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Foreword 

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical 
Commission) form the specialized system for worldwide standardization. National bodies that are members of 
ISO or IEC participate in the development of International Standards through technical committees 
established by the respective organization to deal with particular fields of technical activity. ISO and IEC 
technical committees collaborate in fields of mutual interest. Other international organizations, governmental 
and non-governmental, in liaison with ISO and IEC, also take part in the work. In the field of information 
technology, ISO and IEC have established a joint technical committee, ISO/IEC JTC 1. 

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. 

The main task of the joint technical committee is to prepare International Standards. Draft International 
Standards adopted by the joint technical committee are circulated to national bodies for voting. Publication as 
an International Standard requires approval by at least 75 % of the national bodies casting a vote. 

ISO/IEC 14496-19 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, 
Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information. 

ISO/IEC 14496 consists of the following parts, under the general title Information technology — Coding of 
audio-visual objects: 

— Part 1: Systems 

— Part 2: Visual 

— Part 3: Audio 

— Part 4: Conformance testing 

— Part 5: Reference software 

— Part 6: Delivery Multimedia Integration Framework (DMIF) 

— Part 7: Optimized reference software for coding of audio-visual objects 

— Part 8: Carriage of ISO/IEC 14496 contents over IP networks 

— Part 9: Reference hardware description 

— Part 10: Advanced Video Coding 

— Part 11: Scene description and application engine 

— Part 12: ISO base media file format 

— Part 13: Intellectual Property Management and Protection (IPMP) extensions 

— Part 14: MP4 file format 

— Part 15: Advanced Video Coding (AVC) file format 

— Part 16: Animation Framework eXtension (AFX) 
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— Part 17: Streaming text format 

— Part 18: Font compression and streaming 

— Part 19: Synthesized texture stream 
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Introduction 

ISO/IEC 14496 specifies a system for the communication of interactive audio-visual scenes. The specification 
includes the following elements: 

1. the coded representation of natural or synthetic, two-dimensional (2D) or three-dimensional (3D) objects 
that can be manifested audibly and/or visually (audio-visual objects) (specified in part 1,2 and 3 of 
ISO/IEC 14496); 

2. the coded representation of the spatio-temporal positioning of audio-visual objects as well as their 
behavior in response to interaction (scene description, specified in part 11 of ISO/IEC 14496); 

3. the coded representation of information related to the management of data streams (synchronization, 
identification, description and association of stream content, specified in part 11 of ISO/IEC 14496); 

4. a generic interface to the data stream delivery layer functionality (specified in part 6 of ISO/IEC 14496); 

5. an application engine for programmatic control of the player: format, delivery of downloadable Java byte 
code as well as its execution lifecycle and behavior through APIs (specified in part 11 of ISO/IEC 14496); 
and 

6. a file format to contain the media information of an ISO/IEC 14496 presentation in a flexible, extensible 
format to facilitate interchange, management, editing, and presentation of the media. 

The information representation, specified in ISO/IEC 14496-1 and in ISO/IEC 14496-11, describes the means 
to create an interactive audio-visual scene in terms of coded audio-visual information and associated scene 
description information. The encoded content is presented to a terminal as the collection of elementary 
streams. Elementary streams contain the coded representation of either audio or visual data or scene 
description information or user interaction data. Elementary streams may as well themselves convey 
information to identify streams, to describe logical dependencies between streams, or to describe information 
related to the content of the streams. Each elementary stream contains only one type of data. 

Elementary streams are decoded using their respective stream-specific decoders. The audio-visual objects 
are composed according to the scene description information and presented by the terminal’s presentation 
device(s). All these processes are synchronized according to the systems decoder model (SDM) using the 
synchronization information provided at the synchronization layer. 

The scene description stream identifies different types of objects, such as audio, visual, 2D and 3D graphics, 
etc. that define a scene composition of the content. Synthesized Textures streams provide for photo-realistic 
animations that can be transmitted using very low bitrates. These type of aniumamtions can be used in 
combination with other streams to enhance any scene. 

The International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) 
draw attention to the fact that it is claimed that compliance with this document may involve the use of patents. 

The ISO and IEC take no position concerning the evidence, validity and scope of this patent right. 
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The holder of this patent right has assured the ISO and IEC that he is willing to negotiate licences under 
reasonable and non-discriminatory terms and conditions with applicants throughout the world. In this respect, 
the statement of the holder of this patent right is registered with the ISO and IEC. Information may be obtained 
from: 

Vimatix Inc. 
5 Oppenheimer St. 
Rehovot 76701 
Israel 

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent 
rights other than those identified above. ISO and IEC shall not be held responsible for identifying any or all 
such patent rights. 
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Information technology — Coding of audio-visual objects — 

Part 19: 
Synthesized texture stream 

1 Scope 

This part of ISO/IEC 14496 specifies functionalities for the transmission of Synthesized Texture data as part of 
the MPEG-4 encoded audio-visual presentation. More specifically, it defines: 

1. The synthesized texture format representation that is utilized for Synthesized Texture data encoding 

2. The coded representation of Synthesized Texture data streams.  

2 Normative References 

The following referenced documents are indispensable for the application of this document. For dated 
references, only the edition cited applies. For undated references, the latest edition of the referenced 
document (including any amendments) applies. 

