INTERNATIONAL ISO/IEC
STANDARD 14496-19

First edition
2004-07-01

Information technology —<=Coding pof
audio-visual objects —

Part 19:
Synthesized texture stream

Technologies de l'information — Codage des objets audiovisuels —

Partie 19: Flux de téexture synthétisé

Reference number

ISO/IEC 14496-19:2004(E)
= a © ISO/IEC 2004

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

PDF disclaimer

This PDF file may contain embedded typefaces. In accordance with Adobe's licensing policy, this file may be printed or viewed but
shall not be edited unless the typefaces which are embedded are licensed to and installed on the computer performing the editing. In
downloading this file, parties accept therein the responsibility of not infringing Adobe's licensing policy. The ISO Central Secretariat
accepts no liability in this area.

Adobe is a trademark of Adobe Systems Incorporated.

Details of the software products used to create this PDF file can be found in the General Info relative to the file; the PDF-creation
parameters were optimized for printing. Every care has been taken to ensure that the file is suitable for use by ISO member bodies. In
the unlikely event that a problem relating to it is found, please inform the Central Secretariat at the address given below.

© ISO/IEC 2004

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or
ISO's member body in the country of the requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20

Tel. +412274901 11

Fax +41 22749 09 47

E-mail copyright@iso.org

Web www.iso.org
Published in Switzerland

ii © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

Contents

0T =NV o o R
L e Yo 1H T o2 oY o
1 £ o o - SRS SRRRP
2 Normative RefErencCesooo e e e e e e me e e g o
3 Synthesized Texture Compression Technology........cccccccceimriiiccccsecrrenre s b
31 Functionality and Semanticsccccciririiiccciciiii el Bt e e
4 Coding and Bitstream..........ccccerviccccccceiiries s nen e s (s
4.1 L0 Y= YT S0 s
42 Global Input Bitstream and Decoding Contextccccecmiiniicnnnnee Bl
4.3 Header Block ("H') DECOAINGccciiriiurrriniimrriiimrs s sssams s s s be s ssms s s smn e s snnn s
4.4 Scene Block ('S’) Decoding........cccceiiirimiriiniinninrns s sesbaade e
4.5 (01 JT=To2 i =] LoTed [q (02 T 0 T-T cTo T 11 4T I
4.6 Texture Block ('A’) Decodingcccccvnrierrinnnnrnninnsensnnssess et
4.7 57 11 11 o7 T8 B T=Y oo Yo Ty T R S
4.8 WX 1100 F= L 0T T =T o'oY 11 3V
49 (02 11 g T=T = T D L= o o Yo [1 4V T eSS
N 0 B @ T =T - 14 o o T S SR
B T = T 0] ¢ TS 1 == T =
5 SynthesizedTexture Data Stream 00 i
5.1 Structure of the SynthesizedTexture Data Stream...........cccooccecerircceirnrccccee e
5.2 Access Unit Definition ... e

ISO/IEC 14496-

© ISO/IEC 2004 — Al rights reserved

19:2004(E)

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees
established by the respective organization to deal with particular fields of technical activity. ISO and IEC

technical co

mmittees collabharate in fields of mutual interest Other international oraanizations —aovern
))

ental

and non-go
technology,

International
The main t4
Standards a

an Internatio

ISO/IEC 14

ernmental, in liaison with ISO and IEC, also take part in the work. In the field of inform
SO and IEC have established a joint technical committee, ISO/IEC JTC 1.

Standards are drafted in accordance with the rules given in the ISO/IEC Directives;Part 2.
sk of the joint technical committee is to prepare International Standards.\Draft Interna

Hopted by the joint technical committee are circulated to national bodies far voting. Publicatig
nal Standard requires approval by at least 75 % of the national bodies casting a vote.

96-19 was prepared by Joint Technical Committee ISO/IEC JTC/1, Information technd

Subcommitt¢e SC 29, Coding of audio, picture, multimedia and hypermedia information.

ISO/IEC 144
audio-visual

— Paf't1.'\

— Part 2:

— Part 3: 4

— Part4:

— Part 5: §

— Part6: |

— Part7:

— Part 8:

— Part9: §

— Part 10:

— Part11:

— Part12:

— Part13:

— Part 14:

— Part 15:

— Part 16:

96 consists of the following parts, under the general title\nformation technology — Codi
objects:

bystems

isual

\udio

Conformance testing

Reference software

Delivery Multimedia Integration Framework (DMIF)

Dptimized referenge software for coding of audio-visual objects
Carriage of ISOAEC 14496 contents over IP networks
Reference_hardware description

Advanced Video Coding

ation

ional
bn as

logy,

hg of

Scene description and application engine

ISO base media file format

Intellectual Property Management and Protection (IPMP) extensions
MP4 file format

Advanced Video Coding (AVC) file format

Animation Framework eXtension (AFX)

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

— Part 17: Streaming text format
— Part 18: Font compression and streaming

— Part 19: Synthesized texture stream

© ISO/IEC 2004 — Al rights reserved \

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Introduction

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. The specific
includes the following elements:

ation

1. the coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D) objects

that can—be—manifested—audibh—andio SUa audio-visua
ISO/IEC|14496);

2. the codgd representation of the spatio-temporal positioning of audio-visual objects as_well as
behaviol in response to interaction (scene description, specified in part 11 of ISO/IEC 14496);

3 of

their

3. the codgd representation of information related to the management of data streams (synchronization,

identificgtion, description and association of stream content, specified in part 11 of ISO/IEC 14496);
4. a generig interface to the data stream delivery layer functionality (specified in part 6 of ISO/IEC 14496

5. an appligation engine for programmatic control of the player: format, délivery of downloadable Java
code as|well as its execution lifecycle and behavior through APIs (specified in part 11 of ISO/IEC 14
and

6. a file foqmat to contain the media information of an ISO/IEC.14496 presentation in a flexible, exter
format tq facilitate interchange, management, editing, and.présentation of the media.

The information representation, specified in ISO/IEC 14496-1 and in ISO/IEC 14496-11, describes the m
to create an|interactive audio-visual scene in terms ofcoded audio-visual information and associated s
description iInformation. The encoded content is presented to a terminal as the collection of eleme|
streams. Elgmentary streams contain the coded’;representation of either audio or visual data or §
description |nformation or user interaction data. Elementary streams may as well themselves cd
information fo identify streams, to describe legical dependencies between streams, or to describe inform
related to thg content of the streams. Each.elementary stream contains only one type of data.

Elementary gtreams are decoded using their respective stream-specific decoders. The audio-visual ol
are composgd according to the_seene description information and presented by the terminal’s present
device(s). All these processes are synchronized according to the systems decoder model (SDM) usin
synchronizafion information pravided at the synchronization layer.

The scene description Stream identifies different types of objects, such as audio, visual, 2D and 3D grap

).

byte
496);

sible

eans
cene
ntary
cene
nvey
ation

jects
ation
j the

hics,

etc. that define a scene composition of the content. Synthesized Textures streams provide for photo-realistic

animations that can be transmitted using very low bitrates. These type of aniumamtions can be us
combination|with ether streams to enhance any scene.

ed in

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC)
draw attention to the fact that it is claimed that compliance with this document may involve the use of patents.

The ISO and IEC take no position concerning the evidence, validity and scope of this patent right.

vi © ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect,
the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained
from:

Vimatix Inc.

5 Oppenheimer St.
Rehovot 76701
Israel

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent

rightgothrer-thanthose-identifred—above 1SG—and—EC—shatrmotbetetdresponsibte—for-identifying any or all

such|patent rights.

© ISO/IEC 2004 — Al rights reserved vii

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

INTERNATIONAL STANDARD

ISO/IEC 14496-

19:2004(E)

Information technology — Coding of audio-visual objects —

Part 19:
Synthesized texture stream

This
the N

2
The

refer
docu

ISO/

ISO/
and

3

3.1

3.1.1

Synt
Synt
Text

Scope

IPEG-4 encoded audio-visual presentation. More specifically, it defines:
ne synthesized texture format representation that is utilized for Synthesized Texture data enc

ne coded representation of Synthesized Texture data streams.

Normative References
following referenced documents are indispensahble “for the application of this documen

ment (including any amendments) applies.

EC 14496-1, Information technology — Ceding of audio-visual objects — Part 1: Systems
EC 14496-11, Information technology~*— Coding of audio-visual objects — Part 11: Scen

bpplication engine

Synthesized Texture Compression Technology
Functionality and Semantics

Overview

nesized\ Fextures represent photo-realistic textures by describing color information
nesized* Texture streams are used for creation of very low bit rate synthetic video clips.
ireClips are built using key frame based animations of skeletons that affect photorealistic te

part of ISO/IEC 14496 specifies functionalities for the transmission of Synthesized Texture data as part of

pding

. For dated

bnces, only the edition cited applies. For undated references, the latest edition of the referenced

b description

of vectors.
Synthesized
tures whose

color

H 2 FH + aalad o '
o TatuiT o TTToUuUTICTU Uy ©TUYUAtiUTTS .

A texture top-level Synthesized Texture Node (STNode) can be defined for playing SynthesizedTextures,
see ISO/IEC 14496-11 for additional details . The STNode itself is similar to the MovieTexture, and uses url
field to reference an Object Descriptor describing the associated stream(s). The stream contains both the
object textures and their animation descriptions . The STNode also exposes control points that can be used to
manipulate via affine transforms the objects carried in its associated stream. By this way STNode can
implement synthesized interactive SynthesizedTextures. As any texture, the resulting texture can be mapped

onto

any 2D or 3D surface.

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.141

SynthesizedTexture Elements

The SynthesizedTexture is a collection of animated Objects (also called Actors) sharing a common Stage,
Camera and Timeline.

The Object

SynthesizedTexture

Object —

Texture Skeleton

The objd

The textd
such as L

The pixel

The textu

The Ske
and app

The skel
object's 3

Animation

Figure 1 — Synthesized Texture structure

s comprised of a Texture, A Skeleton and an Animation.

ct's Texture represents the objects skin.

re is comprised of primitive vector-style entities,~belonging to a small number of primitive
ines and Area Color Points.

representation of the texture is reconstructed through the process of Texture Rendering.

re is divided into mutually exclusive sub-textures called Layers.

leton represents the kinematic capabilities of the object relative to itself and controls the s
parance of the skin.

pton is comprised of a topology of Bones whose geometric configuration is controlled b
nimationy

The skel

¢ton is attached to the texture's layers, and controls their position and shape within the ob

ypes

hape

y the

ect's

pIane. This ulumately aftects the layout of the texture primitives on the plain, as the skeleton geor

changes.

netry

Re-rendering the texture based on a new layout of the texture primitives eventually results in a realistic
warping effect called Texture Warping.

The Animation represents the spatial behavior of a single object along time.

The animation of Objects is formed by an extrinsic motion of the entire object relative to the world, and an
intrinsic motion of Layers relative to the object they are part of.

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-

19:2004(E)

The intrinsic motion is controlled by the Skeleton geometry, as described above. Extrinsic motion of each
object is controlled by its 3D displacement and rotation within the SynthesizedTexture's world.

The Animation is a sequence of KeyFrames describing the state of the object in both intrinsic and extrinsic
aspects, at specific frames on a timeline. Frames that are not explicitly described by a key-frame are
derived by interpolation between neighboring key-frames, in a process called "tweening".

3.141

.2 SynthesizedTexture Playback

SynthesizedTexture playback is based on animating all the objects in the SynthesizedTexture as described

aboVi
All o

V

P

[«

o d

The
holds

3.1.1
The

ST
resul

a)

b)

c)

e.

bjects are animated:

vithin the SynthesizedTexture's shared 3D world ("Stage"),
cross the SynthesizedTexture's shared Timeline,

nd optionally also relative to a camera.

resulting bitmaps rendered from the objects' Textures are projectéd onto a shared 2D frame
the current raster frame that is ready for display.

.3 SynthesizedTexture Coding

Synthesized Texture Bitstream contains the SynthesizedTexture data in a coded form called

Coding encodes the SynthesizedTexture's jprimitive entities in a hierarchical compact
ting in very high compression rates. This isddonhe by employing several techniques:

Aggregation — this technique groupsZand orders specific attributes of primitives into sub-g
manner that is 'friendly' for quantization and packing techniques. For example, location data
ferminal Points (TPs) and Patches (PAs), are aggregated, ordered according to their
ocation, quantized and packed-- together. During decoding, sub-stream data are de-multipl

Quantization — the Ynumeric values in a sub-stream are rounded, factored, offset
ransformed, focused on reducing stream size, and generating data that is 'friendly’' to additi
echniques. Quantization parameters are typically stored in standard hard-coded quantizati
hat they do.not:-need to be carried in the bitstream. During decoding, quantized sub-stre
juantized dsing the proper quantization tables, through dequant() methods.

Packing — various loss-less compression!) techniques are applied to further reduce data
echniques include variants of Huffman, Run-Length, and other encoding methods. During de

buffer, which

ST Coding.

arrangement

treams, in a
bf all Texture
'geographic”
exed to their

espective primitive types, and-properties, according to hard-coded rules and soft-coded indicators.

br otherwise
pnal packing
bn tables, so
ams are de-

size. These
coding, sub-

Etreams that were pnr‘kpd are lm_pnr‘kpd and dnr‘nmprneend, ||Qing the qpprnpriafp method

The ST Bitstream includes four types of top-level blocks: Header, Scene, Objects and Textures. The Object
block also contains the Skeleton and/or Animation of the Texture.

ST Coding, including its division to sub-streams, their order, and the manner in which they are encoded, may
come in one of several coding syntaxes. This specification describes the current default syntax called
coding syntax 0.

1)

techn

© IS0

iques, such as Huffman and Run-Length encoding, used as part of the Synthesized Texture encoding.

/IEC 2004 — All rights reserved

The terms compression and decompression in this document refer to the lossless statistical compression

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Chapter 4 specifies the structure of the ST Bitstream and describes how it is decoded to SynthesizedTexture
primitives.

3.1.2 The Texture

3.1.21 General

The Texture is used to represent the skin of an object.

The texture s comprised of small set of primitive vector-style entities.

{Opses_ _[“tine (LN), bounded by 2 Terminal Points (TP)

iy | Line Segment (LS), bounded by 2 Line Points (LP)

AN Line Color Profile (LC)

. Area-ColorPoint(AC)

— Patch (PA)

................... bounding rectangle

Figure 2 — Synthesized Texture Primitives

4 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

3.1.2

.2

Primitives and Properties

A Texture is comprised of the following primitive types:

Texture

ISO/IEC 14496-19:2004(E)

TP 2 1 LN AC PA
Terminal Line Area Patch
Point Color
1 N Point
1 1 1
N N 2
BR LS 1 LC P
Branch Line Line ! Fing
Segment) Color Paint
4 Profile
Figure 3 — Synthesized Texture hierarchy of primitives
3.1.23 Texture
3.1.2.31 Syntax
clalss Texture
{
int width, height;
/|/ decoded texture\primitives:
IN aLN[]; // Lines
TP aTP([]; // Terminal Points
AC aAC[];: // Area Color Points
PA aPA[J- // Patches
ilnt pEN.= 0; // Number of LNs
in neP = 0; // Number of TPs
intBMAC = 0; // Number of ACs
int nPA = 0; // Number of PAs
int worldUnit 512;

L

Y

aLY[];

float LosOffsetX =
float LosOffsetY

// auxiliary

int nLY = 0;
int nSL =

0;

// Layers
// Number of LYs

// total number of sub-layers in texture

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.2.3.2 Semantics

Properties:

Name Description

width, height | The width and height of the texture's bounding rectangle, in pixels. All coordinates of the texture's
elements are given relative to the top-left corner of this rectangle.

