DIMs taking arguments of given Argument Types */
 public int getMethodCount(String[] argumentList) throws DIPError;

 /** Returns array of Elements represeting Components containing DIM declarations
 * of DIMs taking arguments of given Argument Types.
 */
 public Element[] getMethodsWithArgs(String[] argumentList) throws DIPError;

 /** Returns Element representing Component containing DIM declaration of a DIM
 * taking arguments of given Argument Types.
 */
 public Element getMethodWithArgs(String[] argumentList, int index) throws DIPError;

 /** Returns an Element representing an Object of given Object Type */
 public Element getObjectOfType(String typeName, int index) throws DIPError;

 /** Returns an array of Elements representing Objects of given Object Type */
 public Element[] getObjectsOfType(String typeName) throws DIPError;

 /** Returns number of Objects in Object Map of given Object Type */
 public int getObjectsOfTypeCount(String typeName) throws DIPError;

 /** Returns number of Object Types in the Object Map */
 public int getObjectTypeCount();

 /** Returns string representing Object Type name */
 public String getObjectTypeName(int index) throws DIPError;
}

B.2.4 PlayStatus

See 5.4.3.4.

package org.iso.mpeg.mpeg21.mpegj.dibo;

/**
 * Java interface for the PlayStatus DIML Object Type.
 */
public interface PlayStatus {

 /**
 * The resource has not been played, typically because a request to play
 * the resource has never been executed or some error prevented a request
 * to play the resource from successfully completing.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

68 © ISO/IEC 2006 – All rights reserved

 */
 public static final int RELEASED = 0;

 /**
 * The resource is currently being played. For time based media, media time
 is not advancing, but playing state information (including current media time
 is preserved.
 */
 public static final int STATICPLAY = 1;

 /**
 * The resource is currently being played and for time based media, media time
 is advancing.
 */
 public static final int TIMEPLAY = 2;

 /**
 *
 * @return int indicating the current status of a played instance of a resource
 associated with this PlayStatus object.
 */
 public int getStatus();
}

B.3 J-DIBO factory

This clause specifies the Java interface for the J-DIBO factory. An MPEG-21 environment supporting J-DIBOs
shall provide an implementation of JDIBOFactory.

package org.iso.mpeg.mpeg21.mpegj.dibo;

/**
 * JDIBOFactory is used to create new J-DIBO classes.
 *
 */
public interface JDIBOFactory {

 /**
 * This method is implemented by the J-DIBO implementation provider.
 * Essentially it returns the implementation for the DIML object interface
 * defining the set of Java-DIBO interface bound to the required DIBO.
 * @param objectName the name of one of the DIML object, e.g., "DID"
 * @return
 * @throws DIPError if any errors occur.
 */
 public Object getJDIBOObject(String objectName) throws DIPError;
}

B.4 Java interface bindings for DIBOs

B.4.1 Introduction

B.4 specifies the Java interface bindings for the corresponding DIBOs as specified in Clause 5.4.

NOTE A Java binding is specified for every DIBO except the runJDIXO DIBO which is defined in C.2.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 69

B.4.2 DIDL document access and manipulation

In DIML base operations for accessing and manipulating the DIDL document objects are those specified by
the DOM Level 3 Core API as defined by W3C.

For authoring J-DIXOs, the Java bindings of the DOM Level 3 Core API provides the Java bindings for these
base operations.

B.4.3 DIDL document loading and saving

In DIML base operations for loading and saving a DIDL document are those specified by the DOM Level 3
Load and Save API as defined by W3C.

For authoring J-DIXOs, the Java bindings of the DOM Level 3 Load and Save API provides the Java bindings
for these base operations.

B.4.4 DIA related operations

See 5.4.2.4.

package org.iso.mpeg.mpeg21.mpegj.dibo;

import org.w3c.dom.*;

/**
 * Java Bindings for the DIA related DIBOs
 */
public interface DIA {

 /**
 * Adapts a specified Component or Descriptor
 * @param element DOM Element representing Component or Descriptor to be adapted
 * @param metadata array of DOM Elements representing additional information or null
 */
 public Element adapt(Element element, Element[] metadata)
 throws DIPError;

}

B.4.5 DID related operations

See 5.4.2.5.

package org.iso.mpeg.mpeg21.mpegj.dibo;

import org.w3c.dom.*;

/**
 * Java Bindings for the DID related DIBOs
 */
public interface DID {

 /**
 * Tests whether conditions for a specified DIDL element are satisfied
 * @param element DOM Element representing DIDL element for which conditions will be
tested
 * @return true if conditions of element are satisfied, false if not
 */
 public boolean areConditionsSatisfied(Element element) throws DIPError;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

70 © ISO/IEC 2006 – All rights reserved

 /**
 * Requests the User to configure a Choice in the DID
 * @param choice DOM Element representing the Choice to be configured
 * @return true if Choice configuration was modified, false if Choice configuration
 was not modified.
 */
 public boolean configureChoice(Element choice) throws DIPError;

 /**
 * Sets the state of a given Selection
 * @param selection DOM Element representing the Selection
 * @param state state to set the Selection ("true", "false", or "undecided")
 */
 public void setSelection(Element selection, String state) throws DIPError;

}

B.4.6 DII related operations

See 5.4.2.6.

package org.iso.mpeg.mpeg21.mpegj.dibo;

import org.w3c.dom.*;

/**
 * Java Bindings for the DII related DIBOs
 */
public interface DII {

 /**
 * Retrieves from the source DID existing DIDL elements based on DII Identifier
 * @param sourceDID DOM Document from which to retrieve the elements
 * @param value value of DII Identifier identifying elemetns to retrieve
 */
 public Element[] getElementsByIdentifier(Document sourceDID, String value)
 throws DIPError;

 /**
 * Retrieves from the source DID existing DIDL elements based on DII RelatedIdentifier
 * @param sourceDID DOM Document from which to retrieve the elements
 * @param value value of DII RelatedIdentifier
 */
 public Element[] getElementsByRelatedIdentifier(Document sourceDID, String value)
 throws DIPError;

 /**
 * Retrieves from source DID existing DIDL elements based on DII Type
 * @param sourceDID DOM Document from which to retrieve the elements
 * @param value value of DII Type
 */
 public Element[] getElementsByType(Document sourceDID, String value)
 throws DIPError;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 71

B.4.7 DIP related operations

See 5.4.2.7.

package org.iso.mpeg.mpeg21.mpegj.dibo;

import org.w3c.dom.*;

/**
 * Java Bindings for the DIP related DIBOs
 */
public interface DIP {

 /**
 * Alerts the User with a message
 * @param message
 * @param messageType
 */
 public void alert(String message, int messageType)
 throws DIPError;