ISO/IEC 14496-1, Information technology — Coding of audio-visual objects — Part 1: Systems 

ISO/IEC 14496-11, Information technology — Coding of audio-visual objects — Part 11: Scene description 
and application engine 

3 Synthesized Texture Compression Technology 

3.1 Functionality and Semantics 

3.1.1 Overview 

Synthesized Textures represent photo-realistic textures by describing color information of vectors. 
Synthesized Texture streams are used for creation of very low bit rate synthetic video clips. Synthesized 
Texture clips are built using key frame based animations of skeletons that affect photorealistic textures whose 
color information is modeled by equations. 

A texture top-level Synthesized Texture Node (STNode) can be defined for playing SynthesizedTextures, 
see ISO/IEC 14496-11 for additional details  . The STNode itself is similar to the MovieTexture, and uses url 
field to reference an Object Descriptor describing the associated stream(s). The stream contains both the 
object textures and their animation descriptions . The STNode also exposes control points that can be used to 
manipulate via affine transforms the objects carried in its associated stream. By this way STNode can 
implement synthesized interactive SynthesizedTextures. As any texture, the resulting texture can be mapped 
onto any 2D or 3D surface. 
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3.1.1.1 SynthesizedTexture Elements 

The SynthesizedTexture is a collection of animated Objects (also called Actors) sharing a common Stage, 
Camera and Timeline. 

SynthesizedTexture

Object

Texture Skeleton

Animation

Object

Texture Skeleton

Animation

Object

Texture Skeleton

Animation

 

Figure 1 — Synthesized Texture structure 
The Object is comprised of a Texture, A Skeleton and an Animation. 

• The object's Texture represents the objects skin. 

The texture is comprised of primitive vector-style entities, belonging to a small number of primitive types 
such as Lines and Area Color Points. 

The pixel representation of the texture is reconstructed through the process of Texture Rendering. 

The texture is divided into mutually exclusive sub-textures called Layers. 

• The Skeleton represents the kinematic capabilities of the object relative to itself and controls the shape 
and appearance of the skin. 

The skeleton is comprised of a topology of Bones whose geometric configuration is controlled by the 
object's animation. 

The skeleton is attached to the texture's layers, and controls their position and shape within the object's 
plane. This ultimately affects the layout of the texture primitives on the plain, as the skeleton geometry 
changes. 

Re-rendering the texture based on a new layout of the texture primitives eventually results in a realistic 
warping effect called Texture Warping. 

• The Animation represents the spatial behavior of a single object along time. 

The animation of Objects is formed by an extrinsic motion of the entire object relative to the world, and an 
intrinsic motion of Layers relative to the object they are part of. 
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The intrinsic motion is controlled by the Skeleton geometry, as described above. Extrinsic motion of each 
object is controlled by its 3D displacement and rotation within the SynthesizedTexture's world. 

The Animation is a sequence of KeyFrames describing the state of the object in both intrinsic and extrinsic 
aspects, at specific frames on a timeline. Frames that are not explicitly described by a key-frame are 
derived by interpolation between neighboring key-frames, in a process called "tweening". 

3.1.1.2 SynthesizedTexture Playback 

SynthesizedTexture playback is based on animating all the objects in the SynthesizedTexture as described 
above. 

All objects are animated: 

• within the SynthesizedTexture's shared 3D world ("Stage"), 

• across the SynthesizedTexture's shared Timeline, 

• and optionally also relative to a camera. 

The resulting bitmaps rendered from the objects' Textures are projected onto a shared 2D frame buffer, which 
holds the current raster frame that is ready for display. 

3.1.1.3 SynthesizedTexture Coding 

The Synthesized Texture Bitstream contains the SynthesizedTexture data in a coded form called ST Coding. 