Ordered arrays of decoded texture primitives:

aLN The Lines in the Texture

aTP The Terminal Points in the Texture

aAC The Area Color Paints in the Texture

aPA The Patches in the Texture

nLN The number of elements in aLN

nTP The number of elements in aTP

nAC The number of elements in aAC

nPA The number of elements in aPA

worldUnit The number of pixels corresponding to 1 "world-unit" in this texture. World unjts'\afe used to describg

distances in the SynthesizedTexture's 3D world. Default: worldUnit = 512 pixels.
LosOffsetX, The x,y components of the texture's LOS (Line of Sight) Offset, in pixels’
LosOffsetY A texture's LOS Offset is the offset of the texture's center from the center’of the visual plane of a camera
that could have captured the texture.
This information allows adapting the appearance of a texture whieh’was photographed from a certain
angle (relative to the camera's LOS), to the changing angle inwhich it is viewed in an animated
SynthesizedTexture.

For a texture that was photographed from a "straight ahead" angle, the LOS Offset is (0, 0).

Auxiliary:

aLY The Layers in the Texture
Note layers are an auxiliary structure not used-in Texture Rendering; they serve Texture Decoding] only
for associating Texture primitives to bones ifr the skeleton.

nLY The number of elements aLY

nSL The total number of sub-layers in the Layers in the texture

3.1.24 Line (LN)

3.1.2.41 Syntax

class LN // Line

int iLnfype;
int iCoptourT¥pe = 0;
int iS1Lft, 1S1Rgt;

int iTpBey; iTpEnd;

LS aLS[];
int nLS;

LC aLC[];
int nLC;

3.1.24.2 Semantics

Lines implement the characteristic lines of a Texture. A Line has a geometry described by Line Segments
(LSs) and a coloring described by Line Color Profiles (LCs) placed along its course.

6 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

A Line primitive is built of a chain of Line Segment (LSs), and its 2D geometry is determined by these
segments. Every Line Segment is part of exactly one single Line, and is terminated by exactly 2 Line Points
(LPs) — one at each end. In addition to the LPs at the 2 ends of each line, a Line is always terminated by
exactly 2 Terminal Points (TP) — one at each end.

Every Line Point hosts exactly 1 Line Color Profile (LC), and every LC is currently hosted by exactly 1 LP. For
a closed Line, the number of LSs equals the number of LPs & LCs; For a non-closed Line LSs are 1 less than

LPs & LCs.

LCq
n,

The [collection of LCs along a Line determines the coloring Biehavior of the line, together wi

iLnType.

The lexternal contour of a Texture, and borders betwéen Layers and Sub-Layers are built of
parti¢ipating in a contour are marked by using the Line's iContourType.

Properties:

T
LC3 LP4

¥
a b
;3 X
&

AN LC4 LC, -
i LFs

Y
oy ,'\‘

1 Iy Iy
oy

1
LPo ? s
Lp, bl

Figure 4 — Synthesized TextureLine (LN)

h the Line's

Lines. Lines

Name

Description

iLnType

The type of coloring behavior across the "width" dimension of this Line. This indicate
Line Color Profiles((LCs, §3.1.2.8) used along the Line.

00-RIDGE.

01-STRIPE

02-EDGE:

03-ABSENT (Absent out-branch in Splitting).

04-BARALLEL (Parallel Ridge linked to out-branch in Splitting).

A/distinction is made between separating and non-separating line types. Separating
the "diffusion” of color originating at Area Color Points (ACs) near the Line from one

Line to the other. RIDGE and EDGE lines are separating, while STRIPE lines are non-separating.

5 the type of

ines block
side of the

iConfourTypé

Marks whether this Line is part of the contour (i.e. outer border) of the Texture or one
00-This LIne is not a contour line.

of its layers.

iSILfE, iSIRgt

When this Line separates Sub-layers — the indexes of the sub-layers to the left and t¢ the right of

the Line.

iTpBeg, iTpEnd

The indexes of the TPs in which this Line begins and ends.

aLS

The array of Line Segments comprising the geometry of this Line.

nLS The number of elements in aLS. includes last LS ?
aLC The array of Line Color Profiles describing the coloring of this Line.
nLC The number of elements in aLC. nLC = nLS+1.

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.2.5 Line Segment (LS)

3.1.2.51

Syntax

class LS
{

}

// Line Segment Geometry

float vX, vY;
float hgt;

3.1.2.5.2

- &

Line Segments are the building blocks of Lines (LNs).

Every Line S

end.

A Line Segment is an arc which follows a globally fixed mathematical model. In the current implementati

the Texture,

is encoded (sing its vX, vY and hgt.

The base of the LS arciis described by a vector, given by the LS's starting point LP0O and the (x,y) components of the

L2

LPD = {qu Yr_\}
ST] vX

Figure 5 — Synthesized Texture Line Segment (LS)

vector — vX and vY,
The signed hgight,ofthe LS arc above or below its base is given by LS.hgt.

The LS parab

planis defined only between the LS's starting point LP0O and its end point | P1

egment is part of exactly one Line, and is terminated by exactly 2 Line Points (LPs)™~ one at

each

bon of

a Line Segment is unambiguously represented as a parabolic curve, - The LS parabola geomnetry

Properties:

Name Description

vX, vY The x,y components of the vector connecting this Line Segment's starting and ending points, in
pixel units. The LS curve is defined only between the LS's starting and ending points (LPO and
LP1).

hgt The signed height of the parabola of this LS above or below the LS's vector.

8 © ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

3.1.2

3.1.2

ISO/IEC 14496-19:2004(E)

.6 Line Points (LP)

.6.1 Syntax

cla
{
}

ss LP // Line Point

3.1.2

.6.2 Semantics

A Line Point indicates the location of the Line Segments (LSs), and Line Color Profiles (LCs) in the texture.

A Lirn
Ever

In pr

menfioned in the primitive model for completeness. The LP location information can"be derived f

e Point is the meeting point between 2 adjacent Line Segments, i.e. every LS connects,e
y LC in the texture resides on a single corresponding LP.

actice, the LP entity is not represented explicitly in the Texture data structures”and bitstrg

actly 2 LPs.

am, but it is
rom the LN's

starting and ending Terminal Points and its Line Segments.
3.1.2.7 Terminal Point (TP)
3.1.2.71 Syntax
clalss TP // Terminal Point
{
flloat x, vy’
BR aBR[]; // branches from tis TP
ilnt nBR; // number of bra@ches from this TP

Int JjunctionType;

dlass BR

{
int iLN; // indexX\“of LN that branches from this BR
bool bOut; // 1scthis branch an "out-branch"?
int iLnType; //._ Line Type of the branching LN.

}

}
3.1.27.2 Semantics

Terminal Points are-a higher level structure, providing additional information regarding the colo

at cr

pssings, splittings and end points of lines. Every "Line" is terminated by exactly 2 TPs — one 4

The Same

ing behavior
t each end.

Brightness.

Figure 6 — Synthesized Texture Terminal Points (TP)

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Terminal Points occur in the following circumstances:
At any intersection in which 3 or more Lines are branching out — a TP is mandatory.
At the end of a Line, where the Line does not connect to any other Line — a TP is mandatory.

On a closed Line, (i.e. where the Line has no obvious end point), at least one TP must exist at an arbitrary
point on the Line.

At any point on a line, thus splitting that line into 2 "Lines".

Properties:
Name Description
X,y The coordinates of this TP in the Texture.
ABR The array of branches from this TP.
NBR The number of branches in aBR.
junctionType The junction type of this TP:
0 - ALLRIDGE junction (separating).
1 - ALLSTRIPE junction (STRIPE = non-separating ridge).
2 - ALLEDGE junction (separating)
3 - SPLITTING junction (1 RIDGE in and 0 or 1 EDGEs out)
class BR: a branch in which LNs go "in" or "out" of a TP.
iLN The index of the Line that branches from this BR.
bOut Is this branch an "out-branch"?
"out -branches" and "in -branches" are branches in‘which a Line "starts" and "ends" respectively.
"in" and "out" is an arbitrary encoding decision, but'every Line starts in an out-branch and ends in fan
in-branch.
iLnType The line type of the branching Line. See LN:iEnType.
3.1.2.8 Line Color Profile (LC)
3.1.2.81 Byntax
class LC 7/ Line Color Profiles
{
float dgpth = 0;
}
class LCsgparating // Separating (EDGE or RIDGE) Line Color Profile
{
color cplorFarLfkt, colorFarRgt;
color cplorMidhft, colorMidRgt;
}

class LCedge // EDGE Line Color Profile
extends LCseparating
{

float width;

}

class LCridge // RIDGE Line Color Profile
extends LCseparating
{
color
float

float

colorCenter;
widthLft;
widthRgt;

10 © ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

class LCstripe // STRIPE Line Color Profile
extends LC
{

color colorCenter;
color colorCurvature;

}

3.1.2.8.2 Semantics

Line Color Profiles (LCs) describe the coloring behavior along Lines.

Each colorXxx parameter describes the brightness of each of the 3 color components (Y, Cr, Gb) at a certain
distapce (center, middle, or far), and side (left or right) relative to the profile's geometrical center.
Line [Color Profiles have 3 morphologies, corresponding to the 3 possible Line typesiyEDGE,|RIDGE and
STR|PE. All LCs on a Line are of the same type, given in the Line's iLnType.
Brightness Brightpéss
coforCenter RlDGE colorfidRgt
EDGE
colorfarRgt
colorFarRgt
colorMidRge
coforFarLft colorFarLft
coflorMidLft ' DiS[ﬂHC? calorMidLft Didtance
widthLft widthRgt .
width
Brightness STRIPE
colorCenter
o« IS
] |
_: " Distance
’]
Figure 7 — Synthesized Texture Color Profiles (CP)
1

© ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

In the current implementation of SynthesizedTexture, an LC is provided for every location of a Line Point (LP)
in the Texture, so its location is given by the corresponding LP's location?).

A LN includes an array of LCs (aLC[nLC]) describing its coloring behavior, where nLC = nLS + 1. Thus for a
Line with nLS segments, the location of LC; for i=0..nLS-2 is the location (LS;.x, LS;.y), and the location of the
last LC on the Line (I = nLS-1) is (TPLSi.iTpEnd.Xa TPLSi.iTpEnd.y)-

For convenience, the LC is also used to store the "depth" value for its respective Line Point.

Properties:

Name

colorFarLft, colorFarRgt

The far-left and far-right colors of this LC.

colorMidLft, dqolorMidRgt

ColorCenter

The mid-left and mid-right colors of this LC.

The central color of this LC.

widthLft, widthRgt

ColorCenter

The left and right widths of this LC's Line at the location of this

The central color of this LC.

&

ColorCurvature

The "color-curvature" of this stripe. If this swdescribed by a parabola y=4x’+B, then the

color-curvature is the coefficient 4.

N
3.1.29 Patch (PA) @s\\\’
&
3.1.29.1 Pyntax D
®
o
class PA \,V
(,\\(\}*
float x} vy;
float rfL, r2; .<:)
float aphg; .

int iSL}

float depth = @

color cplorCenter;

Q
W

// central color

// depth of this PA; may be absent.

f\')
N2

2) This arrangement is economical as it saves the space needed to store LC location information, and does not come
from deeper imaging grounds; note that LCs could theoretically be located on LNs according to an alternative scheme.

12

© ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.2.9.2 Semantics

A Patch is a small ellipse, typically a few pixels long, whose color is significantly different from its surrounding
"area color".

The geometry of a Patch is described by the ellipse's center point, primary and secondary radius, and the
angle of its primary radius relative to the texture's coordinate system.

colorCenter

Figure 8 — Synthesized Texture Patch (PA)

The ¢oloring of the Patch is described by the color at its geometric cénter, which can then be blended with the
arealcolor at its perimeter.

Properties:

Name Description

X,y The x and y coordinates of the geometrical center of the ellipse which represents this|Patch.
R1, |r2 The length of the primary and secondary radius respectively of the ellipse which reprgsents this

Patch, in pixels.

Ang The angle of r1 relative to the Texture's X axis, in whole degrees, 0°..359°.

colofCenter The central color of this PA.

ISL The index of the sub-layer this PA is on.

Depth The depth of this PA. Default=0.0.

3.1.2.10 Area Color Point (AC)

3.1.2.10.1 Syntax

clalss AC // Area Color Points

flloatix, vy’

color colorCenter; central color
float depth = 0;

int iSL
}

3.1.2.10.2 Semantics

Area Color Points (ACs) describe the low-scale color changes in the areas between Lines, and more
specifically between "separating"” Lines, i.e. LNs of LineType EDGE and RIDGE.

Properties:

© ISO/IEC 2004 — All rights reserved 13

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Name Description

X,y The coordinates of this AC in the Texture.
colorCenter The color at the center of the AC.

depth The depth of this AC. Default=0.0.

iSL The index of the sub-layer this AC is on.
3.1.2.11 Layer (LY)

3.1.2.11.1 Syntax

class LY
{

char n

int X
bool b

SL a
int n

class S

point
float
bool
int
int

hme [64] ;

D, X1, YO, Y1;
HasDepthDeltas;

L[];
L =0;

jopamep)

L

BD orient;
dist;
bOrthogonal;
surfaceType;
iLY;

// coords of LY's bounding rect

3.1.2.11.2

Layers and

Semantics

SBub-Layers are auxiliary structures used in SynthesizedTexture authoring and encoding to group
Texture primitives. Properties such as Depth and "controlling-polybone" are then attributed in bulk

o all

primitives in the Layer or Sub-Layer.

Properties:

Name Description

name The name ©Gfthe layer, given by the author, used as reference in composition applications.

X0, X1, YO, 1 The coordihates of the layer's bounding rectangle.

bHasDepthDgltas Do texture primitives in this layer have depth deltas (otherwise they inherit their depth from their
pasition on the layer plane). Relevant only if decHeader.bHasDepthDeltas is true;

aSL][] An array of sub-layers that are part of this LY.

nSL Number of sub-layers in this LY.

class SL - syblayer:

orient The normalized (x,y,z) representation of this sub-layer's orientation.

dist The distance of this sub-layer in worldUnits. Typical 1..1000.

bOrthogonal Is this sub-layer orthogonal to the line of sight? If true then orient is (0, 0, 1.0).

surfaceType The type of geometry of this sub-layer. default: 0=PLANE.

iLY Cross reference to the the index of the LY that this sub-layer is in.

14 © ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

3.1.2

3.1.2

ISO/IEC 14496-19:2004(E)

.12 Color

12,1 Syntax

cla
{
i
i

}

ss color

nt y, cr, cb;
nt R, G, B;

co lprrr—teoReB
{
R =y + 1.40200*cr
d =y - 0.34414*cb - 0.71414*cr
B =y + 1.77200*cb
}
3.1.2.12.2 Semantics

A cojor object can describe color in two methods: YCrCb and RGB.

YCr(
aggr

In th
rend

3.1.3

3.1.3

The
prim

The
synth

Com
Com

Com
BB b

Blen

b color values are used for encoding colors in the SynthesizedTexture bitstream, as they ¢
bgation and compression behavior.

e decoding process, YCrCb color values are converted t6/RGB colors, which are then usg
Pring.

Texture Rendering

1 General

process of Texture Rendering recénstructs a displayable bitmap image from Synthe
tives.

econstruction algorithm starts'with the input parameters and computes the brightness (color
esized image at each of jts'pixels. It consists of the following principal parts:

puting brightness of Lines (Procedure BL below).
puting brightness_of Patches (Procedure BP below).

puting Area’coloring, i.e. brightness of the "Background”, area between Lines and Patchej
elow).

Hing the computed brightness values into the final image (The MAIN Procedure below)

isplay better

d in Texture

sizedTexture

value of the

5 (Procedure

In the case of a color image these computations are performed independently for each color component.

© ISO/IEC 2004 — Al rights reserved

15

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.3.2

Procedure MAIN: Computing Final Brightness Values

TR t
=

—— .