 /**
 * Executes the resource associated with a Component or Descriptor
 * @param element The Element object that reflects the DIDL
 * Component or Descriptor element.
 */
 public boolean execute(Element element)
 throws DIPError;

 /**
 * Requests the User to select resources located extenal to the DI
 * @param mimeTypes
 * @param requestMessages
 * @return array of string giving locations of the resources.
 */
 public String[] getExternalData(
 String[][] mimeTypes,
 String[] requestMessage)
 throws DIPError;

 /**
 * Retrieves the ObjectMap from a DID instance document
 * @param document
 * @return
 */
 public ObjectMap getObjectMap(Document document)
 throws DIPError;

 /**
 * Provides User with one or moe selections of Object os given Object Types.
 * @param objectTypes
 * @param requestMessages
 * @return
 */
 public Element[] getObjects(
 String[] objectTypes,
 String[] requestMessages)
 throws DIPError;

 /**
 * Requests the User for input data of one or the primitive data types
 * @param dataTypes
 * @param requestMessages
 * @return Array whose elements are of type Boolean, String or int,
 * corresponding to the data type specified in the dataTypes array
 */
 public Object[] getValues(

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

72 © ISO/IEC 2006 – All rights reserved

 String[] dataTypes,
 String[] requestMessages)
 throws DIPError;

 /**
 * Plays a specified Component or Descriptor
 * @param element The Element object that reflects the DIDL
 * Component, or Descriptor element.
 * @param async if true play the element asynchronously, else synchronously
 * @return PlayStatus object to identify the playing element
 */
 public PlayStatus play(Element element, boolean async)
 throws DIPError;

 /**
 * Prints a specified Component or Descriptor
 * @param element The Element object that reflects the DIDL
 * Component, or Descriptor element.
 */
 public boolean print(Element element)
 throws DIPError;

 /**
 * Stop playback of a Component or Resource and release related playback state
information
 * @param playStatus PlayStatus object associated with the playing element
 */
 public void release(PlayStatus playStatus);

 /**
 * Runs a DIM declared in an identified COMPONENT.
 * @param itemIdType
 * @param itemId
 * @param componentIdType
 * @param componentId
 * @param args
 */
 public void runDIM(
 String itemIdType,
 String itemId,
 String componentIdType,
 String componentId,
 Object[] args)
 throws DIPError;

 /**
 * Waits for a length of time.
 * @param timeInterval - an integer
 */
 public void wait(int timeInterval)
 throws DIPError;

}

IECNORM.C

OM : C
lick

 to
 vi

ew
 th

e f
ull

 PDF of
 IS

O/IE
C 21

00
0-1

0:2
00

6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 73

B.4.8 REL related operations

See 5.4.2.8.

package org.iso.mpeg.mpeg21.mpegj.dibo;

import org.w3c.dom.*;

/**
 * Java Bindings for the REL related DIBOs
 */
public interface REL {

 /**
 *
 * @param resource – Element representing the DIDL Resource
 * @return array of Element representing any licenses or null if none
 */
 public Element[] getLicense(Element resource)
 throws DIPError;

 /**
 *
 * @param license Element representing license information
 * @param resource Element representing DIDL Resource
 * @param rightNs namespace of the right to be checked or null
 * @param rightLocal localname of right to be checked or the value of the
 definition attribute of xs:rightUri, depending on whether rightNs is a
 String or null, respectively
 * @param additionalInfo array of Element representing additional information
 that can be considered
 * @return true if a corresponding authorization proof is found, false if a
 corresponding authorization proof does not exist or could not be found
 */
 public boolean queryLicenseAuthorization(
 Element license,
 Element resource,
 String rightNs,
 String rightLocal,
 Element[] additionalInfo)
 throws DIPError;

}

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

74 © ISO/IEC 2006 – All rights reserved

Annex C
(normative)

Calling MPEG-J based DIXOs from DIMs

C.1 Introduction

The MPEG-J based DIXOs (J-DIXOs) are written using the Java Programming Language. These J-DIXOs
may in turn invoke the DIBOs through the Java Bindings defined in Annex B. Invoking other J-DIXOs is
achieved by directly using the Java signature of that J-DIXO.

NOTE The J-DIXOs can be executed in a platform independent fashion using the execution environment defined
in Annex D.

The J-DIXOs are invoked from DIMs using a single DIBO call. The generic invocation mechanism was
described in subclause 5.6.5. This annex will adapt the generic invocation for MPEG-J based DIXOs.

C.2 Invoking J-DIXOs

A J-DIXO shall only be invoked from a DIM using the special DIBO runJDIXO. This DIBO is a DIBO property
of the global DIP object (see 5.4.2.1). Other DIBO properties of the DIP object are specified in 5.4.2.7. The
runJDIXO DIBO is defined as follows.

Syntax: runJDIXO(itemIdType, itemId, componentIdType, componentId,
className, arguments)

Description: Executes a specified J-DIXO declared in an identified COMPONENT with the
arguments supplied.

Parameters: itemIdType

A string value indicating the type of identifier (DII Identifier or URI) that is given by
the itemId parameter.

Valid values are dii to indicate a DII Identifier, or uri to inciate a URI.

 itemId

A string value identifying the ITEM that contains the declaration of the J-DIXO to be
run. If the value of the itemIdType parameter is dii, this value shall specify the
value contained in a DII Identifier (part 3 of ISO/IEC 21000) that identifies the DIDL
ITEM. If the value of the itemIdType parameter is uri, this value shall specify a
URI (IETF RFC 3986) that identifies the DIDL ITEM.

 componentIdType

A string value indicating the type of identifier (DII Identifier or URI) that is given by
the componentId parameter.

Valid values are dii to indicate a DII Identifier, or uri to indicate a URI.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 75

 componentId

A string value identifying the COMPONENT that contains declaration of the J-DIXO to
be run. If the value of the componentIdType parameter is dii, this value shall
specify the value contained in a DII Identifier (part 3 of ISO/IEC 21000) that
identifies the DIDL COMPONENT. If the value of the componentIdType parameter is
uri, this value shall specify a URI (IETF RFC 3986) that identifies the DIDL
COMPONENT.

 className

A string value giving the fully qualified class name of the J-DIXO to be run.

 arguments

An array of objects in which each value in the array corresponds to an argument
used by the J-DIXO. The argument type of each object in the array shall
correspond to the type required by the J-DIXO. Rules for the types of objects that
may be defined as arguments to a J-DIXO are given below. The types required by
a J-DIXO are returned by the getArgumentTypes() method of the J-DIXO
interface.