. - X &
| B H WL t | Bp t WP l | BE t
e a7
- P
AT /,/ s \“‘m
5 s I a i
|/ — A B I LE E 5E WE
A= MRP 3

oL —

For any poi
computed ag

Here BB(z),
computed in

The weight f

WB(z)

oo

Figure 9 — Synthesized Texture Rendering Flow

Nt z in the image plane the final brightness B(z) of the Synthesized image at the point
cording to the following formula:

WL(z)- BL(z) + WB(z)- BB(z) + Y WP.(£Y- BP,(z)

(1) B(z) =

WL(z) + WB(z)+ Y WP(z)

Bl (z) and BPs(z) are the brightness functions of the-Background, of the Lines and of the Pat
the Procedures BB, BL and BP, respectively, and\the sum Z runs over all the Patches P4

Linctions WL(z) and WP4(z) are computed in‘the Procedures WL and WP, respectively, and

= 1 — max(WL(z), WP(z)).

Division by fhe sum of all weight functions_in"formula (1) guarantees that their sum is identically 1 ang

formula (1) i

31433 P

This proced
Profiles (LCs

BL(z) needs
texture, as e

5 a normalized averaging.

focedure BL: Brighthess due to Lines

ire computes far any point z on the image the brightness BL(z), contributed by the Line
) of the Lines (LNs) in the texture.

to be computed only for those z which are "close enough" to at least one of the Lines i
kpressed by the weight function WL.

zZis

Ches,

that

Color

h the

Note: The m

ost'intuitive and natural way to define the brightness of a Line is to associate to it a coor

inate

system (uu, tt), with uu(z) the (signed) distance of the point z to the line along the normal direction, and tt(z)
the length parameter along the curve of the orthogonal projection pp(z) of z onto the line.

Then the brightness cross-sections are computed according to the coordinate uu and interpolated along the
line with respect to the coordinate tt.

The corresponding algorithm can be constructed. However, it provides some serious drawbacks:

- Actual com

16

puting of the coordinates uu and tt is a mathematically complicated task.

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

- Even for smooth curves without corners the normal direction is correctly defined only in a small
neighborhood of the curve (of the size of a couple of pixels in realistic situations). Outside this neighborhood
no natural mathematical solution exist for defining the normal, the projection etc.

- For spline curves with corners between some of their links (which usually appear in realistic situations) the
normal is not defined even locally. Once more, the situation can be corrected by using the mid of the corner
angles, but the global difficulties of (2) remain and algorithms become rather complex.

Consequently, we show below an algorithm, which can be considered as an approximation to the “ideal one”
above. Its main advantage is that the “coordinates” uu and tt (called below u and t) can be computed
independently for each Line Segment (link) of all the collection of Lines. Moreover, the computation can be

|- o 1 !) s o PRI i)) HH (| 1 Il Lo L
u tlm Ty TTTIUTTTU as TalllTl TIHIUITTIU (altlTOUyrT Ui UCoUTNTPUUTNT DTTUW TTIdy TUUR SUTTITWITTal CUTTTPITIY

Belo

for any point z, u(z) is the “distance of z to Lines”, S(z) is the closest link to z (with' rg

distahce u) in the collection of Lines, and t(z) is the parameter, measuring the projection of
rescaled to the segment [0, 1]. S(z), u(z) and t(z) are computed by the Procedure DL, described b

The

Procedure BL distinguished whether the Line Segment S(z) has a “free end” (i.e. an endy

belomging to any other Line Segment) or not:

—_

Let (
Proc
right
resp

wher

S(2)

If for
— D]

S(z) does not have “free ends”.

;and C, denote the equations of the two cross-sections (normalized to the unit width, as des
bdure CS below) at the two endpoints of the link S(z). For u(z))> 0 let W, and W, denote tH
widths RW; and RW, of the cross-sections at these points: For u(z) < 0 let W, and W
pctive left widths LW, and LW, of the cross-sections at these' points. Then in each case

BL(z) = 1(2)- Cl[u(z) j+ (- 1)) Cz(u(z) j

W(z) Wiz)
e W(z) is the interpolated width

W (z) = 1(2)- W, +(1-1(2))- W,

u(z u(z
and the values C, [QJ and C{ (2) j are computed by the procedure CS.

W(z) W(z)

has a “free end”,

this “free end™ the parameter t is zero, the brightness BL(z) is computed as above for
' < 1(2)&\0,

ated).
spect to the
z onto S(z2),
elow.

oint TP, not

cribed in the
e respective
b denote the

(z) > 0. For

BL(z) =[1+1(z)/ DE]- Cl(u(2)) —[t(z)/ DE]- BM ,

wi(z))

and for #(z) < —=DE,

BL(z) = BM.

Here DE is a positive tuning parameter, defining the shape of the end of a Line. BM is half of the sum of the
brightness parameters colorMidLft and colorMidRgt of the cross-section at the free end.

If for

this “free end” the parameter t is one, t(z) is replaced by 1-t(z) in the above formula.

© ISO/IEC 2004 — Al rights reserved

17

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Note: The formula above provides one of possible choices of the shape of Lines near their ends. It assumes
that the cross-section brightness gradually descends to the “mid value” value BM inside the prescribed
distance DE. Other shapes can be defined, by properly computing the width and the brightness in the
neighborhood of the end point.

3.1.3.4 Procedure CS: Color Profiles (Cross-Sections) of Lines

This procedure computes a brightness value of an edge or a ridge (unit width) cross-section CS(u) for any
given cross-section “interior” brightness parameters, as described above, and for any value of u.

In the Procedure BL u is the distance u(z) to the line, normalized by the width W(z) of the line, so the width
parameter \;t is taken into account inside the BL, and it does not appear below. Similarly, the .mlargin

brightness garameters colorFarLft and colorFarRgt enter the computations in the Background brighiness
Procedure BB.

3.1.3.441 Fdge Cross-Section.

Normalized ¢dge cross-section NEC(u) is defined as follows (Figure 10 — Edge cross-section definition.)

u< -1, 0

u>1, 1
—l<u<0, 0.5(u+1)
O<u<l, 1-05w21)

NEC(u) =

Thus the recommended edge cross-section is composed of two Symmetric parabolic segments.

For given brightness parameters colorMidLft and colorMidRgt, the value CS(u) is computed as

CS(u) = LB2 +(RB2 — LB2)- NEC(u)

Y2

0

-1 0 1

Figure 10 — Edge cross-section definition.

3.1.3.4.2 Ridge Cross-Section

As for edges, the width of the ridges is taken into account in the Procedure BL. Similarly, the margin
brightness parameters colorFarLft and colorFarRgt enter the computations in the Background brightness
Procedure BB. Consequently the ridge cross-section computed in the current Procedure CS, is the same for
separating and non-separating ridges, and is defined by the parameters colorMidLft, colorCenter and
colorMidRgt, as follows (Figure 11 — Ridge cross-section definition.

CS(u) = LB2+(CB — LB2)- NEC(2u +1), for u<0, and

18 © ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

CS(u) = RB2+(CB — RB2)- NEC(-2u +1), for u > 0.

RB2

_/

LB2 | :
. _

-1 0 1

Figure 11 — Ridge cross-section definition.
Thus the recommended ridge cross-section is composed of two edge cross-sections; properly aggregated.
In the process of the blending of these cross-sections with the Backgrolnd (which incorporates the margin

brightness values colorFarLft and colorFarRgt) we get back essentially the same cross-sectioh, as shown
beloy (Figure 12 — Blending two cross-sections with the Background>),

Figure 12 — Blending two cross-sections with the Background.

3.1.3.5 Procedure WL: Weight Function of Lines

This |block computes the, weight function WL(z), which is used in a final blending of the Lipes with the

BacKground. The function-WWL(z) is equal to one in a certain neighborhood of the Lines, and is zefro outside of
a ceftain larger neighboarhood.

Morq accurately:

(1 lu(z)] < ULy W(z)

WL(Z) = W(z)-UL, —Iu(z)l UL - W(z) <| u(z)|<
W(z)-(UL, -UL,) ULy W(2)
0 lu(z)| > UL, W(z)

The distance u(z) is computed in the Procedure DL.
UL, and UL, are tuning parameters; see the last section “Tuning Parameters”.

Figure 13 shows a typical cross-section and a general shape of the weight function WL(z).

© ISO/IEC 2004 — Al rights reserved 19

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3136 P

UL1*W(z) ULz"W(z)
:—;:ﬂ—#d:;_{_:;___ S s
/Iﬁf/ i -”f
T = o
./.—' '// __.»""—-)J
,./’/
J'./

Figure 13 — Typical cross-section and general shape of WL (z)

rocedure DL: Distance to Lines

This Procediire computes for any point z in the texture:

1. The poin
d)

e) Thelink]
f) The pro
Note u(z), p
and proport]
mathematicg

t p(z) on the Lines which is nearest to z, i.e. the “projection”p(z) of z onto the set of Lines.

The distance u(z) between z and p(z).

S(z) on which p(z) resides.
bortion t(z) in which p(z) divides the link $S(z).
z) and t(z) are NOT exactly the Euclidean distance, the corresponding mathematical projg

| entities.

These data gre computed in the following steps:

2. For each link (Line Segment;'LS) Si in the texture, the corresponding pi(z), ui(z), ti(z) are comput

e DDL (See the Synthesized-C figure below)

efined as¢he link Sj, for which the minimum of the absolute values |ui(z)| is attained (Se

figure Synthesizéd:D below)

u(z) is defined’as the function uj(z) for the link Sj = S(z)

ction

on respectively; however, in most cases they give a reasonable approximation for these

ed in

B the

Procedur|
g) S(z)is
h)
i)
20

t(z) is defined as tj(z) for the above link Sj

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

U(zs3) Za

3.1.3.

This

l;’i.l(za.}
P{Z1}' P{Zd-)
U{Z'l)'.. UI:ZZ)
.21 ¢ Z:
Figure 14 — Synthesized-C
de
1 U(z4)

P(zz2) = P(z3)

U(zz) U(z3)

Z3

P(z1)

Figure 15 — Synthesized-D

Procedure DDL: Distance to a Line Segment

pracedure computes for any paint z its (signed) distance u(z) to a given link S (I ine Seg

nt, LS), the

projection p(z) of the point z onto the link S and the parameter t(z). The Procedure is essentially represented
on figure Synthesized-C above (which shows, in particular, equidistant lines for the points z1 and z4.

The straight oriented segment [a, d], joining the end points of the link S is constructed, with the orientation,
induced from the orientation of the Line, containing S. I, is the straight line, containing the segment [a, d]. I,

and I; are the straight lines, orthogonal to I and passing through a and d, respectively.

Now, for any z in the image plane, the function u(z) is constructed as follows:

For z between |, and I3, the absolute value |u(z)| is the length of the segment, joining z and S and orthogonal

to |1.

© ISO/IEC 2004 — Al rights reserved

21

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

For z leftto I, , |u(z)| is defined as follows:

u(z)| =[d(z,1,)* + Dd(z,1,)’]

1/2

Here d(z, I1) and d(z, |,) are the distances from z to l;and

I, respectively

For z right to

. D is a tuning parameter, with a typical value D = 4.

I3, |u(z)| is defined as

u(z)| =[a(:

Let Il be an
and then by

For z right to

For z betwes

and orthogomal to |y . For zleftto I, , p(z) is a, and for zrightto 5, p(z) is d.

Forany z, t
example, fo
respectively,

Note: The sp4
reason: when
function u(z) g
the distance,
If we would h
with the propg
below.

4

priented line, formed by the interval of the line I; from infinity to a, then by the link-S from a
the interval of the line |, from d to infinity.

1)+ Dd(z,1)]

Il (with an orientation as above) the sign of u(z) is “+”. For z left to /I, the sign,of u(z) is

bn |, and I3, the projection p(z) is the intersection point of S and of the segment, joining z 3

z) is the proportion, in which the projection of z onto the line Iy subdivides the segment [a, d
the point z, and z; on Fig Synthesized-D above. t(z,), =.(b-a)/(d-a), and t(z3) = (c-a)/
Forzlefttol,, t(z) <0, and for zright to I3, t(z) > 1.

ecial form of the function u(z) above (for z outside the strip.between I, and I3) is motivated by the foll
computing in the Procedure BL the brightness of the line near a sharp corner, the form of the dis
etermines which link will be taken as the closest to the,points in the sector stressed on the Figure belo
computed as above, with the parameter D > 1, this_choice is matched with the sign of u(z), as defined 4
ave chosen D < 1, for z in the sector stressed\on-the figure below, the choice of the nearest link, tog
sed computation of the sign of u(z), would prodtce a color from the incorrect side of the line. See the

to d,

nd S

. For
d-a),

bwing
tance
v. For
bove.
ether
figure

3.1.3.8

Figure 16 — Distance based selection of line segment

Procedure BP: Brightness of Patches

Let Cx Cy, R1, R2, a, colorCenter and MB be the parameters of a certain Patch P, as described above.

Let M be the linear transformation of the plane, transforming the basis ellipse of the Patch to the unit circle. M
is a product of the translation by (-Cx, -Cy), the rotation matrix to the angle —a, and the rescaling 1/R1 and

1/R2 times a

long the x and y axes, respectively. If we put for

z=(x,),(x'(2),y'(2)) = M(x,y) = M(2),

22

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

then the equation of the basis ellipse of the Patch is given by
x'(2)* +y'(z)* =1.
The brightness function BP¢(z) of the Patch is then given by

BP (z) =0 forx'(z)* +y'(z)* > UPI’,

BP.(z) = MBfor 1< x'(z)* +y'(z)> <UPI?, and

BP (z) = MB+(CB-MB)-(1-x'(z)* —y'(2)%), for x'(z)> +y'(z)> <1.
Herel UP1 > 1 is a parameter. See the Figure below.

3.1.3.9 Procedure WP: Weight Function of Patches

The yeight function WP(z) for a Patch Psas above is defined by

WP\z) =0 for uu(z) > UPI,

WP(z) =1 for uu(z) <UP2, and
WP |z) = (UP1—-uu(z))/(UP1 -UP2)
for up(z) between UP2 and UP1,

where uu(z) denotes the square root of x'(2)3 + y'(2)”.

Herel UP2, 1 < UP2 < UP1, is anothertuning parameter. See the figure below.

BP

i

Figure 17 — Synthesized Texture Patch and its weight function

© ISO/IEC 2004 — All rights reserved 23

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.3.10 Procedure BB: Brightness of Background

This Procedure computes the brightness value of the Background at any point z of the image. This value is
obtained as a result of interpolation between the “global” Background brightness values, the margin brightness
values of the Lines and the brightness values at the Area Color Points (ACs). The main difficulty is that the
interpolation is not allowed to cross the separating lines. To overcome this difficulty a special “distance” d
between the points on the image is introduced, which is the length of the shortest pass, joining these points,
and not crossing separating Lines, and which is computed in the Procedure SE below. Then averaging
weights are computed through the distance d.

This block uses as an input a certain collection of the ACs Z;, (containing the input ACs, as described above,

and the may ; ; - 4; the
brightness value Bb; is given.

The Backgrqund brightness value BB(z) is finally produces by the block BB as follows:

BB(z) is the|weighted sum of the global brightness GB and of the Local brightness functions Bb;(z) over all
the ACs Z; :

(2) BB(p)=(/S,(2)[WG(z)BG + > . WR(d(z,Z,))Bb,(z)]

He

=

¢ S,(2) =WG(2)+ Y WR(d(z,Z,)),

so the exprepsion (2) is normalized to provide a true averaging of¢he'corresponding partial values.

The global bfightness value BG is provided by the Procedure<GB below, or by any of the Gradient Nodes
The computation of the Local brightness functions Bb;(z)is’performed in the Procedure LB below.

The distancq functions d(z, Z;) are computed in the;Procedure SE below.

The computation of the weight functions WR{d(z, Z,)) is performed in the Procedure WB below.

The weight GW(z) of the global Background value GB is defined as
GW(z) =1} max, WR(d(z,Z,):

GW(z) is|zero at any z,.where at least one of the weights of the representing points is 1, and GW(z) i$ one
at any z where all the,weights of the ACs vanish.

3.1.3.11 Procedure-GB: Global Brightness of Background

This Procedure/ computes the global Background value GB, which appears in the expression (2) ir|1 the
Procedure BB-

By definition, if the point z is inside the Background region of a Sub-Texture number r, for which the global
value GBr is defined, GB is equal to this global value GBr. If the point z is inside the Background region of a
Sub-Texture, for which the global Background value is not defined, GB is equal to the default global value
DGB. If DGB is not defined, GB is equal to zero. Alternatively, Color Gradients can be used.

The current procedure consists in a signal expansion that transmits to each pixel its Sub-Texture number. We
describe it shortly, since it essentially belongs to a higher data representation level.

First the procedure MRP is applied, which creates margin representing points, carrying the corresponding
Sub-Texture numbers. These numbers are taken from the corresponding poly-links.

24 © ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Second, the Signal Expansion Procedure is applied to the margin representing points, essentially as in the
block SE, with the following difference: only the marking and the number of the Sub-Texture is transmitted

betw

een the pixels on each step of signal expansion.

As this procedure is completed, each pixel in the image memorizes the number of the Sub-Texture, to which it
belongs.

3.1.3.12 Procedure LB: Local Brightness of the Background

Two

types of the local brightness functions Bb;(z) are used. For the first type (zero order)

Bbi(Z

For t

and
the t
is on

Typic
atea

3.1.3

As in
the p
and

follov

WR

WR

WR

wher

See

is identically equal to the input brightness value Bb; at the point Z; .
he second type (first order) Bbi(z) is equal to Li(z), where Li(z) is the linear function, such’tha
Li(Z:) = Bb;
Li provides the best approximation of the input brightness values at the N nearest to Z; ACs. 1
e for the first order of the functions Bb;(z). Here N is an integer valued(tuning parameter.

Al value of N is 4 or 9: usually the ACs form a regular or an almost regular, grid, and the nearest neigh
Ch point Zi to construct the linear function Li(z).

.13 Procedure WB: Weights for the Background

hplied by the form of the expression, the weights WR(d(z, Z;)) depend only on the distance
oint z to the AC Zi. The model function of one variable WR is specified by three tuning pard
B2, UDB > UB2 > 0, and BVS (Backgreund Weight smoothness), 0 < BVS < 1, and
Vs:

1) =0 for |f|>UBI,
) =1 for |t| <UB2, and
t) = BVS(3v* —2v*) +(I= BVS)v, for UB2< || <UBL,

e v = (| -UB2)/(UB1 - UB2).

he Figure below.

'he choice of

pe of the local brightness function is determined by the flag LBF: LBF is\zero for the zero ofder and LBF

bors are taken

d(z, Z) from
meters UDB
s defined as

© ISO/IEC 2004 — Al rights reserved

25

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

BVS=0

~v

-

& *
UB1 UB:

/ \ BVS=1

3.1.3.14 Pr

Let D denots
points z4, z»

N,

Figure 18 — Synthesized Texture Background weight functions

ocedure SE: Signal Expansion

the domain of the Synthesized image, with “cuts” along all the separating Lines PL;. For an
n D the distance dd(z,, z,) is defined as the (Euclidean) length ef\the shortest path, joining z

z,in D and avoiding all the cuts PL;. See the figure below.

y two
and

Note: It might be assumed that the influence of the color at z, to the.¢olor at z, decreases as the disfance

dd(z4, z») ingreases. However, a precise computation of the distance dd is a rather complicated geon

problem. Cqg

nsequently, we use instead of the distance dd(z()vz,) its approximation d(z;, z;), whi

computed thfough a “signal expansion algorithm”, as described below.

hetric
Ch is

Figure 19 — Shortest path between points

The block SE computes the distance d(z4, z,) for any two points z; and z, in the image plane. The algorithm is
not symmetric with respect to z; and z,: in fact, for a fixed point z;, the distance d(z4, z,) is first computed for
any pixel z, of the image. Then an additional routine computes d(z;, z,) for any given z2 (and not necessarily a

pixel).

Below the notion of a “neighboring pixel” is used. It is defined as follows: for z not a pixel, the four pixels at the
corners of the pixel grid cell, containing z, are the neighbors of z. For z a pixel, its neighbors are all the pixels,

whose coord

26

inates in the pixel grid differ by at most one from the coordinates of z.

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-

19:2004(E)

Below we assume that a certain data structure is organized, in which to any pixel p on the image plane a
substructure is associated, allowing to mark this pixel with certain flags and to store some information,
concerning this pixel, obtained in the process of computation. We do not specify here this data structure, using
instead expressions like “the pixel p is marked”, “the pixel p memorizes...” etc.

Now

for z; and z, given, the distance d(z4, z,) is computed in the following steps:

For any pixel p the distance u(p) to the separating Line PL; is computed and stored at this pixel. The
computation of u(p) is performed by the procedure DL, described above, applied only to separating poly-links

See

Note
pixel
expa
sepa
stabi
expa
2FU,

ixel memorizes its Euclidean distance from z; as the auxiliary distance dd, to_be/computed.
{-th step, any free unmarked pixel p, at least one of whose free neighboring’pixels was m
pus steps, is marked. This pixel memorizes as its auxiliary distance dd(p) from z,, the minin

imed. This process is continued the number of steps, equal to the/maximal dimension of t

5). After it is completed, each free pixel p on the image plane memerizes its auxiliary distand

for any given point z, on the image plane, its distance d(zy) z,) from z; is computed as ma
D2, where D1 is the Euclidean distance of z, to z; , and{D2 is the minimum over the free neig
5 p, of dd(p) + the Euclidean distance of z, to p.

completes the computation of the distance d(z¢,.2»).
he Figure below.

The tuning parameter FU determingsithe size of a neighborhood of the separating Line,
5 are marked as forbidden. Taking*any value of FU, larger than 0.8, excludes a possibi
nsion crossing separating lines.*Indeed, for any two neighboring pixels, which are on differg
rating line, at least one is_closer to the line than 0.8 and hence is marked as forbidden
ity of finite accuracy computations a bigger value of U may be taken. However, in this
nsion will not pass a “bottle-neck” between two separating lines, which are closer to one
Normally such regions will be covered by the cross-sections of these lines. However, a s

can e used to guarantee that signal expansion passes thin “bottle-necks”

xcluded from
Here FU is a

marked, and
Generally, in
arked in the
num of dd at
minimum is
ne image (in
e dd(p) from

kKimum of D1
hboring to z,

where all the
ity of signal
nt sides of a
To provide
case signal
another than
ub-pixel grid

© ISO/IEC 2004 — Al rights reserved

27

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Various implementation issues: g\\

Computation] of the
central partg of the

these blockslis crucial for an overall efficiency of the reconstrs%ﬂ n.

EIGUEIEIGEEIEIDEEEDCIEIEIDGEII‘_

/@DDUDDDUEDDEDEDGDDDUDD_-

DooooDQpooo0ooooOoQQoOooOooooonQ
oooooooOooooOogoDoOoob0Ooo e

{ o Y o o O I i o R O o G o o o

OoOoooooOooonoooonA
{00 0 o e o I D o o o O
Ooooo0opoOoooooOoQgao

ODOoooooooondE

oOOoOOoOoooOoOoOoo
opooooooon
ooooooooos
oooooooon
opoooooQo

Figure 20 — Signal Expansion in Synthesized Textl@\endering

distance d(z4, z;) and its usage inside the B round grid interpolation form one qgf the
Synthesized image reconstruction. Conse ly, the efficiency of the implementatipn of

A straightfofward implementation of the signal expansion algorithm, as described above, is not opfimal.
However, a humber of rather natural and simple modifications bring the efficiency of the signal expansipn to

only few operations per pixel.

4
3. Multi-scgle implementation. The image i %dlwded into blocks in 2 — 3 scales (for example, blocks of
16x16, 8x8 and 4x4 pixels). First signal eXpansion is performed between the highest scale blocks [(say,
16x16), gxactly as described above.. idden are the blocks, crossed by separating Lines. In the sgcond

stage the forbidden blocks are su@ded into 8x8 sub-blocks, and the expansion is performed for them.
The new [forbidden sub-blocks are sub
stage thelexpansion is compl@d on the pixels level.

ubdivided into the 4x4 ones, and the expansion is repeated. In th¢ last

j) For an gpplication to &Background grid interpolation, the distance d(z1, z2) has to be computed only till
it riches|the thresh B (since for larger distances the weight functions vanish). This fact allows one to
steps in signal expansion to UDB + 1.

restrict the num

k)

I) In the process

ACs
ation

of signal expansion, all the mathematical data required in the interpolation block (like

Euclidean distances and weight functions) can be computed incrementally in a very efficient way.

3.1.3.15 Procedure MRP: Margin Representing Points

This Procedure constructs a grid of representing points on the margins of all the Lines together with the
Background brightness values (APs) at these points. Later the constructed margin points are used (together
with the original ACs) in the interpolation process in the block BB.

28

© ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

The margin representing points Mz are produced in the following steps:

4. On each Line, the points wk are built with the distance UM1 from one another, starting with one of the
ends (the distance is measured along the Line). The last constructed point on each Line may be closer to
the end Terminal Point of this Line, than UM1.

5. At each wk the line Ik orthogonal to the Line and intersecting it at wk is drown. If wk turns out to be a
vertex of the Line with a nonzero angle between the adjacent Line Segments LS (links), or a crossing, Ik is
taken to be the bissectrice of the corresponding angle.

6. On each line Ik two points (one point in the case of the bissectrice of the crossing joint angle) are chosen
UMZ-W(w,

al the distance)from the intersection point wk of Ik with the Line (from the«frossing wk,
gspectively). All the chosen points, in a certain chosen order, form the output margin représgenting points
Mzj.

-

A\t each margin representing point Mzj constructed, as described above, the corresporlding margin
ackground brightness value Bbj is computed by

W0 o

Bb,|=td+(1-1)B

where A and B are the margin values (colorFarLft or colorFarRgt, respectively) of the cross-sections at the
ends| of the Line Segment S(Mz), nearest to the point Mz, and t = t{tMZz)).

S(M3;) and t(Mz;) are computed by the Procedure DL.

In the current Procedure UM1 and UM2 are tuning parameters (the first one absolute and the sefond relative
to the¢ width), satisfying UM1 < UB1, 1 < UM2< UL1.

See the figure below.

Figure 21 — Margin representing points

The four figures below illustrate influence of different elements of the Background for different values of tuning
parameters.

Figure 22 — shows an extrapolation of the margin values of the Line.
Figure 23 — illustrates the influence of the Area Color Points (ACs).
Figure 24 — shows representing points with a larger parameter UB1.

Figure 25 — shows a Patch influence.

© ISO/IEC 2004 — Al rights reserved 29

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Figure 22 — Line influence Figure 23 — Area Color influenceQQb‘

o

Figure 24 — Effect of larger UB parameter \\Q Figure 25 — Effect of Patch
QO
. Z
3.1.3.16 Tlining Parameters \"Q
All the tuning parameters, listed below, are not ged in the process of sending and playing of image$ and
animations. However, their tuning for specmc al displays (and for specific classes of images) may improve

the visual quality and the player efficiency.

UL1 — the distance from the Lines (asc?%portion to the width of the line), within which the CP (cross-se
brightness BL(z) is computed. It coincides with the exterior size of the lines averaging region. Used i
Proceduresq BL and WL.

O

UL2 — the interior size of tr@llnes averaging region (as a proportion to the width of the line). Used i
Procedure WL

UP1 and U

the Patch size). in the Procedures BP and WP.

2 ar@%ﬁorresponding parameters for Patches (referring to the relative distance with respéct to

ction)
h the

h the

UB1 and UB 22 H 2
parameter BVS characterlze the smoothness of these welght functlons Used in the Procedure WB.

The flag LBF specifies the order (0 or 1) of the local brightness representation. Used in the Procedure LB.

The

The integer parameter N is the number of neighboring ACs taken to define the local linear approximations of

the brightness. Used in the Procedure LB.

FU is the distance of the separating lines at which pixels are marked as “forbidden”.

UM1 and UM2 are the absolute and the relative to the width parameters in construction of margin representing

point. Used in the Procedure MRP.

30 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-

19:2004(E)

D > 1 is the parameter, defining the “asymmetry” of the distance to the Line Segment, computed in its side
areas. Used in the Procedure DDL.

DE > 0 is a parameter, defining the length of the end area of Lines. Used in the Procedure BL.

3.1.4 The Skeleton

3.1.4.1 General

The Skeleton is a set of lines used for transferring motion to the elements of the texture during animation,

thro

ah the process of Texture Warping (§3.1.5)

31411 Topology

The
(grag

C—) A Bone (BN);
bounded by

2 Joints

o_o—o A Polybone (PB),

bounded by
2 Joining Points (JPs)

Figure 26 — Synthesized Texture Skeleton Topology and Geometry

skeletoh.topology is based on a finite directed graph3), which includes a set of points g
h vertices), and a set of ordered pairs called Bones (BNs), which are graph "links" that con

pairs

alled Joints
nect specific

of\joints directionally.

Series of consecutive connected bones are grouped in Polybones (PBs). Polybones terminate in Joining
Points (JPs).

The Skeleton is morpologically similar to the Texture, where Bones (BNs) correspond to Line Segments (LSs),
Polybones (PBs) correspond to Lines (LNs), and Joining Points (JPs) correspond to Terminal Points (TPs).

3) A finite directed graph is a finite set V of nodes called vertices, and a set of ordered pairs (Vstart, Vend) Called links
that connect some pairs of vertices where vstart, and veng are in V. A graph describes the connectivity pattern of its vertices,
and has no inherent geometry.

© ISO/IEC 2004 — All rights reserved

31

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

However note the direction of polybones is significant to their function, while the direction of texture Lines is
arbitrary. Additionally, PB need not necessarily terminate in a JP, while all LNs must terminate in TPs.

Some of the

skeleton's Joining Points may be attached to a particular Polybone by a Bond. A bond forces the

initial relative position between a particular JP and a particular PB to be maintained throughout animation.

3.1.41.2 Geometry

During authoring and animation, the skeleton is initially laid out on a the plane of the texture which it is
associated with. When the skeleton's pose changes, i.e. when it moves relative to itself, the skeleton's

components

change their location and shape, but they always remain on the texture plane.

In addition tq

e as the ¢

topologyt.

e as the sk

3.1.4.13

During authq
this allows a

3142 P

The followin
process des

3143 S

3.1.4.31

skeleton topology, Skeleton data contains one specific geometry, used later:

efault mapping between the layers in the object's texture and the polybones in\the skeleton

eleton's initial pose during authoring and/or playback.

Association with Layers

ring and encoding, every polybone is associated with exactly one texture Layer. During decading,
Esociating in bulk each texture primitive in that layer, with a siggle polybone.

rimitives and Properties

) primitive classes are used to store skeleton data, ‘and are the targets of the Skeleton Decdding
Cribed in §4.7.

Keleton

Byntax

class Skeleton
{
char nape[16]
int orfientation;
int wiflth;
int hefight;
aJP[] apP; /) Joining Points
aPB[] aPB; /Y* Poly-Bones
int nffP = @+
int nPB = 0;
}
3.1.4.3.2 Semantics
Name Description
name The skeleton's name.
orientation A bogus attribute of the skeleton topology, allowing a single topology to have several distinct

instances, each with a different "orientation". This attribute can then be used in matching or
adapting an adequate animation for a specific "orientation".