Return value: Returns an object corresponding to the object type specified for the return value of
the J-DIXO.

Exceptions: DIPError with DIP error code

⎯ INVALID_PARAM if either the itemIdType or componentIdType parameters do
not specify a valid value;

⎯ INVALID_PARAM if both the itemId and componentId parameters are null;

⎯ INVALID_PARAM if the itemId or componentId are not string values or null
values;

⎯ INVALID_PARAM if either the itemId parameter, if not null, identifies an
element that is not an ITEM, or the componentId parameter, if not null,
identifies an element that is not a COMPONENT;

⎯ INVALID_PARAM if both an ITEM is identified and a COMPONENT is identified, but
the COMPONENT is not a child of the ITEM;

⎯ INVALID_PARAM if the type of the objects passed in the arguments parameter
do not match those returned by the getArgumentTypes() method of the J-
DIXO interface;

⎯ NOT_FOUND if, given an identified ITEM and/or COMPONENT, a J-DIXO
declaration containing the named class to execute cannot be determined; or

⎯ GENERAL_EXCEPTION if the J-DIXO cannot be run for any other reason.

If both the itemId and the componentId parameters are not null, then the identified COMPONENT shall be a
child of the identified ITEM, and the named class in the J-DIXO declaration in the identified COMPONENT shall
be run.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

76 © ISO/IEC 2006 – All rights reserved

If the itemId parameter is null and the componentId parameter is not null, then the named class in the
J-DIXO declaration in the identified COMPONENT shall be run.

If the itemId parameter is not null and the componentId parameter is null, then the DIBO implementation may
choose any J-DIXO declaration directly contained in the identified ITEM (i.e., in a COMPONENT that is a child of
the ITEM) that contains the named class and use that J-DIXO declaration to run the named class.

If both the itemId and the componentId parameters are null, then a DIPError exception is generated.

EXAMPLE

...
function AddTrackToPlaylist(track, playList) {
 // Calling a J-DIXO.
 var dixoArguments = [track, playList];
 runJDIXO("uri", null, "uri", "urn:foo:bar", "com.companyx.demo.AddTrackToPlayList",
dixoArguments);
}

C.3 Including J-DIXOs in a DID

C.3.1 Introduction

This clause specifies how J-DIXOs are incorporated into a DID. Associating a J-DIXO with a Digital Item
involves two steps:

c) The J-DIXO declaration refers to the declaring of the J-DIXO as being part of a particular Digital Item.
C.3.2 elaborates on J-DIXO declaration.

d) The J-DIXO definition refers to the Java classes that define the J-DIXO. The J-DIXO definition may be
listed in a separate J-DIXO location and referenced from the DID, or it may be embedded inline in the DID.
In either case it is the J-DIXO definition itself that is the resource (in terms of the Digital Item Declaration
Model). The rules associated with defining J-DIXO resources are outlined in C.3.3. Such resources can
either be J-DIXO Java classes or helper classes (Java classes that the J-DIXO classes use). The rules
governing the definition of J-DIXO classes are covered in C.4.

C.3.2 J-DIXO declaration

C.3.2.1 Introduction

A J-DIXO declaration is contained in a DIDL COMPONENT element which shall be constructed such that

⎯ The COMPONENT should contain a list of J-DIXOs defined in the resource associated with the component.
The list shall be represented by a JDIXOClasses element contained in a DIDL DESCRIPTOR-STATEMENT. If
the resource associated with the component does not define any J-DIXOs but defines J-DIXO helper
classes, the JDIXOClasses descriptor need not be present;

⎯ The COMPONENT may contain a flag, represented by a DIP Label element contained in a DIDL
DESCRIPTOR-STATEMENT, indicating the J-DIXO declaration is to be processed by the DIP engine; and

⎯ The J-DIXO definitions and/or J-DIXO helper classes are referenced or embedded by a RESOURCE child
of the COMPONENT.

A resource may define multiple J-DIXOs. See C.3.2.2 for details.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 77

NOTE A J-DIXO declaration can be referenced from an external DID by utilizing provisions for document modularity
as specified in ISO/IEC 21000-2.

NOTE An identifier can be associated with the J-DIXO declaration using a DII Identifier (as specified by part 3 of
ISO/IEC 21000). This could be located at the level of the COMPONENT, or at the level of the ITEM containing the COMPONENT
(perhaps depending on the particular application of the DI). The RunJDIXO DIBO (see C.2) supports both levels of
identification.

C.3.2.2 JDIXOClasses syntax

 <!--

 ##
 # Definition of JDIXOClasses #
 ##
 -->
 <element name="JDIXOClasses" type="dip:JDIXOClassesType"/>
 <complexType name="JDIXOClassesType">
 <sequence>
 <element name="Class" type="string" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>

C.3.2.3 JDIXOClasses Semantics

Semantics of JDIXOClasses:

Name Definition

JDIXOClasses Content of this element is a sequence of Class child elements. A DIDL
COMPONENT representing a J-DIXO declaration should contain a DIP
JDIXOClasses element contained in a DIDL DESCRIPTOR-STATEMENT. There
shall be one Class child element for each J-DIXO class defined by this
COMPONENT. Helper classes defined by this component are not listed in the
JDIXOClasses element. If this component only defines helper classes and the
JDIXOClasses element is still present, it shall contain zero Class child
elements.

Class Content of this element is a string indicating the fully qualified Java class
name of a Java J-DIXO class that is intended to be invoked as a J-DIXO –
adhering to rules laid out for J-DIXO classes.

The example in C.3.4 shows several different J-DIXO declarations specified as COMPONENT children within an
ITEM.

C.3.2.4 J-DIXO Label

Subclauses 5.3.3.4 and 5.3.3.5 specify the syntax and semantics of the DIP Label element.

To indicate that a COMPONENT containing a J-DIXO declaration is to be processed by a DIP engine, the Label
element shall be present (contained in a DIDL DESCRIPTOR-STATEMENT of the COMPONENT) and the value of
the URI shall be urn:mpeg:mpeg21:2005:01-DIP-NS:DIXO:Java.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

78 © ISO/IEC 2006 – All rights reserved

C.3.3 J-DIXO definition

A J-DIXO definition is embedded in (as base64-encoded bytes of binary data) or referenced from a DIDL
RESOURCE element. Such a RESOURCE element shall be contained in a J-DIXO declaration as specified
in C.3.2.

The J-DIXO definition itself shall be a Java class, a jar file containing Java classes, or a base directory that
contains Java classes organized in a directory tree. The Java classes in a J-DIXO definition can be classes
that are intended to be invoked as J-DIXOs and/or helper classes that are used by J-DIXO classes.