This is currently used when authors choose to "flip" (mirror) a skeleton - the "orientation" of the
skeleton is then changed from 0 to 1. Animations created for this skeleton are then adequate
only for topologies whose "orientation" is 1. alternatively, animations created for orientation=0
may to be "flipped" in order to be made adequate for the skeleton whose "orientation" is 1.

32

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-

19:2004(E)

Name Description
width The width of the skeleton’s plane in pixels.
height The height of the skeleton’s plane in pixels.
aJP Array of Joining Point data for this skeleton.
aPB Array of Polybone data for this skeleton.
nJP Number of elements in aJP.
nPB Number of elements in aPB.
3.1.44 Joining Point (JP)
3.1.447T Syntax
clalss JP // Joining Point
{
int iJP;
flloat x, vy’
int iJpBond = -1;
ilnt iBrBond;
BR aBR[]; // branches from this JP
int nBR = 0; // number of branches from thdi's AJP
}
clalss BR
{
int iPB; // index of PB that brénches from this BR
Yool boOut; // 1is this branch an\out-branch"?
}
3.1.44.2 Semantics
Name Description
iJP The index of this JP in'the skeleton's aJP array.
X,y The coordinates of'this JP in the skeleton's plane.
iJpBpnd, iBrBond | let "BondPB" be the polybone that this JP is (optionally) bonded to. Then:
iJpBond is the index of the starting JP of BondPB. If iJpBond =-1 then this JP does not have a bond.
iBrBondtis,the index of the BR that BondPB is branching-out from.
aBR The-array of branches from this JP.
nBR The number of branches in aBR.
clasg BR:
iPB The index of the Polybone that branches from this BR.
bOu Is this branch an "out-branch"?
3.1 .41.5 Polybone (PB)
3.1.4.51 Syntax
class PB // Polybone
{
int iPB;
int iBegJP, 1iBegBR;
int iEndJP, iEndBR;
int iLY;
int influence;
BN aBN[];
int nBN = 0;

© ISO/IEC 2004 — Al rights reserved

33

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.4.5.2

Semantics

Name

Description

iBegJP, iEnd

JP The indexes of the JPs in which this Polybone begins and ends.

iBegBR

The index of the branch in aJP[iBegJP] from which this Polybone begins.

iLY

The index of the Layer that this polybone is associated with.

influence

polybone, given in pixels.

The range of this polybone's influence on layer iLY. O=infinite influence; else=influence range from

aBN

The array of Bones comprising the geometry of this Polybone.

nBN

e numper or elelments 1 abiN.

3146 B

3.1.4.61

bne (BN)

Syntax

class BN
{
float v
float h
}

// Bone

K, VvY;
bt ;

3.1.4.6.2

Semantics

Name

Description

vX, vY

The x,y offset of this Bone's end point fromits'starting point, in pixel units.

hgt

The height of the curve of this BN.

3.1.5 Text

3151 G

During anim
calculation ig

The geomet

[)
Stretchi

Bending

ire Warping

eneral

ation, the Texture is "warped" by re-calculating the location of the texture primitives.
based on the current geometry of the skeleton.

y of the skeleton ¢hanges based on 3 motion patterns of bones in the skeleton:

Rotation around one:of‘the bone's end points (joints).

Ing (or shrinking) of a bone along the cord connecting its joints.

abone, by modifying the height of its arc.

The animation mechanism is comprised of:

An influence scheme, specifying the layers influenced by each bone of the skeleton.

An influence zone, specifying the points in the layer's texture that are moved.

layer's texture.

34

This

A motion transfer model, specifying the way in which the skeleton motion influences the elements of the

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Figure 27 bellow demonstrates the effect of bone movement on the texture.

A photo of a bottle with a background was converted to Texture. After conversion, a single Layer (the bottle)
was cut-out of the image, and a single-layered object was defined. Then, a 3-bone polybone was attached to

the object.

1. Original 2 Rotation 3 Competing influencie zones

4 Stretching 5 Bending 6 Complex Skeleton

Figure 27 — The effect of bone movement on the texture.

© ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

1. The source image before conversion to Synthesized Texture

2. Rotation of each bone separately (with no stretching or bending)

3. Rotation of the polybone as a whole, with another bone added. Note the texture in the added
bone’s influence zone remains static, causing a stretching effect between it and the central polybone
4. Stretching of the top bone and shrinking of the two bottom bones (with no rotation or bending)
5. Bending of each bone separately (with no rotation or stretching)

6. A complex skeleton (resembling humanoid) is attached to the object, and rotation,
stretching/shrinking, and bending are all applied

3.1.5.2 The Influence Scheme

The basic IWW1 the
skeleton.
>

Figure 28 — Th@ssociatioin of layers with polybones.

N-
The object includes Q\@ers, dividing the object's skeleton into 3 polybones,
whose default influence zones are their respective layers themselves.

-

Additionally, |"artificial" ianue@@egions can be imposed for a polybone, consisting of all the points in the layer
that are cloger to this polybone than a certain threshold. This threshold is chosen according to the gctual
shape of the|object to b imated.

The bone apsoci scheme determines each Texture primitive's controlling bones. Only these bones
affect the pri m% ring motion transfer.

The set of bones controtting a primitive 1S constructed according to the following scheme:
A. The primitive's controlling polybones are determined:
e Each primitive is normally a member in a specific layer in the texture.
e Each layer is normally controlled by one or more polybones.
e When the primitive's layer is associated with multiple polybones, the "influence-range" values of the
polybones in question are used to weight the relative influence of each polybone on the primitive during

motion transfer.

Otherwise, if the primitive's layer is associated with a single polybone, this is its controlling polybone.

36 © ISO/IEC 2004 — All rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

B. The primitive is associated with a specific controlling bone within each controlling polybone:

e The bone closest to the primitive's center is found for each controlling polybone, and added to the
primitives set of controlling bones.

C. Too-far bones are excluded from influence:

When the primitive has multiple controlling polybones, bones found above that are farther then the respective
polybone's influence-range are excluded from the set.

3.1.5.3 The Motion Transfer Model

The animation of texture is based on translating the motion of the bones of the skeleton into_ the ||notion of the
nearby texture points:

¢ The Line Points (LP), defining the course of Lines.
e The Area Color Points (AC), defining coloring between Lines.
e The centers of Patches (PA).

Sincg the geometry of the entire Texture is completely defined by the)position of these points, the skeleton's
statel completely defines the motion of the influenced layers along.time.

The following general scheme is used to translate the skeleton motion to the nearby points:

e A coordinate frame (§3.1.5.4) is constructed, comprising a coordinate systems around each bone in the
gkeleton.

e An influence region (§3.1.5.2) for each bonglinthe skeleton is defined.

¢ These coordinate systems and influence regions follow the motion of the skeleton.

© ISO/IEC 2004 — All rights reserved 37

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

1
I
!
i
!
I
I
i
1 |
i
1
!
I
i
!
1

t
Initial Position

\ el
\ op
\ e
\ hY
\ !
hY
\\ Y
\
\
\\ y
\‘ t A
New Rogition

Then, in org
skeleton, thg following steps are performed:

er to define the position of a certain texture point p corresponding to a given motion g

e If p doeq not belong to any of the influenced layers, it does not move.

Fjgure 29 — The effect of skeleton motion on a texture point: the polybone affecting p is[s
displaced (right and downwards), and its geometry.changed (the right bone has rotated caupsing
the angle with the left bone to become smaller).

f the

ngs to a certain influenced\ayer, its coordinates with respect to the corresponding bong¢ are

e If p belg
computgd once.

e During gnimation, whenever the skeleton moves, a new point p'is calculated, whose coordinates| with
respect fo the current state-of the bone are the same as the coordinates of p with respect to the or{ginal

state of the bone.
3.1.5.4 The Coordinate Frame

3.1.5.4.1 Bone Coordinate System

The coordinate frame of the Skeleton consists of special coordinate systems, associated with each of the
bones in the skeleton, and of the influence regions of these bones.

A coordinate system (U, T) is defined for each bone in the skeleton, so that for any texture point p:

e uis the distance of p from its nearest bone b.

bisectrial lines of the angles between the adjacent bones in the polybone.

38

t is the coordinate of the projection of p onto b, i.e. the distance along b of the projection of p from one of
the end points of b. The projection is not exactly the orthogonal one; instead it takes into account the

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-

—_—

19:2004(E)

The
rema

A bo
relat
point

3.1.54.2

If al

far flom this bone, the _prajection of p onto the bone, and hence the distance u, the coording

Figure 30 — A polybone's coordinate scheme, and point p's coordinates

p's nearest bone b, as well its coordinates (u, t) relative to b, are\pre~computed.

hew position of p is calculated according to the rule that jts.coordinates (u', t) relative to
in the same as the initial coordinates (u, t).

he's coordinate systems (U, T) as defined above adheres to the bone regardless of the bone
ve to the skeleton and to the SynthesizedTexture'sworld. Thus, the new coordinates (u’, t')
q are defined by the same expressions as above:

'is the distance of q from its transformed nearest bone.

is the coordinate of the projection ofiq onto the transformed bone, i.e. the distance, along
he projection of g from one of the end points of the bone.

Non-Unique Projections

one in the skeleton has a complicated geometric shape, and if an associated texture point f

rotat
com

This [problem is\Gvercome since:

these’regions are taken small enough to provide uniqueness in the above algorithm.

on angle w, are\not uniquely defined. This, in turn, leads to numerical instability of
utations.

nly(the points within a bone's influence region (§3.1.5.2) are actually displaced. In imp

(u, t).

he moved b

s movement
for a texture

that bone, of

D is relatively
te t and the
the relevant

ementations

produced.

© ISO/IEC 2004 — Al rights reserved

The skeleton's kinematical model restricts motion so that complicated or unstable shapes cannot be

39

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.5.5 Bending and Stretching of Bones

3.1.5.5.1 General

In the general case, the bones of the Skeleton are not only displaced in the animation process, but may also
be stretched and bent?). This is made possible by using parabolic segments as bones.

Thus, in addition to its position determined by its two end points, each bone in the skeleton may have the
following three additional attributes:

e Bone Stretching (a).

e Bone Bgnding amplitude (b).

e Bone Bgnding direction (f).

The effect ofl stretching and bending a bone on the animation of its associated texture points is linear and thus
natural.

W2

Wl

-~
s V= an
-

y

Eone Streching

Eohe Bending

Bone Bending
Influence

N

Figure 31 — The effect of bending and stretching on the texture.

4) In a realistic animation of a human body, stretching and bending of bones is usually unnecessary, since real human
bones do not normally stretch or bend. However, in non-human or less realistic animations these motion patterns are
common. Moreover, stretching and bending allow artists to compensate for possible distortions produced by the pose of
the animated object in the original image. Additionally, these animation patterns allow for various important visual effects
by means of this essentially 2D mechanism, including 3D-like motion effects.

40 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Stretching (or shrinking) a bone by a factor a stretches its coordinate system (U, a*T), thus causing the
position of associated texture points to be proportionally displaced, causing a stretching effect to the entire
associated texture.

Bending a bone bends the bone's coordinate system, but since each texture point's (f, u) coordinates remains
constant, a bending effect of the entire associated texture is achieved.

3.1.5.5.2 The Effect on the Texture

In the figure above, an orthonormal coordinate system, related to the initial joint of the bone, is used. V1
denotes the bone vector, V is a vector of a generic given point, while V' denotes the vector of this point after
trangformation.

Stretching is defined by the stretching parameter a. For the bone vector, V1’ = a*V1nkor ahy vector V:
reprgsent it in the coordinate system of the bone, as V = pV1 + qV2, where V1 is the bené vectpr, and V2 is
the unit vector, orthogonal to the bone. Then the new vector V' is given by V' = a*pV1'+.qV2.

In other words, a times linear stretching is performed on all the space in the direction of the borje vector V1.
Bending is defined by the bending amplitude parameter b and the bending direction parameter f. [The bending
direction is given by a unit vector W at the central point of the bone, which s orthogonal to the bome vector V1,
and it is completely determined by the direction f.

To cpmpute the result of a bending on any vector V, representation of the vector V in the coordjnate system
as alpove is used:

If V|=pV1+qV2 then V' = pV1 + qV2 + b*p(1-p)W, forp between 0 and 1, V' =V, for p outside of the
interyal [0,1], i.e. for the projection of the point V on the bone’s line outside the bone.

3.1.4 Object Animation

3.1.6.1 General

The pnimation effect of Synthesized Texture Objects is achieved by changes made to the appearance of the
objegt's Texture along time.

extrinsic Location Change
» Next Position, Rotation and Offset
/ of object-plane \\
Ahimation Texture Rendering
N re-draw Texture based on cuffent state of Texture
Next Ahimation frame . " . Ny
\ primitives and their projectior] on the object-plane
/
Pose Change Texture Warping /
Next configuration of Skeleton —® re-positioning of Texture primitives ~ —
intrinsic | (the relative positions of its bones) based on current skeleton geometry

Eigure 32 — The animation mechanism

The animation mechanism uses a sequence of frames describing the object's state along a timeline. Each
frame describes the Object's location and pose at a corresponding point in time.

Changes in the location include changes to the position and rotation of the object-plane and the offset of the
Object (i.e. its Skeleton) on that plane.

Changes in the pose include changes in the relative positions of the bones in the Skeleton, which is laid out

on the object-plane. These induce changes in the position of the Texture primitives on the object-plane
through the process of Texture Warping.

© ISO/IEC 2004 — Al rights reserved 41

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Finally, the Texture is re-rendered on the visual plain based on the absolute location of the Texture primitives
in the world, and its projection on the visual plane. For Scenes which Include a Camera Scenario, the position
and viewing angle of the Camera is additionally considered.

3.1.6.2

Each frame i

1. Location

Object State Information

n the Synthesized Texture Animation describes the object's geometrical state:

— provides the extrinsic motion of the object:

¢ the current position and rotation of the object's 2D plane in the SynthesizedTexture's 3D world.

e the ¢
2. Pose -

the ¢

3163 F

An Animatio

The frame s
animation. F

The frame s
at least a ¢
keyframes in

All frames ir
between fra
tweening (f
adjacent key

Frames bet
preserving it

urrent offset of the object on its 2D object-plane.
rovides the intrinsic motion of the object:

urrent geometry of the object's Skeleton, as it is laid-out on the 2D object plane:-

ame Sequence Information
N is a sequence of Frames describing the changes in the object's staté along a timeline.

equence of an object's animation is described and encoded\Using a subset of the frames i
Fames in this subset are called KeyFrames.

tart and end keyframe. The end keyframe of a run is called a run-end keyframe. All
a run are called run-through keyframes,

a run that are not keyframes are called ih-between frames. The geometrical properties
es are not explicitly described in the bitstream, and are derived instead, in the process d
m "between"). In tweening, linear intérpolation is performed on the geometrical properties 0
frames, yielding the values of these-properties for the in-between frames.

veen runs are called static\frames. In static frames, the object remains absolutely §
5 state at the end of the preceding run.

n the

bquence of an object is divided into one or more sub-sequences called Runs. A run is bound by

bther

Df in-
alled
f two

tatic,

r un 1 r un 2
bbbblbb‘bbblbbbbb s|s|s|s|s b|b(b|b|blb|b|b|b s
b | in-betjveenArame Run-through 11q run-end keyframe s | static frame

keyframe]

3.1.6.4

Figure 33 — Synthesized Texture Animation: Runs, Keyframes and inbetweens

Primitives and Properties

The following primitive classes are used to store animation data, and are the targets of the Animation
Decoding process described in §4.8.

42

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

3.1.6.5 Animation

3.1.6.51 Syntax

ISO/IEC 14496-19:2004(E)

class Animation

{

KF[] aKF;
int nKF;
}
3.1.6.5.2 Semantics
|
Name Description
aKF The KFs in this Object Animation.
nKF The number of KFs in aKF.
3.1.6§.6 KeyFrame (KF)
3.1.6.6.1 Syntax
class KF // Object Animation Key Frame
{
int iFrame;
Yool bRunEnd;

0ol bHasState3D;
loat posX;
loat posY;
loat posZ;
loat rotX;
loat rotY;
loat roti;

Hh b Hh b b b O

=y

loat locX;
loat locY;

=

Skelton skl;

/|/ auxiliary
ilnt iFrameDiff;

3.1.6.6.1.1 Semantics

Name Description

IFrafne The index of the animation frame that this keyframe describes.
BRupEnHd Is this a run-end KF? Otherwise this is a run-through KF.

Pun aond KEc ara ~adad ralativia ta tha ahiaat's haca KE \whila wian theaiiah KES ara nr\nnd re|ative to
oo oGO e aTeratrve <ot i) S—PaT e WHHETuH T Eu g oare-60aC

their predecessor KF. This is so because the contents of a run-through KF are by definition related

to the contents of its predecessor KF, while the contents of a Run-end KF are not.

posX, posY, posZ

The position of the origin of the object's 2D plane in the SynthesizedTexture's 3D world, in
worldUnits.

rotX, rotY, rotZ

The rotation of the object plane about each of the 3D world's axes, in radians.

locX, locY The offset of the object (i.e. of its bounding rectangle’s top left corner) on the object plane, in pixels.
Skl The skeleton whose geometry is applied to this keyframe.
Joint locations are encoded based on the changes in the angles between the bones of the skeleton
between this keyframe and the previous one.
IFrameDiff The difference between this KF's frame number and that of the previous KF.

© ISO/IEC 2004 — Al rights reserved

43

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.7 Camera Scenario

3.1.71 General

The Camera Scenario describes the behavior of the SynthesizedTexture Camera along time. Similar to Object
Animation, The time-based scenario of the Camera is based on a sequence of Frames.

Each frame describes the camera's 3D state:

e Position - the position (translation) of the origin of the camera's plane in the SynthesizedTexture's 3D

world.

. Rotati0||| - The rotation of the camera's plane about the 3D world's coordinate system.

Identical to (
a sequence

3172 P

The followin
process des

fimitive and Properties

Cribed in §4.9.

3.1.7.3 Camera

3.1.7.31

Byntax

Dbject Animation (§3.1.6), the Camera Scenario is based on a keyframe mechanism,-which [uses
pf KeyFrames to describe the Camera's state throughout all the frames in the scenario.

) primitive classes are used to store animation data, and are the targets of the Camera Decgding

{

class Camg

KF[] akKF;
int nKF;
}
3.1.7.3.2 Semantics
Name Description
AKF The KFs in this €amera Scenario
NKF The numberofKFs in aKF.

3.1.7.4 KgeyFrame (KF)

3.1.7.41 Syntax
class KF // Camera Key Frame
{
int iFrame;

float
float
float

// auxi

float posX;
float posY;
float posZz;

rotX;
rotY;
rotZ;

liary

int iFrameDiff;

44

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

3.1.7.4.2 Semantics

Name Description

IFrame The index of the camera frame that this keyframe describes.

posX, posY, posZ | The position of the origin of the camera's plane in the SynthesizedTexture's 3D world, in worldUnits.
rotX, rotY, rotZ The rotation of the camera's plane about each of the 3D world's axes, in radians.

IFrameDiff The difference between this KF's frame number and that of the previous KF.

3.1.8—Playback

During playback, the frames on the SynthesizedTexture's shared timeline are sequentially rgndered to a
sharg¢d canvas.

For gach frame:

e The current position and orientation of the SynthesizedTexture's Camera‘is calculated, rglative to the
$ynthesizedTexture's 3D world.

o The state of the texture of each of the SynthesizedTexture's jobjects per this frame is calculated, as
described above.

e The bitmap image of each of the object textures is rendered, based on its state, and the|state of the
gamera.

¢ The rendered bitmap images are projected to the shared canvas.

© ISO/IEC 2004 — All rights reserved 45

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4 Coding and Bitstream

4.1 Overview

This section specifies the structure of the ST Bitstream and describes how it is decoded to

SynthesizedTexture primitives, described in 3.1.

The ST Bitstream contains the ST primitives data in a highly re-organized arrangement, resulting in very high
compression rates.

4.2 Globallnput Bitstream and Decoding Context

The pseudo code below describes the main ST decoding procedure.
Additionally it introduces the global scope and initiation of the pseudo code sections in this chapter:
Names of glpbal variables are prefixed with the 'g".
421 Syntpx
global coptext
{
bitsStrpam gbsMain = new bitsStream(external input streéam); // the main bit stream
char sipnature = gbsMain.word(1l);
int veksion = gbsMain.word(2);
Header gHdr; // the current decdded Header
Scene gScn; // the current-decoded Scene
Camera gCmr; // the current* decoded Camera
Object gobj; // the curxent decoded Object
Skeletoh gSkl; // the cu¥fent decoded Skeleton
Animatipn gAnm; // the current decoded Animation
Texture gTxr; // thedcurrent decoded Texture
decHeadgrBlock gDecHdr; YJ¥>~a Header decoder
decScengBlock gDecScn; // a Scene decoder
decCameka gDecCmr; // a Camera decoder
decSkelgton gDecSkl; // a Skeleton decoder
decAnimption gDecAnm; // a Animation decoder
decTexthreBlock gDecTxr; // a Texture decoder
bitsStrgam gbsTxr; // the main sub-stream of the texture
do
{
char plgckType = gbsMain.word(1l):;
int btockStTze = ngME.J'.u.qu.d(s) 7
switch (blockType)
{
case 'H':
int streamSize = gbsMain.word(4);
gDecHdr = new decHeaderBlock(); // initaite Header decoding
break;
case 'S':
gDecScn = new decSceneBlock(); // initaite Scene decoding
break;
case 'C':
gDecObj = new decObjectBlock(); // initaite Object decoding
46 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

}
}

case 'A':
gDecTxr = new decTextureBlock();// initaite texture decoding

while (!gbsMain.EndOfStream());
}
4.2.2—Semanties
Name Description
gbsNlain This is the main and global to all program bitsStream (§4.11) of thedéecoder, fijom which all
subStreams are then opened. gbsMain feeds from the external input stream provided to the
decoder. gbsMain.EndOfStream() is assumed to return true iff the end of the external input
stream is reached. Each time this ‘function’ is called it fetches the specified number of
elements of the specified data type.
signature The ST stream signature. Value must be V' (0x56).
version Synthesized Texture version information.
blockType Synthesized Texture Blocks are the top level sub-divisions of the Synthesized
Texture bitstream. All blocks are preceded with a unique block-type-ID} read by
the main loop of the decoder.
Every block includes a blockType idéntifier in its first byte.
'H': Header - general informatiomabout the bitstream and its contents.
'S": Scene - a Scene description.
'C": Object - an Object description.
'A": Texture - a Texture déscription.
Block types are described in the following sections.
Within each Bloek, some of the data is further grouped and encoded in sub-
structures of type bitsStream and toknStream which support the Synthesized
Texture's*high level of compression.
blockSize The byte;size of the following block.
stregmSize Thé byte size of the entire bitstream. Note this element is present ONLY before a Header
block.
gHd The global decoded Header.
gDeg¢Hdr The global decHeaderBlock class. Construction initiates header decoding into gHdr.
gSci The global decoded Scene.
gDe¢Scn The global decSceneBlock class. Construction initiates Scene decoding into gcn.
agCmyr gScn's global decoded Camera Scenario.
gDe¢Cmr The global decCamera class associated with decSceneBlock. Construction ocfurs in
decSceneBlock() and initiates Camera decoding into gCmr.
gObj The current global decoded Object.
gDecObj The global current decObjectBlock class. Construction initiates Object decoding into gObj.
gbsTxr The main and global subStream of the texture.
gTxr The current global decoded Texture.
GSkl gTxr's global decoded Skeleton.
gAnm gTxr's global decoded Animation.
gDecTxr The global current decTextureBlock class. Construction initiates texture decoding into gTxr.
gDecSkl The global decSkeleton class associated with decTextureBlock. Construction occurs in
decSkeleton() and initiates skeleton decoding into gSkl.
gDecAnm The global decAnimation class associated with decTextureBlock. Construction occurs in
decAnimation() and initiates animation decoding into gAnm.

© ISO/IEC 2004 — Al rights reserved 47

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.3 Header Block (‘H') Decoding

A SynthesizedTexture Hea
4.3.1 decHeaderBlock()

4.3.1.1 Syntax

der block is identified by 'H' in its first byte.

decHeaderBlock: :decHe

{
gHdr = new Header ()

aderBlock ()

; // the decoded header

bool bHasNumOfSce
bool bHasTitle
bool bHasArtist
bool bHasDescri
bool bHasCopyri
bool bHasDate
bool bIsProtect
bool bMore

if (bMoke)

{
int spareld
bool bMorel

nes = gbsMain.bit(1l);
= gbsMain.bit(1);
= gbsMain.bit(1);
gbsMain.bit (1) ;
gbsMain.bit (1) ;
= gbsMain.bit(1);
ed = gbsMain.bit(1);
= gbsMain.bit(1);

ption
ght

= gbsMain.bit(7);
gbsMain.bit (1) ;

int humOfScenes = (bHasNumOfScenes ? gbsMain.wozxd (1)) ;
int Hate (bHasDate ? gbsMain.word(4))
int FrameRate = (bHasFrameRate ? gbsMainsword (1)) ;
char[] fEitle = (bHasTitle ? gbsMain.asciiz (16));
char[] fopyright = (bHasCopyright ? gbsMain.asciiz (16));
char[] prtist = (bHasArtist ? gbsMain.asciiz (16));
char[] flescription = (bHasDescription ? '\gbsMain.asciiz (256)) ;
}
4.3.1.2 Semantics
Name Description
bHasNumOf$cenes Is numOfScenes present?
bHasFrameRate Is frameRatepresent?
bForceFramgRate Should.the player or it's user be allowed to modify the frame rate specified in frameRatg?
spare3_6 Unused bits
bMore Does another flags byte follow?
bHasTitle Is title present?
bHasArtist Is artist present?
bHasDescription Is description present?
bHasCopyright Is copyright present?
bHasDate ls date present?
blsProtected Is playing the content in the bitstream protected by Digital Rights Management?
sparei14 Unused bits
bMore1 Does another flags byte follow?
numOfScenes Number of scenes in the bitstream. Present only if bHasNumOfScenes is true.
date Creation date of the stream's contents. Present only if bHasDate is true.
frameRate Recommended frame rate in frames/second in which the bitstream contents should be
played. Present only if bHasFrameRate is true.
title The stream's title. Present only if bHasTitle is true.
copyright The stream's copyright string. Present only if is true.
artist The stream's Artist. Present only if bHasCopyright is true.
description A general description of the bitstream. Present only if bHasDescription is true.
48 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.4 Scene Block ('S') Decoding
4.41 decSceneBlock()

4411 Syntax

decSceneBlock: :decSceneBlock ()

{

gScn = new Scene(); // the decoded Scene

bHasName = gbsMain.bit(1l);
OO L PHasSCatedr rame =gbsMaim bIt(I);

Hool bHasBackgroundColor = gbsMain.bit(1);

Yool bHasCameraScenario = gbsMain.bit(1);

Yool bHasPreviewFrameNum = gbsMain.bit(1);

Yool bHasFrameRate = gbsMain.bit(1);

Hool bspare = gbsMain.bit(1);

Hool bMore = gbsMain.bit(1);

int numOfObjects = gbsMain.word(1) ;

int backgroundColor = (bHasBackgroundColor ? gbsMain.word(3)) ;
dghar[] name = (bHasName ? gbsMain./asciiz (63));
int numOfFrames = gbsMain.bit (16);

int frameHeight = gbsMain.bit(12);

int frameWidth = gbsMain.bit(12);

int scaledFrameHeight = (bHasScaledFrame ?\gbsMain.bit (12));
int scaledFrameWidth = (bHasScaledFrame ? gbsMain.bit(12));
int frameRate = (bHasFrameRate ? gbsMain.bit(8)):;
int previewFrameNum = (bHasPreviewFrameNum ? gbsMain.bit(16));

|-

f (bHasCameraScenario)

L

// gSeiys Camera Scenario
// ihdtaite Camera decoding

gCmr = new Cameraf();
gDecCmr = new decCameral();

4.41.2 Semantics

Name
bHagName
bHagScaledFrame
bHas$BackgroundColor
bHagsCameraScenario
bHagPreviewFrameNum
bHagFrameRate

bspdte

bMofe

numOTODBjects

Description

IS name present?

Are scaledFrameHeight and scaledFrameWidth present?
Is backgroundColor present?

Is Camera Scenario Present?

Is previewFrameNum present?

is FrameRate present?

spare bit

Does another flags byte follow?

The number of ObJeCts In this SCene.

backgroundColor

The scene canvas's background color. Present only if bHasBackgroundColor is true.

name The scene's name. Present only if bHasName is true.

previewFrameNum Which frame did the author select as this scene's "preview" frame. Present only if
bHasPreviewFrameNum is true. If absent, this scene has no preview frame.

numOfFrames The number of frames in this scene.

frameHeight, The respective height and width of the scene's frame in pixels.

frameWidth

scaledFrameHeight, The respective height and width of the scene's scaled frame in pixels. Present only if

scaledFrameWidth bHasScaledFrame is true.

frameRate Frame rate. Present only if bHasFrameRate is true.

cameraScenario The camera scenario for this scene. If absent this scene is a "fixed camera" scene.

© ISO/IEC 2004 — Al rights reserved

49

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.5 Object Block ('C")

Decoding

An Object block is identified by 'C' in its first byte (objects were previously named "characters").

4.51 decObjectBlock()

4.51.1 Syntax

{
gObj = new Object ()

decObjectBlock: :decObjectBlock ()

; // the decoded Object

bool bHasName
bool bHasType

bool bHasSkeleton

bool bFlip
bool bText
bool bMore

if (bMofke)

{
bool bLocked
bool bMovable
bool bFlipable

bool sparel2 14
bool bMorel
}

char[] hame
int L ype
int EcaledHeight

if (bHagSkeleton)
{

gDecSkl
}

if (bHapAnimation)

gDecA
}

=)
=]
|

= gbsMain.bit(1);
= gbsMain.bit(1);

bool bHasScaledHeight = gbsMain.bit(1);

= gbsMain.bit(1);

bool bHasAnimation = gbsMain.bit(1);

= gbsMain.bit(1);
= gbsMain.bit(1);
= gbsMain.bit(1);

= gbsMain.bit(1);
= gbsMain.bit(1);
= gbsMain.bit(1);

bool bHasInteraction = gbsMain.bit(1);

= gbsMain.bit(3);
= gbsMain.bit(1);

= (bHasName

gSkl = new Skeleton();
new decSkeleton();

gAnm = new Animatioh () ;
= new decAndmation () ;

? gbsMain.asciiz (63));
(bHasType ? ‘\gbsMain.bit (4));
(bHasScaledHeight 2 gbsMain.bit(10));

7/ initaite Skeleton decoding

// initaite Animation decoding

// Text text;
// Intekaction interaction;
}

4.51.2 Semantics
Name Description
bHasName Is name present?
bHasType Is type present?
bHasScaledHeight Is scaledHeight present?
bHasSkeleton Is skeleton present?
bHasAnimation Is animation present?
bFlip Flip the object by 1807
bText Are text properties present?
bMore Does another flags byte follow?
50 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-

19:2004(E)

bLocked Can the object recieve interacion from the player.
bMovable Is object moveable by the player?
bFlipable Can object be rotated into the Z dimension by more than +/- 180 degrees by the player?
bHaslInteraction Is interaction information present?
spare12_14 Unused bits
bMore1 Does another flags byte follow?
name The object’s name.
type The object’s type. Present only if bHasType is true.
. REGULAR (0x01) - This object was authored explicitly, i.e. the player does not
need to generate it
. TEXT (0x02) - This object was authored to portray text. Text-information serves
only for future authoring of the object.
scal¢dHeight The object’s scaled height in pixels. Present only if bHasScaledHeight is true.
skelgton The object’s skeleton. Present only if bHasSkeleton is true.
animfation The object’s animation. Present only if bHasAnimation is, true.
text The text properties of the object. Present only if bText is true and (type == TEXT).
interpction The object’s interaction rules. Present only bHaslnteraction if is true.
4.6 | Texture Block ('A') Decoding
A Telxture block is identified by 'A' in its first byte.
4.6.1 Overview
This |chapter describes the bitstream of the Texture and the process of decoding it to primitivgs, known as

Text

A Te|
durin

The

4.6.2

Cla

Reaq
dedi

ure Decoding.

xture block contains the data of a_single Texture. It is comprised of a sequence of sub-strean
g a series of specific decoding stages.

decTextureBlock()
s decTextureBlock reads and decodes all primitives comprising a single Texture.

ing and~decoding bitstream data to Texture primitives is done in 8 main decoding stages. E
ated.t6 decoding and re-constructing certain properties of texture primitives for the entire tex

s, accessed

farget of the decoding process are Texture Primitives. §3.1.2 - The Texture describes th¢ syntax and
semantics of the target data structures of Texture Decoding.