The mimeType for a RESOURCE element should be “application/java” when referring to Java class files or a
base directory and should be “application/java-archive” when referring to a jar file.

The Java classes in a J-DIXO definition shall not be defined to belong to the package
org.iso.mpeg.mpeg21.mpegj since this package name is reserved for J-DIBOs and other support classes
specified in this standard.

The name scope of J-DIXOs or helper classes loaded is limited to the context of the parent ITEM that contains
the J-DIXO declaration. Consequently, two classes having the same name but declared in different DIs,
possibly with a common ITEM ancestor (but different parent ITEMs), will be loaded safely without name scope
conflicts.

In order to invoke a J-DIXO from another DI, the desired J-DIXO declaration COMPONENT elements shall first
be referenced in the current DI using the REFERENCE child element of the J-DIXO declaration COMPONENT. In
case of a naming conflict, a J-DIXO or helper class that has been defined in a given DI will always take
precedence over a J-DIXO or helper class that has been referenced from another DI.

For an example of an embedded J-DIXO definition, see the second COMPONENT in the example in C.3.4. For
an example of a referenced J-DIXO definition, see the first COMPONENT in the example in C.3.4.

C.3.4 J-DIXO Example

An example of an ITEM which contains several J-DIXO declarations is given below.

In the item shown below, the first J-DIXO declaration provides an example of a JDIXOClasses element for a
jar file. This J-DIXO declaration also shows an example of an external reference to the J-DIXO definition by
referencing the location of the jar file using the ref attribute of the DIDL RESOURCE element.

The second J-DIXO declaration provides an example of a JDIXOClasses element for a J-DIXO class by itself.
In this second J-DIXO declaration, the J-DIXO definition is embedded inline in the DIDL RESOURCE element
using base64 encoding (complete J-DIXO definition not included for this example).

Both J-DIXO declarations also show an example of including a plain text DIDL DESCRIPTOR-STATEMENT for
containing a short human readable description of each J-DIXO.

A third J-DIXO declaration shows an example of using a reference to a class path in place of a jar file as the
external reference to the J-DIXO definition.

A fourth J-DIXO declaration shows an example of using XInclude [2] to reference a J-DIXO declaration
contained in an external DI. The external DI is a library of J-DIXO declarations where each Component
contains only two child elements. The first child element is a DESCRIPTOR containing a DIP JDIXOClasses
element and the second child element is a RESOURCE. The J-DIXOs declared in this external DI are not
intended to be processed within the context of the external DI, since they do not contain a DESCRIPTOR
containing a DIP Label element. Instead, they can be referenced from other DIs, as in this fourth example,
and those DIs can contain a DIP Label element to indicate the referenced J-DIXO is intended to be
processed in the context of the referring DI.

EXAMPLE

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 79

…
<Item id="JDIXOs">
 <Component id="jdixo_01">
 <Descriptor>
 <Statement mimeType="text/plain">Description of JDIXO 1</Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIXO:Java</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:JDIXOClasses>
 <dip:Class>com.companyx.demo.AddTrackToPlaylist</dip:Class>
 </dip:JDIXOClasses>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/java-archive" ref="listmanip.jar"/>
 </Component>
 <Component id="jdixo_02">
 <Descriptor>
 <Statement mimeType="text/plain">Description of JDIXO 2</Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIXO:Java</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:JDIXOClasses>
 <dip:Class>com.companyx.demo.RemoveTrackFromPlaylist</dip:Class>
 </dip:JDIXOClasses>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/java" encoding="base64">...</Resource>
 </Component>
 <Component id="jdixo_03">
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIXO:Java</dip:Label>
 </Statement>
 </Descriptor>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:JDIXOClasses>
 <dip:Class>com.companyx.demo.PlayPlaylist</dip:Class>
 </dip:JDIXOClasses>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/java" ref="nfs://demo.companyx.com/classdir"/>
 </Component>
 <Component>
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:Label>urn:mpeg:mpeg21:2005:01-DIP-NS:DIXO:Java</dip:Label>
 </Statement>
 </Descriptor>
 <xi:include href="otherDI.xml" xpointer="element(jdixo_04/1)"/>
 <xi:include href="otherDI.xml" xpointer="element(jdixo_04/2)"/>
 </Component>
</Item>
…

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

80 © ISO/IEC 2006 – All rights reserved

otherDI.xml:

…
<Component id="jdixo_04">
 <Descriptor>
 <Statement mimeType="text/xml">
 <dip:JDIXOClasses>
 <dip:Class>com.companyx.demo. PlayTrack</dip:Class>
 </dip:JDIXOClasses>
 </Statement>
 </Descriptor>
 <Resource mimeType="application/java-archive" ref="listmanip.jar"/>
</Component>
…

C.4 J-DIXO Classes

A J-DIXO class can be realized by implementing the org.iso.mpeg.mpeg21.mpegj.JDIXO interface.

package org.iso.mpeg.mpeg21.mpegj;

import org.iso.mpeg.mpeg21.mpegj.dibo.DIPError;

/**
 * All J-DIXO classes must implement this interface.
 */
public interface JDIXO {

 /**
 * Allows the execution engine to set the global env object. It will be
 * set by the engine soon after the JDIXO class is instantiated.
 * @param env Environment object supplied by the execution engine.
 *
 */
 public void setGlobalEnv(GlobalEnv env);

 /**
 * Starting point for the J-DIXO execution.
 * The execution engine invokes this method to execute the J-DIXO.
 * @param args array of arguments to the JDIXO (types specified by
 * getArgumentTypes())
 * @return object returned by the JDIXO (type specified by
 * getReturnType())
 * @throws DIPError if exception occurs.
 */
 public Object callJDIXO(Object [] args) throws DIPError;

 /**
 * Returns an array of the Class objects denoting the types and sequence
 * of arguments of the callJDIXO method. This method should return null
 * if the argument is void.
 * @return array of Class objects denoting the sequence and types of the
 * arguments to callJDIXO()
 */
 public Class[] getArgumentTypes();

 /**
 * Returns Class (type) of the return value of the callJDIXO method. This method
 * should return null if the return type is void.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 81

 * @return Class object denoting return type for callJDIXO()
 */
 public Class getReturnType();

}

The GlobalEnv object is intended to provide a mechanism for J-DIXOs to receive (DIM) environment
variables from the execution engine.

package org.iso.mpeg.mpeg21.mpegj;

import org.iso.mpeg.mpeg21.mpegj.dibo.*;
import org.w3c.dom.*;

/**
 * This class defines a mechanism for J-DIXOs to query the platform
 * for environment settings.
 */
public interface GlobalEnv {

 /**
 * Returns the instance of the JDIBOFactory which in turn is used to
 * instantiate J-DIBOs. This call must not fail.
 * @return an instance of the JDIBOFactory object.
 */
 public JDIBOFactory getJDIBOFactory();

 /**
 * Returns the instance of the Current DIDL document.
 * @return didDocument.
 */
 public Document getCurrentDIDDocument();

}

The platform implementation for a particular J-DIBO will be obtained from the JDIBOFactory object (see
Clause B.3 for specification of JDIBOFactory interface) which can be queried from the GlobalEnv object.