Fach stage is
ture.

Texture decoding stages are described in detail in the sections following this one.

Each decoding stage accesses in parallel one or several sub-streams of the main bitstream. ST sub-streams
group data elements that have been found empirically to reduce data size when properly aggregated, ordered,
quantized, packed and compressed.

Texture sub-streams are described and listed in §4.11.

© ISO/IEC 2004 — Al rights reserved

51

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.6.2.1 Syntax

{

decTextureBlock: :decTextureBlock ()

bitsStream gbsTxr (gbsMain);// open main sub-stream of the texture

depths

gTxr = new Texture(); // let gTxr be the decoded texture
header decHeader () ;

locations decLocations () ;

curveGepmetry decLinesGeometry () ;

subLayekIds decSublayerIds () ;

areaColpring decAreaColoring() ;

lineColprProfiles decLineColorProfiles () ;

patches decPatches () ;

decDepths () ;

4.6.2.2 Semantics

Class dec
Reading ang
dedicated td
"SSS" is exe
The Texture
Each decodi
Within the m
used in one

immediately

All Texture s

rextureBlock reads and decodes all primitives comprising a single Texture.
decoding bitstream data to Texture primitives is done in 8 main decoding stages. Each st3
decoding certain properties of texture primitives for the entire texture. Each decoding

cuted by a respective class "decSSS".

decoding stages are described in the sections following this one, as listed below.

hg stage accesses in parallel ®ne or several sub-streams of the main bitstream.

ain bitstream, sub-streams-are ordered in a specific order, according to the first time they my

of the decoding stages. Sub-streams are thus opened and read from the main bitst

prior to the decoding'stage that first uses them:

ub-streams extend the toknStream or bitsStream classes described and listed in §4.11.

ge is
stage

st be
ream

52

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

Decoding Stage Section

a. decHeader 4.6.3
o information about the texture as a whole e.g. texture dimensions.

e information about the texture's coding and bitstream e.g. quantization
levels.

e Geometric information about the texture's Layers (LYs).

b. d¢cLocations 4.6.4
b The 2D locations of all Terminal Points (TPs) in the texture.

b The 2D locations of the center points of all Patches (PA) in the texture.

c. decLinesGeometry 4.6.5
p The geometric shape of all Line Segments (LS) in the texture.

b The Line Type of all Lines (LNs) in the texture.

p The width components of all Line Color Profiles (LCs) in‘the texture.

b How Lines (LNs) in the texture are connected.

d. décLayerslds 4.6.6
b Association of texture primitives with Layers.

b Attributing contour type to LNs.

e. decAreaColoring 4.6.7
p The location and color-of all Area Color Points (ACs) in the texture.

b The margin color.values of all Line Color Profiles (LCs) in the texture.

f. decLineColorProfiles 4.6.8
» All remaining properties of the Line Color Profiles (LCs) in the texture.

g. decPadtch 4.6.9

s All Temaining properties o1 the geometry and coloring of the patches
(PAs) in the texture.

h. decDepths 4.6.10

o All depths of PAs, ACs and LCs, in case they were not previously
decoded globally.

© ISO/IEC 2004 — Al rights reserved 53

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.6.3 Texture Header
4.6.3.1 decHeader

4.6.3.1.1 Syntax

class decHeader: :decHeader ()
{
// texture coding fla
bool bHasDepth
bool bHasContour
bool bH
bool bH
bool bH
bool sp
bool bM

gbsTxr.
gbsTxr.

1 m
gOS1IXT

gs
= bit(1);
bit(1);
bt
bit(1);
bit(1);
bit(2);
bit(1);

1and9c3 =
bsPatches
hsDepthDeltas
hre5 6

bre

= gbsTxr.
gbsTxr.
gbsTxr.
gbsTxr.

Hth

i ght

| 1Size
an

bit(16);
bit (16);
bit(8);
bit(8);

gTxr.wi
gTxr.he
int ce
int gL

gbsTxr.
gbsTxr.
= gbsTxr.
gbsTxr.

if
{

(bHafpDepth)

wvor1dUnit gbsTxr.bit (16) ;

bsTxr.bit (1)

1)

. LosOffsetX
. LosOffsetY

gTx
gTx
}

gbsTxr.bit (16) ;
gbsTxr.bit (16) ;

decLa
decSu

yers () ;
bLayersDepath () ;

QS

J

4.6.3.1.2 emantics

Class decHdader reads global information regarding:

The text

. ire as a whole e.g,-texture dimensions.

The text

re's coding and bitstream parameters e.g. quantization levels.

Layers'i

hformation)later used to associate and orientate texture primitives relative Bones.

Name

Description

bHasDepth

Daes the coded texture have depth

bHasContour

Does the coded texture have a contour line (that is not its bounding rectangle) ?

bHasRidges

Does the coded texture include RIDGE lines ?

bHasPatches

Does the coded texture include Patches (PAs) ?

bHasDepthDeltas

Do primitives in the coded texture have depth corrections (deltas) relative to their layers?
Default: false, i.e. primitives' depth is derived from their layer's depth information.

spare5_6

Unused bits

BMore

Does another flags byte follow?

CellSize

The size of the top-level cells used for encoding the texture's occupancy grid, in pixels. This is
typically 8, indicating cells of 8x8 pixels.

qLvl

The quantization level used for encoding the texture — reflects level of detail and sampling
resolution. This is a 0..4 index into quantization tables, see §4.6.9.1.2.

54

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.6.3.2 decLayers()

4.6.3.21 Syntax

decHeader: :decLayers ()

{
gTxr.nLY = gbsTxr.bit(8);

int Xbits ilog2 (height/cellSize) ;
int Ybits = ilog2 (width /cellSize);

flor (int 1lyi = 0; lyi < gTxr.nLY; lyi++)

gTxr.alY[lyi] .nSL = gbsTxr.bit(4);

gTxr.nSL += gTxr.alY[lyi] .nSL;

for each SL sl in gTxr.aLY[lyil]
sl.iLY = lyi;

gTxr.alY[lyi] .X0 = gbsTxr.bit(Xbits) * cellSize;
gTxr.alY[lyi] .X1 = gbsTxr.bit(Xbits) * cellSize;
gTxr.alY[lyi] .Y0 = gbsTxr.bit(Ybits) * cellSize;
gTxr.alY[lyi] .Yl = gbsTxr.bit(Ybits) * cellSize;

gTxr.alY[lyi] .bHasDepthDeltas = gbsTxr.bit(1l);

gTxr.alY[lyi] .name = gbsTxr.asciz (64);

4.6.3.2.2 Semantics

Name Description

Xbitg, Ybits Number of bits to be used'in reading X and Y coordinates of layers' bounding rectangles.

4.6.3.3 decSubLayersDepth()

4.6.3.3.1 Syntax

dedHeader: :decSuplayersDepth ()
ilnt nBitsFo¥Pistance = gbsTxr.bit(6);
flor each\SL sl in gTxrgTxr

sl sirfaceType = gbsTxr.bit(4);
sMMbOrthogonal = gbsTxr.bit(1l);

if (bOrthogonal)
sl.orient = point3D(0, 0, 1.0);
else

{

sl.orient.x = gbsTxr.float(gqVecDist, gVecDist.bits());
sl.orient.y gbsTxr.float (gVecDist, gVecDist.bits()):
sl.orient.z = gbsTxr.float(gVecDist, gVecDist.bits())

’

// normalize orient:

float tmp = sgrt(sl.orient.x”2 + sl.orient.y"2 + sl.orient.z"2);
sl.orient.x /= tmp;

sl.orient.y /= tmp;

© ISO/IEC 2004 — Al rights reserved 55

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

sl.orient.z /= tmp;

}

sl.dist = gbsTxr.float(gqVecDist, nBitsForDistance) ;

4.6.3.3.2 Semantics

Name Description

nBitsForDistgrce Spetifiesthe umberof bitstoTead for thedistance float vatues

4.6.4 Locations
4.6.41 degLocations()

4.6.4.1.1 Syntax

class declocations: :decLocations ()
{
// usesk
bitsStrgam bsCntr (gbsMain) ;
toknStrpam tsdxlcell (gbsMain);
toknStrgam tsLocType (gbsMain);

int flags
int cel|lSize

gbsTxr.bit(8) ; // reserved Bit
gbsTxr.bit(8);

gCord.mfin = -cellSize/2;
gCord.mpx cellSize/2;

for each cell8x8 in the texture // fe¥Jeach group of 8X8 cells in aCell[]
decCe]l18X8 (cell8x8)

decLocatipns::decCell8X8 (cell8x8)

{
int bMulltiple = 0;

if (bsChtr.bit(l) ==,1)
{
bMultfiple = gbsTxx.bit(1);

for epch cedldk4 in cell8x8 // for each group of 4X4 cells in cell8x8
decfelldxd(celldx4, bMultiple);

decLocations::decCelldx4 (celldx4, bMultiple)
{
if (bsCntr.bit(l) == 1)
{
if (bMultiple == 0)
bMultiple = bsCntr.bit(1);

for each cell2x2 in celld4x4 // for each group of 2X2 cells in cell4dx4
decCell2x2 (cell2x2, bMultiple);

56 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

decLocations::decCell2x2 (cell2x2, bMultiple)
{
if (bsCntr.bit(l) == 1)
{
int 4xlcell = ts4xlcell.next():;

for each celllxl in cell2x2
if (corresponding bit in 4xlcell == 1)
decCelllxl (celllxl, bMultiple);

decLocations::decCelllxl (cell, bMultiple)
{

do
{
int type = ssLocType.next();
switch (type)
{
case 0:
aPA[nPA] .x cell.x + dequant (qCoord, bsCntr.bit(qCoordBits)) ;
aPA[nPA].y = cell.y + dequant (qCoord, bsCntr.bit(qCoordBits)) ;
nPA++;
break;

case default:

aTP[nTP].x = cell.x + dequant (gCoord, bsCntr.bit(gqCoordBits)) ;
aTP[nTP].y = cell.y + dequant (gCoord, bs€ntr.bit(gCoordBits))
aTP[nTP].junctionType = type - 1;

nTP++;

break;

}

while (bMultiple && bsCntr.bit(l) == 1);

4.6.4.1.2 Semantics
Clas$ declocations reads and decodges:

e The 2D locations of the Terminal Points (TPs), which define the start and end points of all jthe texture's
Uines (LNs).

¢ The 2D locations of thie centers of all Patches (PAs) in the texture.

Locations of centers-(the geometric centers of TPs and PAs) in the Texture are encoded using [the following

. he area of the Texture is divided into cells of cellSize x cellSize pixels.

trix marks the number of centers in each cell

The occupancy matrix is encoded into a stream using the partial quad-tree algorithm.

the partial quad-tree algorithm establishes a reference order to all centers.

The (x, y) offset of each center from the center of it's cell is recorded.

Name Description
Type A location may be TerminalPoint or Patch

© ISO/IEC 2004 — Al rights reserved 57

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.6.5 Line Geometry
4.6.5.1 decLinesGeometry()

4.6.5.1.1 Syntax

void decLinesGeometry::decLinesGeometry ()
{
// uses:
toknStream tsLsCnt (gbsMain);
toknStream tsLsHgt (gbsMain);

toknStrgamtsEsYer—tgbstat—

toknStrgam tsEndTp (gbsMain);

flags =| gbsTxr.bit(8); // reserved bit
decTernfinalPointTopology () ;
decBranfhingLines () ;

decLinefiidths(); // RIDGE and EDGE

decParallellLines () ;

46512 §
Class declLin
e Thegeo
e The Ling
e The widt

e HowLin

emantics

esGeometry reads and decodes:

metric shape of Line Segments (LS) in the texture.
Type of Lines (LN) in the texture.

h components of Line Color Profiles (lC) in the texture.

bs (LN) in the texture are connected.

4.6.5.2 degTerminalPointTopology()

4.6.5.21 §

yntax

void decL

{

i nesGeometrynrdecTerminalPointTopology ()

for each TP tp(iy gTxr
{
if (tp.JunagtionType == SPLITTING)
decpp¥ittingTopology (tp) ;

else

{

for

{

}

tp.nBR = gbsTxr.bit(2);

each BR br in tp

br.bOut = true
br.ilnType = tp.JunctionType;

58

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

4.6.5.2.2 Semantics

ISO/IEC 14496-19:2004(E)

This class decodes the type of the Treminal Point. It it is of splitting nature, it calls for decoding all the lines

ending at this point.

4.6.5.3 decBranchingLines()

4.6.5.3.1 Syntax

voild decLinesGeometry: :decBranchingLines ()
flor each tp in gTxr.aTP[]
for each BR br in tp

if (br.boOut)
decBranchingLine (tp, br);

4.6.8.4 decBranchingLine()

4.6.84.1 Syntax

IN 1n;

In.iLN = nLN;
.1LnType = brBeg.iLnType;
.nLLS = tsLsCnt.next() + 1;

B
[S]

nt xTotal = tpBeg.x;
nt yTotal = tpBeg.y;
nt xBase = 0;
nt yBase = 0;

P b b

flor each LS 1s in In

——

l1s.hgt = dequantfZ (gLsHgt, tsLsHgt.next()):;

if (ls isSNOT the last LS in 1n)

{
1s.x = dequantZ (gLsVec, tsLsVec.next()) + xBase;
1lsWy' = dequantZ (gLsVec, tsLsVec.next()) + yBase;
xBase = 1ls.x;
yBase = l1ls.y;

voild decLinesGeometry::decBranchingLine (TP tpBeyg, BR brBeq)

xTotal += 1ls.x;
yTotal += ls.y;

}

brBeg.ilN = 1n.iLN;
1ln.iTpBeg tpBeg.iTP;
In.iTpEnd = decLineEndTp (ln.iLnType, xTotal, yTotal)

TP tpEnd = gTxr.aTP[ln.iTpEnd];
int iBR;
if (tpEnd.junctionType == SPLITTING) // only BR[1]

iBR = gsbTxr.bit (1) + 1;

’

and BR[2]

are

possible

© ISO/IEC 2004 — Al rights reserved

59

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

else
iBR = tpEnd.nBR++;

BR brEnd = tpEnd.aBR[iBR];
brEnd.iLN = 1n.iLN;
brEnd.bOut = false;
brEnd.ilnType = 1ln.iLnType;

let 1s be the last LS in 1n;
ls.x = tpEnd.x - xTotal;
ls.y = tpEnd.y - yTotal;

gTxr.alN[gTxr.nIN++] = 1n;

// add a new in-branch

// add 1n

4.6.5.4.2 Semantics

This class d
coordinates.

4.6.55 defEndTP()

4.6.5.51 Syntax

ecodes and computes the line geometry. Coordinates are specified as offsgts from preyious

{

int decLi

let celll0 be the cell in which

let vicfinity be a NxN cell vicinity around cegl}0 where

{

the cglls in vicinity are indexed O..
cellO| is in the central row and columpnyof vicinity.

N = 1[;
}

int iCe|ll = tsEndTp.next();

let aTppInCell[] be the list\of TPi's in cell[iCell] where

{

only ['Ps whose junction®ype is SPLITTING or lineType are in the list;
TPs ih the list are-~erdered by their order in gTxr.aTP[];

}

let nTppInCell Pe~the number of elements in aTpsInCell;

if (nTppInCellI™== 1)

returh aTesInCell[0]; // the single element in aTpsInCell

else

hesGeometry: :decLineEndTp (lineType, X, V)

resides.

//~the index of the cell in vicinity

N*2-1 from vicinity's top-left;

{

int nBitsFor iTP = ilog2 (nTpsInCell - 1);
int iTP = gsbTxr.bit(nBitsFor iTP) + 1;

return aTpsInCell[iTP];
}

60

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

4.6.5.5.2 Semantics

Return the index of the ending TP of the Line starting at (x, y).

ISO/IEC 14496-19:2004(E)

o123 |4|5|6|7]8]9]10
11112 (13 (14 |15 |16 |17 | 18 | 19 | 20 | 21
22 123|124 |25|26 |27 (28|29 |30 (31|32
33|34 |35 |36 |37 |38|39|40 |41 |42 |43
44 |1 45 |46 |47 |48 |49 [50 | 51 | 52 | 63 | 54
55 | 56 | 57 | 58 | 59 q 60 | 61 | 62 | 63 | 64
65|66 |67 |68 |69 |70 |71 |72|73 |74 |75
76 | 77|78 |79 |80 |81|82|83|84 |85 86
8788|8990 |91]92|93|94|95|96 |9~
98 | 99 |100|101|102|103|104|105|106 | 107\ 108
109110111 (112|113|114|115|116 | 1174118 | 119

Figure 34 — The vicinity grid (N=11) of (x, y), andthe indexing of its cells.

4.6.9.6 decLineWidths()
4.6.8.6.1 Syntax
voild decLinesGeometry::decLineWidths ()
{
flor each LN of iLnType RIDGE or EDGE i) gTxr
{
let {p0, pl, .., pn} be the sepafating LCs on LN.
let {90, gl, .., gm} be the subséet of {p0O, pl, .., pn} so that
{
q0 = p0;
gi = the next pj so (guasiDistance (pj, di.1) > glLineSampleDistance.step) ;
am = pn;

}

for each qgi
{
if
{

(In.iLnType == RIDGE)

gi.widehLft
qif.widthRgt

dequant (gSepW, tsSepW.next()):;
dequant (gSepW, tsSepW.next()):;

}

}
}
}

&lse // EDGE
{
gi—wiceh b f—deguant{tgSepi—tsSepW—next{)—
gi.widthRgt = gi.widthLft;
}
}
for each segment (g;-;, 9i)
for each p between g;; and g;
{
int dist = quasiDistance (p, 9;.1) / quasiDistance(q;, di-1):
p.widthlLft = widthInterpol (q;-;.widthLft, qg;.widthLft, dist);
p.widthRgt = widthInterpol (gq;_;.widthRgt, qg;.widthRgt, dist);

© ISO/IEC 2004 — Al rights reserved

61

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.6.5.6.2 Semantics

This class determines the width of the line according to its type: Edge or Ridge.

4.6.5.7 decSplittingTopology()
4.6.5.71 Syntax
void decLinesGeometry::decSplittingTopology (TP tp)
{
tp.nBR £ 3;
tp.aBR[P].iLnType = RIDGE;
tp.aBR[P].bOut = gbsTxr.bit(1);
for (inf bri=1; bri<2; bri++) // for each BR in tp.aBR[1l..2]
{
iSplifType = gbsTxr.bit(2);
switch (iSplitType)
{
casg O:
bk.iLnType = ABSENT;
bk .bOut = false;
bkeak;
casg 1:
bk.iLnType = PARALLEL;
bk .bOut = false;
bkeak;
casg 2:
bk.iLnType = EDGE;
bk .bOut = false;
bkeak;
casg 3:
bk.iLnType = EDGE;
bk .bOut = true;
bkeak;
}
}
}
4.6.5.7.2 Semantics
This class dgcodes the nature‘of the splitting terminal point. Based on the topology the type of the bran¢hing
lines is set.
4.6.5.8 degParallelLines()
4.6.5.8.1 Syntax

{

{

if

br.iLN

void decLinesGeometry::decParallellLines ()
for each SPLITTING TP tp in aTxr

for each BR br in tp

(br.iLineType == PARALLEL)
decParallelline (tp.x,

tp.y) i

62

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

4.6.5.9 decParallelLine()

46591 Syntax

ISO/IEC 14496-19:2004(E)

int decLinesGeometry::decParallelline (x, V)

{
let cell0 be the cell in which (x, y) resides.

let vicinity be a NxN cell vicinity around cellO where:

{

cell0 is in the central row and column of vicinity.

N = 11;

some LS 1s on 1ln fullfills (ls.vX, 1ls.vY) is in cell[iCelll\
celll [iCell]

In.iLnType==RIDGE;

INi's in the list are ordered by their order in gTxr.akN[];

llet nLnInCell be the number of elements in aLnInCell;

if (nLnsInCell == 1)

return aLnInCell[0]; // the single elemen® ¥n alnInCell
glse

int nBitsFor iLN = ilog2(nLnInCell +1);

int iLN = gsbTxr.bit(nBitsFor iLN)¥
return alnInCell[iLN];

}

the cells in vicinity are indexed 0.. N"72-1, starting from vicinity's topsl

int iCell = tsEndTp.next(); // the index of the cell in vicinity

llet aLNsInCell[] be the list of LNi's where for each LN[LNi] 1n @h~the list W

// 1ln "passes'

here:

in

4.6.9.9.2 Semantics

Retufn the index of the parallel-kine branching at (x, y).
4.6.4 Layerlds
4.6.6.1 decSublayerlds()

4.6.6.1.1 Syntax

degSublayerIds: :decSubLayerIds ()

{
if (gTxr.nLY == 1 && !gTxr.bHasCountor)

{
for all PAs and LNs in gTxr:
let 1iSL be 0;
let iContourType be 0;
return;

}

bool bHasMoreThanOneSL;
bool bHasContourLine;
int iSL;

int flags = gbsTxr.bit(8);

© ISO/IEC 2004 — Al rights reserved

63

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

{
if
{
iLs
}
else
{
if
}

bHasC

for e
pa.

for e

e

-

for each cell2x2 in the

bHasMoreThanOneSL =

bHasMoreThanOneSL =

iSL =

texture with Lines or Patches

(gTxr.nSL == 1)

false;
= 0;

gbsTxr.bit (1) ;
(!bHasMoreThanOneSL) // i.e.
tsSbLyId.next () ;

has one

bntourLine = gbsTxr.bit(1l);

bch PA pa whose center is in cell2x2

i LS = NextSubLayerId(bHasMoreThanOneSL, iSL);
bch LN 1n starting in cell2x2

h.iS1Lft = 1n.iS1Rgt =
h.iContourType = 0;
[

f (ln.iLnType == RIDGE In.iLnType == EDGE)

In.iContourType =

if (ln.iContourType == 0x04)

iS1Rgt = tsSbLyId.next();

NextSubLayerId (bHasMoreThanOneSL,

NextContourFlag (bHasContourLing) ;

ALS) ;

decSubLay
{

if (!'bH
retur

return (

brIds: :nextSubLayerId (bool bHasMoreThanOneSL,

hsMoreThanOneSL)
h (1iSL) ;

L sSbLyId.next () ;

int iSL)

decSubLay
{

if (!'bH
retur

return (

brIds: :nextContQurFlag (bool bHasContourLine)

hsContourLiney)
N (0) ;

[sSepElg.next () ;

4.6.6.1.2 Semantics

Class decSublLayerlds reads and decodes:

e iSL's, used to associate LNs and PAs with a Layer and Sub-layer.

e Contour type, used to determine which LNs are "contours" of the texture and of sub-layers.

64

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.6.7 Area Coloring

4.6.7.1 decAreaColoring()

4.6.7.1.1 Syntax

|-

decAreaColoring: :decAreaColoring ()
{
//uses:
bitsStream bsAc (gbsMain) ;
toknStream tsAcAbsY (gbsMain) ;
LUJ&IIDLLCGU[[LoACADSCUITD \kJL)bJ.lctJ..lll I3
tloknStream tsAcRelY (gbsMain) ;
fHoknStream tsAcRelCrCb (gbsMain);

nt flags = gbsTxr.bit(8); // reserved bit
nt cellSize = gbsTxr.bit(8);

or each layer in the texture

decPointsLoaction () ;
decPointsColor () ;
decSepLinesMidAndCenterColors () ;

4.6.7

Clas

o

.1.2 Semantics
5 decAreaColoring reads and decodes:
[he location and color of Area Color Points (ACS).

[he far (colorFarLft, colorFarRgt) and central (colorCenter) color values of Line Color Profiles

(LCs).

4.6.7.2 decPointsLoaction()
4.6.71.2.1 Syntax
dedAreaColoring: :decRointsLoaction ()

or each celldxd4 _in the layer // for each group of 4X4 cells in the layer
decPointsLocat/ionCelldx4 (celldx4)

AreaColering: :decPointsLocationCell4dx4 (celldx4)

f /AbsAc.bit(1l) == 1)

for each cell2x2 in celld4x4 // for each group of 2X2 cells in celldx4
decPointsLocationCell2x2 (cell2x2)

dec

{
i

{

AreaColoring: :decPointsLocationCell2x?2 (cell2x2)
f (bsAc.bit(l) == 1)

for each celllxl in cell2x2 // for each group of 1X1 cells in cell2x2
decPointsLocationCelllxl (celllxl)

© ISO/IEC 2004 — Al rights reserved

65

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

decAreaColoring: :decPointsLocationCelllxl (celllxl)
{
if (bsAc.bit(l) == 1)
{
aAC[nAC].x = celllxl.x;
aAC[nAC].y = celllxl.y;
aAC[nAC] .iSL = 1iSL;
nAC++;
}
}
4.6.7.2.2 Semantics
These set of classes decodes the position of Area Color points (AC) of the layer. The points are)encoded
based on a quad-tree topology.
4.6.7.3 depPointsColor()
4.6.7.3.1 Syntax
decAreaColloring: :decPointsColor ()
{
color nprsAverage;
for each cell C in gTxr containing AC point
{
if (PheighborsAverageColor (C, &nbrsAverage) == 1)
{
Ac.}l = nbrsAverage.y + dequant?Z (gAe¥; ssAcRelY .next ());
Ac.fr = nbrsAverage.cr + dequantZ (qAeCrCb, ssAcRelCrCb.next()):;
Ac.fb = nbrsAverage.cb + dequantZi{gAcCrCb, ssAcRelCrCb.next()):;
}
else
{
Ac.} = dequant (gAcY, ssAcAbsY.next()) ;
Ac.pr = dequant (gAcCr, ,s8sSAcAbsCrCb.next()):;
Ac.fb = dequant (gAcCb, \.ssAcAbslCrCb.next());
}
}
for each AC ac in gTxr.aAC[]
ac.color.toRGB ()
}
4.6.7.3.2 Semantics
The color of apomtis computed form the average cofor of the neighboring point.
Name Description
nbrsAverage This variable holds the color average of the neighboring Area Color points

66

© ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

4.6.7.4 PneighborsAverageColor()

4.6.7.41 Syntax

bool PneighborsAverageColor (Cell C, color &nbrsAverage)

{
nbrsAverage = { 0, 0, 0 };
int nAC = 0;

for each AC in Pneighbor (C)
{

nbrsAverage.y += AC.y;
nbrsAverage.cr += AC.cr;
nbrsAverage.cb += AC.cb;
nAC++;

if (nAC == 0) return(0);
brsAverage.y /= nAC;

brsAverage.cr /= nAC;
norsAverage.cb /= nAC;

55

Heturn(l);

4.6.71.4.2 Semantics

Pneighbors (previous neighbors) to a cell C are numbered as follows:

1 2 3 — visited neighbors cells of C

4 C (neither necessarily has an AC)

4.6.71.5 decSepLinesMidAndCenterColors()

4.6.7.5.1 Syntax

dedAreaColoring: :decSepLinesMidAndCenterColors ()

rrecach TN of 1T pe RIDGE or EFDGE 1n rj'T‘ r

let {p0, pl, .., pn} be the separating LCs on LN.

let {90, gl, .., gm} be the subset of {p0O, pl, .., pn} so that

{
q0 = p0;
gl = the next pj so (quasiDistance(pj, di-1) > glineSampleDistance.step) ;
qm = pn;

}

for each gi
for each parameter colorPrm in {gi.colorFarRgt, gi.colorFarLft, gi.colorCenter}
{

if (i == 0)

{

© ISO/IEC 2004 — Al rights reserved 67

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

ISO/IEC 14496-19:2004(E)

gi.colorPrm.y = dequant (gAcY, tsAcAbsY.next ()) ;
gi.colorPrm.cr = dequant (gAcY, tsAcAbsCrCb.next ()) ;
gi.colorPrm.cb = dequant (gAcCrCb, tsAcAbsCrCb.next()):;
}
else
{
gj;.colorPrm.y = g;_;.colorPrm.y + dequantZ(gAcY, tsAcRelY.next());
g;.colorPrm.cr = g;_;.colorPrm.cr + dequantZ (gAcY, tsAcRelCrCb.next ()) ;
g;.colorPrm.cb = g;_;.colorPrm.cb + dequantZ (gAcCrCb, tsAcRelCrCb.next());
}
}
for each segment (g;.., d;i)
for epch p between g;; and qg;
{
int|dist = quasiDistance (p, g;.1) / quasiDistance(q;, di-1);
p.cplorFarRgt = colorInterpol (g;_;.colorFarRgt, g;.colorFarRgt, dist);
p.cplorFarLft = colorInterpol (g;-;.colorFarLft, g;.colorFarLft, dist);
p.cplorCenter = colorInterpol (g;.;.colorCenter, g;.colorCenter, dist)s
}
for epch LC 1lc on LN
for| each parameter colorPrm in {lc.colorFarRgt, lc.colorFarLft, lc.colorCenter}

1lp.colorPrm.toRGB () ;

S

~

4.6.7.5.2 emantics

The YcbCr golor components of separating lines are decoded in‘this class

4.6.8 Line|Color Profiles

4.6.8.1 degLineColorProfiles()

S

~

4.6.8.1.1 yntax

class declineColorProfiles::decLineColorProfiles()

{

toknStrgam tsSepY (gbsMain) ;
toknStrgam tsSepCrCb (gbsMain) ;
toknStrgam tsSepW (gbsMain) ;
toknStrfam tsNsepDifY (gbsMain) ;
toknStrgam tsNgepDifCrCb (gbsMain);
toknStrgam tsNsepCrv (gbsMain) ;

int flaps(*,gbsTxr.bit(8); // reserved bit

decSepartingColorProfiles () ;
decStripeColorProfiles();

4.6.8.1.2 Semantics
Class decLineColorProfiles reads and decodes:

e The remaining Line Color Profile (LC) data that was not encoded in previous decoding stages.

68 © ISO/IEC 2004 — Al rights reserved

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e