EXAMPLE

import org.iso.mpeg.mpeg21.mpegj.*;
import org.iso.mpeg.mpeg21.mpegj.dibo.*;
import org.w3c.dom.*;

public class TestJDIXO implements JDIXO {
 GlobalEnv env;

 /**
 * Constructor
 */
 public TestJDIXO() {
 }

 // JDIXO methods
 /**
 * Sets globalenv
 */
 public void setGlobalEnv(GlobalEnv env) {
 this.env = env;
 }

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

82 © ISO/IEC 2006 – All rights reserved

 /**
 * callJDIXO method
 * @param args Object array
 * @return Boolean object
 */
 public Object callJDIXO(Object[] args) throws DIPError {

 Element element = (Element)args[0];
 DID didOps =
 (DID)(env.getJDIBOFactory().getJDIBOObject("DID"));

 boolean satisfied = didOps.areConditionsSatisfied(element);
 .
 .
 .
 return new Boolean(satisfied);
 }

 /**
 * callJDIXO takes one argument - an object of type org.w3c.dom.Element.
 * Therefore, return a Class array with a single element of type
 * org.w3c.dom.Element
 */
 public Class[] getArgumentTypes() {
 Class [] argTypes=null;
 try {
 argTypes = new Class[]{ Class.forName("org.w3c.dom.Element") };
 } catch (Exception e) {
 e.printStackTrace();
 }
 return argTypes;
 }

 /**
 * returns a Class object of type java.lang.Boolean
 */
 public Class getReturnType() {
 Class retType = null;
 try {
 retType = Class.forName("java.lang.Boolean");
 } catch (Exception e) {

 }

 return retType;
 }
}

The callJDIXO method may take arguments of the following types only.

⎯ org.w3c.dom.Document;

⎯ org.w3c.dom.Element;

⎯ org.iso.mpeg.mpeg21.mpegj.dibo.ObjectMap;

⎯ org.iso.mpeg.mpeg21.mpegj.dibo.PlayStatus;

⎯ java.lang.String;

⎯ java.lang.Object;

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 83

⎯ java.lang classes corresponding to the primitive data types. For primitive datatypes byte, int, long,
char, float, double and boolean, the classes java.lang.Byte, java.lang.Integer, java.lang.Long,
java.lang.Character, java.lang.Float, java.lang.Double and java.lang.Boolean shall be used
respectively; and

⎯ array [] instances of any of the data types above.

The callJDIXO method may only throw exceptions of the following type.

⎯ org.iso.mpeg.mpeg21.mpegj.dibo.DIPError

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

84 © ISO/IEC 2006 – All rights reserved

Annex D
(informative)

MPEG-J based model for execution of DIXOs

This annex describes the execution model for MPEG-J based Java bytecode DIXOs with Java as the DIXL.
MPEG-J defines an application engine addressing the security, delivery, life cycle, and name scope aspects.
MPEG-J can be used as a good framework to execute DIXOs sent as part of the Digital Items. Compiled
DIXO code can be safely executed without risk of causing harm to the User or breaking the privacy of users or
other downloaded code that is being run within the virtual machine.

The DIXL for the MPEG-J based model would be Java as mentioned above. Among other features Java
provides platform independence, is object-oriented, has language support to express concurrency and
provides localization and internationalization support.

The MPEG-J based application engine consists of the following.

⎯ Java Virtual Machine;

⎯ Supported platform (java.*) packages: java.io, lang and util;

⎯ Required ISO/IEC JTC 1/SC 29/WG 11 defined (org.iso.mpeg.mpegj.*) APIs;

⎯ Required Java mappings for normative DIBO APIs (org.iso.mpeg.mpeg21.dibo.*).

Invocation of J-DIXO methods has been discussed in Annex C.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 85

Annex E
(informative)

XML Schema Definition for Digital Item Processing Elements

This annex provides the complete XML Schema Definition for Digital Item Processing Elements.

<?xml version="1.0" encoding="UTF-8"?>
<!--

ISO/IEC 21000-10 #
Information technology #
- Multimedia framework (MPEG-21) #
- Part 10: Digital Item Processing #

-->
<schema
 targetNamespace="urn:mpeg:mpeg21:2005:01-DIP-NS"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:dip="urn:mpeg:mpeg21:2005:01-DIP-NS"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <!--

 ##
 # Definition of MethodInfo #
 ##
 -->
 <element name="MethodInfo" type="dip:MethodInfoType"/>
 <complexType name="MethodInfoType">
 <sequence>
 <element name="Argument" type="anyURI" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 <attribute name="autoRun" type="boolean" use="optional"
 default="false"/>
 <attribute name="profileCompliance"
 type="dip:ProfileComplianceType" use="optional"/>
 </complexType>
 <!--

 ##
 # Definition of ProfileComplianceType #
 ##
 -->
 <simpleType name="ProfileComplianceType">
 <list itemType="QName"/>
 </simpleType>
 <!--

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

86 © ISO/IEC 2006 – All rights reserved

 ##
 # Definition of Label #
 ##
 -->
 <element name="Label" type="dip:LabelType"/>
 <complexType name="LabelType">
 <simpleContent>
 <extension base="anyURI"/>
 </simpleContent>
 </complexType>
 <!--

 ##
 # Definition of ObjectType #
 ##
 -->
 <element name="ObjectType" type="dip:ObjectTypeType"/>
 <complexType name="ObjectTypeType">
 <simpleContent>
 <extension base="anyURI"/>
 </simpleContent>
 </complexType>
 <!--

 ##
 # Definition of JDIXOClasses #
 ##
 -->
 <element name="JDIXOClasses" type="dip:JDIXOClassesType"/>
 <complexType name="JDIXOClassesType">
 <sequence>
 <element name="Class" type="string" minOccurs="0"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <!--
 -->
</schema>

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 87

Annex F
(informative)

A media handler implementation of play DIBO

F.1 Introduction

This Annex provides an informative description of an implementation of the play DIBO that utilizes the
concept of a media handler. While the description particularly addresses the play DIBO it is clear the
implementation technique can be applied to the implementation of any DIBO.

F.2 Key concepts

F.2.1 Media handler

A media handler is a module that lies below the level of the DIBO and is called by the DIBO implementation.
Different media handlers can be implemented to handle media with different characteristics, such as media
type.

F.2.2 Switching DIBO

A switching DIBO is a DIBO whose implementation primarily comprises switching between calls to lower level
media handlers.

F.3 Perspectives on DIMs and DIBOs

Some different perspectives from which DIMs and DIBOs can be considered are listed below.

⎯ A User that is an End User of the Digital Item – a User in this role can interact with the Digital Item using a
DIM (i.e., by being a DIM End User);

EXAMPLE 1 To consume the resources contained in the Digital Item.

⎯ A User that is the author of a DIM – a User in this role suggests interactions with the Digital Item by
authoring a DIM. The DIM author has access to the functionality (defined by the normative semantics)
provided by DIBOs via the ECMAScript bindings (determined by the normative syntax). Java bindings are
also defined for authoring DIXOs;

⎯ A User that processes a DIM – a User in this role provides the execution environment for processing a
DIM. Such a User might be a software application running on a device; and

⎯ An implementer of DIBOs used in a DIM – a DIBO implementer can implement the DIBO by any means
provided that it provides the functionality defined by the normative DIBO semantics, and this functionality
is made accessible to the DIM author via the normative DIBO syntax.

EXAMPLE 2 The manufacturer of the device mentioned above.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

88 © ISO/IEC 2006 – All rights reserved

F.4 A Play Track DIM and the play DIBO

The syntax and semantics of the play DIBO is specified in 5.4.2.7.8.

The functionality of the play DIBO is that it provides a transient and directly perceivable representation of a
DID entity (component or descriptor) represented by the element argument to the DIBO.

From the perspective of a DIM End User, the End User is not directly concerned in regards to the call to the
play DIBO. The DIM End User's point of entry for interacting with the DI is selecting a DIM to be executed.

EXAMPLE 1 With a music album DI, the DIM End User might have access to a Play Track DIM. From the DIM End
User perspective, they see only the Play Track DIM (plus any other accessible DIMs) and request the Play Track DIM to
be run. The DIM End User would reasonably expect that when they run the DIM, an audio resource of the track will be
played such that they could directly perceive it. The End User need not be concerned with the fact that the DIM author has
used a call to the play DIBO to provide this functionality.

It is a DIM End User that invokes the DIM. This would be done in a manner determined by the provider of the
environment in which the DI is being consumed.

EXAMPLE 2 In a desktop software application a menu of accessible DIMs could be presented, allowing the End User
to choose a DIM to be run.

For the DIM author, the author might want to first ensure that the DIM End User has configured a certain user
configurable choice, prior to playing the track.

EXAMPLE 3 In the Play Track DIM the DIM author could include a call to the configureChoice DIBO prior to the
call to the play DIBO.

The DIM author could also cause other DID entities to be played if they consider that to be part of 'playing a
track'.

EXAMPLE 4 In addition to the component containing the audio resource, they might play a component containing a
text resource containing the lyrics of the track.

From the DIM End User perspective, all these interactions are part of the Play Track DIM.

It is a DIM author that implements (authors) a DIM, and in so doing includes calls to DIBOs. The DIMs are
declared and defined within DIDs as specified in subclause 5.3. In authoring DIMs, a DIM author uses DIML
(see subclause 5.2), including the DIBOs (see subclause 5.4). In addition the DIM author can invoke a DIXO
(see subclause 5.6) from a DIM.

A DIP engine could be provided, for example, by the manufacturer of the device on which the DI is being
consumed, or the developer of a software application being used to consume the DI on a desktop computer
system. The provider of the DIP engine also provides the execution environment for the DIM, including
handling the invocation and execution of the DIBOs called from the DIM. For the DIBO implementer, they
provide an implementation of the DIBO consistent with the semantics of the DIBO and utilizing the information,
if any, provided as arguments to the DIBO by the DIM author.

It is a DIBO implementer that implements the DIBOs. The DIBOs are invoked by the DIP engine as it
processes a DIM authored by a DIM author and invoked by the DIM End User.

At the level above the DIP engine, an overall DI processor is also required. In many cases, the provider of the
DI processor, DIP engine, and DIBO implementations could be the same entity.

EXAMPLE 5 An MPEG-21 desktop computer application that supports DIP developed and provided entirely by a
single provider.

However, this might not be the case in all circumstances.

EXAMPLE 6 One provider might provide a library of DIBO implementations optimized for a particular mobile platform,
and another provider might use that library in their own implementation of a DI processor for that same platform. In this
case the DIBO implementations provided by the DI processor could be simply wrapper calls to the library of DIBO
implementations provided by the other provider.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 89

F.5 Implementing a DIBO

A key feature of DIBOs in general is that DIBO implementers can choose to provide the functionality specified
by the semantics of the DIBO in a manner of their choosing.

EXAMPLE 1 When implementing the play DIBO, one implementer might choose to present the DIM End User with a
graphical user interface allowing them to choose a third party application with which to render any resources associated
with the DID entity being played. Another implementer might choose to directly render the resources itself if it supports the
media type of the resources, and report an error for those media types for which it does not support.

In the case of the example music album and Play Track DIM discussed above, it would be natural to expect
an audio resource of the track to be rendered as perceivable sound. However, it is also possible that a DIBO
implementer, possibly in conjunction with information provided by the DIM End User (e.g., via user
preferences), might also or alternatively provide some other form of perceptible medium.

EXAMPLE 2 If the DIBO implementation supports accessibility for physically impaired consumers, and it is known that
the DIM End User is hearing impaired, then the DIBO implementer might provide alternative non-aural cues or adapted
audio.

In addition, the DIBO implementer is able to provide a DIBO implementation as they see appropriate.

EXAMPLE 3 The choice of implementation might depend on the execution environment such as a handheld mobile
device versus a desktop computer.

In implementing the DIBOs they have available any appropriate technology for the environment in which the
DIBOs will be invoked.

EXAMPLE 4 A desktop software application developed in Java can develop their DIBO implementations in Java. Or
they could develop their DIBO implementations in C, and access the platform specific compilations of these using the Java
Native Interface (JNI).

EXAMPLE 5 A mobile device application developed for the Symbian OS could also utilize Java, but with Mobile
Information Device Profile (MIDP) restrictions.

EXAMPLE 6 Another DIBO implementer supporting DIP in a desktop software product might implement the DIBOs
using C++.

The choice of technologies to implement a DIBO are as wide as the choice of target platforms and
architectures on which DIBOs will be executed. In some cases a provider of a particular platform might
provide some library with a defined API for access to platform specific features that could be utilized by the
DIBO implementer.

However the functionality defined by the normative semantics of the DIBO is still required to be provided by
the DIBO implementer. In the case of play, the semantics require that a transient and directly perceivable
representation of the DID entity be presented. In addition, this functionality is accessed (from the DIM by the
DIM author) via the normative syntax of the DIBO.

To support DIMs and DIBOs in Digital Items, at least the following are required.

⎯ Parsing of a DID;

⎯ Parsing of DIP information contained in a DID;

⎯ Execution environment for DIML, including

⎯ invocation and execution of available DIMs, and

⎯ implementation of DIBOs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

90 © ISO/IEC 2006 – All rights reserved

F.6 Implementing the play DIBO

F.6.1 Introduction

The semantics of the play DIBO is to provide a transient and directly perceivable representation of a DID
entity. The DID entity passed to the play DIBO might contain resources that could be of any media type. This
requires that the play DIBO is able to determine the media type of the resources, and then determine an
appropriate representation of the resources.

F.6.2 Information available to DIBO implementer

The DIM author provides as a parameter to the play DIBO the component, or descriptor to be played and a
boolean flag indicating whether to play the DID entity synchronously or asynchronously. The DID entity and its
children are actually represented in DIML by DOM Element objects which in turn reflect the corresponding
DIDL elements in the DID.

In addition to the parameters passed to the DIBO by the DIM author, the DIBO implementer has available any
additional information that can be obtained from the DIM execution environment.

EXAMPLE The DIBO implementer might also have access to other elements of the DID by the same means used to
access the DIDL elements in general processing of the DI. This would enable the DIBO implementer to access additional
information in the DID that might be relevant for the DIBO implementation. In the case of the play DIBO, the DIBO
implementer might also be able to access any descriptors associated with the DID entity. These descriptors could provide
information such as licensing information (e.g., as specified in ISO/IEC 21000 part 5) or information enabling adaptation of
the resources contained in the DID entity (e.g., as specified in ISO/IEC 21000 part 7).

F.6.3 Example implementation

The example below lists some high level pseudo-code for one possible implementation of the play DIBO.

EXAMPLE 1 Pseudo-code for one possible implementation of the play DIBO

for each resource contained in the DID entity
do
 mimeType = get value of 'mimeType' attribute of resource
 if mimeType is 'text/plain'
 then
 while license, if any, valid
 do
 display text data in text viewer
 done
 else if mimeType is 'audio/mpeg'
 then
 while license, if any, valid
 do
 if audio controller not displayed
 then
 display audio controller
 endif
 render audio, controlled by audio controller
 done
 else
 display message 'Sorry, unsupported media type'
 endif
endfor

It is important to remember that this is an example of a possible DIBO implementation as implemented by a
DIBO implementer, and not a DIM authored by a DIM author.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 91

The DIBO implementer can access whatever is provided by the DIM processing environment.

EXAMPLE 2 Since license checking is done regardless of how a resource is accessed, the license checks indicated in
the above example could be done by calls to a library of license related functions which are used not only by the DIBO
implementation but by the DI processor in general. This library of license related functions could be provided by the
provider of the DI processor themselves, or it could be provided by a different provider.

Similarly for the actual rendering of a resource, rather than being implemented directly within the DIBO
implementation, this could be done by calls to appropriate media rendering functions.

From the example above, it can be seen that a general feature of the play DIBO implementation is different
handling of a resource based on its media type. This leads naturally to the concept of media handlers which
are called from the DIBO implementation.

F.6.4 Media handlers

A media handler is a function available to the DIBO implementer that can be called from the DIBO
implementation (see Figure F.1 — DIBO implementation using media handlers). A media handler is able to
handle media with known characteristics, such as a particular MIME media type, and implement the DIBO
semantics for that media.

The example DIBO implementation in the previous clause could be simplified by delegating all processing to
media handlers. In this case the DIBO implementation primarily becomes a switch to dispatch the actual
processing (in accordance to the DIBO semantics) to an appropriate media handler. This type of DIBO will be
referred to as a switching DIBO in this Annex.

EXAMPLE 1 Pseudo-code for a possible switching DIBO implementation of the play DIBO

for each resource contained in the DID entity
do
 if MIME top-level media type is 'text'
 then
 call ACME corp. fast play text handler
 else if media type is MPEG-4 AAC
 then
 call Blogg's play AAC handler
 else
 display message 'Sorry, unsupported media type'
 endif
endfor

The media handlers need not be provided by the DIBO implementer. In addition there can be many different
available media handlers.

EXAMPLE 2 One provider might specialize in providing media handlers for a few selected DIBOs for a particular type
of media. Another provider might provide a library of media handlers targeted at a particular platform for the play DIBO
for a number of common media types. Another provider might provide a library of media handlers for their own media type
for all media handling DIBOs. The DIBO implementer would be free to choose among these or other media handlers, as
well as providing their own media handlers, as appropriate for their needs.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

92 © ISO/IEC 2006 – All rights reserved

Figure F.1 — DIBO implementation using media handlers

F.6.5 Enhancements to media handlers

In the previous subclause a switching DIBO implementer is required to know the API to call the appropriate
media handler, which could vary among providers of media handlers. Media handlers could be enhanced and
made more interoperable by defining tools for

⎯ identifying media handlers;

⎯ identifying media handlers, either required or suggested, to consume a resource using a particular DIM;

⎯ identifying media handlers available in a given DIM processing environment, and

⎯ accessing and invoking identified media handlers from a switching DIBO implementation.

These tools could be utilized, for example,

⎯ within a DI by a DI author (e.g., as a descriptor bound to a resource);

⎯ within a description of a DIM processing environment (e.g., a digital item describing the capabilities of an
MPEG-21 enabled mobile device), and

⎯ by a DIBO implementer to determine and invoke an appropriate media handler (e.g., if a media handler
descriptor for the resource to be played is present and the identified media handler is available, invoke
the media handler).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 93

EXAMPLE Pseudo-code for a possible switching DIBO implementation of the play DIBO with extensions

for each resource contained in the DID entity
do
 if media handler descriptor available for resource
 then
 if media handler available
 then
 call media handler
 else
 display message 'sorry, required media handler not available'
 endif
 else
 if MIME top-level media type is 'text'
 then
 call ACME corp. fast play text handler
 else if media type is MPEG-4 AAC
 then
 call Blogg's play AAC handler
 else
 display message 'Sorry, unsupported media type'
 endif
 endif
endfor

These basic enhancements could be extended further

EXAMPLE By including ability for utilizing trusted media handlers.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

94 © ISO/IEC 2006 – All rights reserved

Annex G
(informative)

Tracking DIM execution for consistent rights checks

G.1 Introduction

This Annex gives implementation guidance on how to support DIP while maintaining a level of interaction with
a Digital Item that is consistent with the available rights.

This Annex begins with a brief description of a) how to create a well-behaved implementation without worrying
about supporting DIP and b) how to support DIP without worrying about being well-behaved. It then highlights
the case where DIP is supported consistently with the available rights and outlines an approach to
accomplishing this combined support.

G.2 Creating a well-behaved implementation without worrying about supporting DIP

An implementer who is not supporting DIP understands how their code interacts with Digital Items. Being well-
behaved is simply a matter of finding the appropriate points in their implementation during its interaction with a
Digital Item to check for the rights to do that interaction.

G.3 Supporting DIP without worrying about being well-behaved

An implementer who is not worried about creating a well-behaved application does not need an intimate
understanding of how their implementation is interacting with Digital Items. Supporting DIP is simply a matter
of leaving a certain amount of the decision of how to interact with a Digital Item up to the DIM author.

G.4 Supporting DIP while being well-behaved

An implementer who supports DIP and also desires to be well-behaved needs to address the challenge of
being able to, at the appropriate times, check for the rights to interact with the Digital Item in the way
suggested by the DIM author. Since the DIBOs provide much finer granularity than the base rights in the REL
and RDD and since the implementer does not know ahead of time the sequences of DIBOs that the DIM
author will use, the implementer needs to somehow, while processing the DIM, aggregate the effect of a
sequence of DIBOs to determine the appropriate rights to check.

For example, the DIBO sequence of getFirstChild, getFirstChild, adapt, and play might correspond to a
rights check for the “Play” right. Another DIBO sequence of getFirstChild, getFirstChild, adapt,
replaceChild, and writeToURI might correspond to a rights check for the “Adapt” right. Even though both
DIBO sequences begin with the same first three DIBOs, they result in different rights checks because they
end with different “critical DIBOs” (in this case, play and writeToURI, respectively). A list of known “critical
DIBOs” is given in subclause 5.5.

Another example to consider is the DIBO sequence of getFirstChild, getFirstChild, play. This sequence
ends in the same “critical DIBO” as the first sequence (namely “Play”) and might also result in a rights check
for the “Play” right. However, the context information for this rights check would differ from the context
information for the rights check in the first example. The rights check in this example would have information
indicating that the resource will be played in its original form while the rights check in the first example would
have information indicating that the resource will be played in some adapted form (for instance, at reduced
resolution).

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

© ISO/IEC 2006 – All rights reserved 95

One way to collect the additional context information necessary to perform the appropriate rights check is to
implement some sort of information tracking into the implementation of each of the DIBOs such as
getFirstChild and adapt. The information that needs to be collected includes what the operation operated
on and how the operation affected the things it operated on.

Example 1 shows an example section of DIM code.

EXAMPLE 1 Section of DIM code.

 // Get the item out of the current DIDL Document
 itemA = document.getFirstChild().getFirstChild();
 // Load up another DIDL Document and get the item out of it
 document2 = lsParser.parseURI("did2.xml");
 itemB = document2.getFirstChild().getFirstChild();
 // Import the second item into the current DIDL Document
 itemB = document.importNode(itemB, true);
 // Get the metadata and resource from the second item
 component = itemB.getFirstChild();
 // Adapt the component according to the metadata in its descriptors
 adaptedComponent = DIP.Adapt(component, null);
 // Replace original component with adapted component
 itemB.replaceChild(adaptedComponent, component);
 // Create a new descriptor with a statement with the text "cool"
 statement = document.createElement("Statement");
 cool = document.createTextNode("cool");
 statement.appendChild(cool);
 descriptor = document.createElement("Descriptor");
 descriptor.appendChild(statement);
 // Add the descriptor
 component.appendChild(descriptor);
 // Add the second item as a child of the first item
 itemA.appendChild(itemB);
 // Write out the new first item
 lsSerializer.writeToURI(document, "cool.xml");

The above section of DIM code gets a first item from the current DIDL document. It then loads up a second
item, changes it a bit, and then adds it to the first item. In the end, when the updated first item is written out,
the first item was “enhanced” and the second item was “adapted”. So before writing out the updates a well-
behaved implementation should check for “Enhance” rights to the first item and “Adapt” rights to the second
item. Example 2 shows an example of the tracking information that can be stored during the execution of the
above section of DIM code to make it possible to figure out the correct rights to check.

EXAMPLE 2 Example tracking information stored during execution of DIM code.

#document_9.getFirstChild() xxxxxxxxxx ---> DIDL_10
DIDL_10.getFirstChild() xxxxxxxxxx ---> Item_11
TrackedDocument() xxxxxxxxxx ---> #document_12
#document_12.getFirstChild() xxxxxxxxxx ---> DIDL_13
DIDL_13.getFirstChild() xxxxxxxxxx ---> Item_14
#document_9.importNode() Item_14 ---> Item_16
Item_16.getFirstChild() xxxxxxxxxx ---> Component_17
Component_17.getFirstChild() xxxxxxxxxx ---> Descriptor_18
Component_17.getLastChild() xxxxxxxxxx ---> Resource_19
adaptResource(Resource_19, Descriptor_18) Resource_19 ---> Resource_20
Component_17.replaceChild(Resource_20, Resource_19) Component_17 ---> Component_21
#document_9.createElement() xxxxxxxxxx ---> Statement_22
#document_9.createTextNode() xxxxxxxxxx ---> #text_23
Statement_22.appendChild(#text_23) Statement_22 ---> Statement_24
#document_9.createElement() xxxxxxxxxx ---> Descriptor_25
Descriptor_25.appendChild(Statement_24) Descriptor_25 ---> Descriptor_26
Component_21.appendChild(Descriptor_26) Component_21 ---> Component_27

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

ISO/IEC 21000-10:2006(E)

96 © ISO/IEC 2006 – All rights reserved

Item_11.appendChild(Item_16) Item_11 ---> Item_28

“#document_9” represents the global document object. “Item_28” is the item that is stored out. Looking at the
last line of the tracking information, we can see that “Item_28” came by adding “Item_16” into “Item_11”. So
“Item_11” (ItemA) was enhanced. We can also see that parts of “Item_16” were heavily changed and that
“Item_16” originally came from “Item_14”. So “Item_14” (ItemB) was adapted. These two rights (enhancing of
ItemA and adaptation of ItemB) would be checked for.

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 21
00

0-1
0:2

00
6

https://iecnorm.com/api/?name=2545c34d79c931f9f240b5465e5c9999