ST Coding encodes the SynthesizedTexture's primitive entities in a hierarchical compact arrangement 
resulting in very high compression rates. This is done by employing several techniques: 

a) Aggregation – this technique groups and orders specific attributes of primitives into sub-streams, in a 
manner that is 'friendly' for quantization and packing techniques. For example, location data of all Texture 
Terminal Points (TPs) and Patches (PAs), are aggregated, ordered according to their "geographic" 
location, quantized and packed - together. During decoding, sub-stream data are de-multiplexed to their 
respective primitive types and properties, according to hard-coded rules and soft-coded indicators. 

b) Quantization – the numeric values in a sub-stream are rounded, factored, offset or otherwise 
transformed, focused on reducing stream size, and generating data that is 'friendly' to additional packing 
techniques. Quantization parameters are typically stored in standard hard-coded quantization tables, so 
that they do not need to be carried in the bitstream. During decoding, quantized sub-streams are de-
quantized using the proper quantization tables, through dequant() methods. 

c) Packing – various loss-less compression1) techniques are applied to further reduce data size. These 
techniques include variants of Huffman, Run-Length, and other encoding methods. During decoding, sub-
streams that were packed are un-packed and decompressed, using the appropriate method. 

The ST Bitstream includes four types of top-level blocks: Header, Scene, Objects and Textures. The Object 
block also contains the Skeleton and/or Animation of the Texture. 

ST Coding, including its division to sub-streams, their order, and the manner in which they are encoded, may 
come in one of several coding syntaxes. This specification describes the current default syntax called 
coding syntax 0. 

                                                      

1) The terms compression and decompression in this document refer to the lossless statistical compression 
techniques, such as Huffman and Run-Length encoding, used as part of the Synthesized Texture encoding. 
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Chapter 4 specifies the structure of the ST Bitstream and describes how it is decoded to SynthesizedTexture 
primitives. 

 

3.1.2 The Texture 

3.1.2.1 General 

The Texture is used to represent the skin of an object.  

The texture is comprised of small set of primitive vector-style entities. 

 

 

 

 Line (LN),  bounded by 2 Terminal Points (TP) 

 Line Segment (LS), bounded by 2 Line Points (LP) 

 

Line Color Profile (LC)  

 Area Color Point (AC)  

 Patch (PA) 

 bounding rectangle 

Figure 2 — Synthesized Texture Primitives 
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3.1.2.2 Primitives and Properties  

A Texture is comprised of the following primitive types: 

 

Texture

LN
Line

PA
Patch

TP
Terminal

Point

AC
Area
Color
Point

21

1 N

1..2

1

1

LY
Layer

LS
Line

Segment

LC
Line
Color
Profile

1

12

BR
Branch

SL
Sub-Layer

1

N 2

11

N

  LP
Line
Point

 

Figure 3 — Synthesized Texture hierarchy of primitives 

3.1.2.3 Texture 

3.1.2.3.1 Syntax 

class Texture 
{ 
  int  width, height; 
 
  // decoded texture primitives: 
  LN  aLN[];         // Lines 
  TP  aTP[];         // Terminal Points 
  AC  aAC[];         // Area Color Points 
  PA  aPA[];         // Patches 
 
  int nLN = 0;       // Number of LNs 
  int nTP = 0;       // Number of TPs 
  int nAC = 0;       // Number of ACs 
  int nPA = 0;       // Number of PAs 
 
  int   worldUnit = 512; 
  float LosOffsetX = 0; 
  float LosOffsetY = 0; 
   
  // auxiliary 
  LY  aLY[];       // Layers 
  int nLY = 0;     // Number of LYs 
  int nSL = 0;     // total number of sub-layers in texture  
} 
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3.1.2.3.2 Semantics 

Properties: 

Name Description  
width, height The width and height of the texture's bounding rectangle, in pixels. All coordinates of the texture's 

elements are given relative to the top-left corner of this rectangle. 
Ordered arrays of decoded texture primitives: 
aLN The Lines in the Texture 
aTP The Terminal Points in the Texture 
aAC The Area Color Points in the Texture 
aPA The Patches in the Texture 
nLN The number of elements in aLN 
nTP The number of elements in aTP 
nAC The number of elements in aAC 
nPA The number of elements in aPA 
worldUnit The number of pixels corresponding to 1 "world-unit" in this texture. World units are used to describe 

distances in the SynthesizedTexture's 3D world. Default: worldUnit  = 512 pixels. 
LosOffsetX, 
LosOffsetY 

The x,y components of the texture's LOS (Line of Sight) Offset, in pixels. 
A texture's LOS Offset is the offset of the texture's center from the center of the visual plane of a camera 
that could have captured the texture. 
This information allows adapting the appearance of a texture which was photographed from a certain 
angle (relative to the camera's LOS), to the changing angle in which it is viewed in an animated 
SynthesizedTexture. 
For a texture that was photographed from a "straight ahead" angle, the LOS Offset is (0, 0). 

Auxiliary: 
aLY The Layers in the Texture 

Note layers are an auxiliary structure not used in Texture Rendering; they serve Texture Decoding only 
for associating Texture primitives to bones in the skeleton. 

nLY The number of elements aLY 
nSL The total number of sub-layers in the Layers in the texture 

3.1.2.4 Line (LN) 

3.1.2.4.1 Syntax 

 
class LN      //  Line 
{ 
  int iLnType;       
  int iContourType = 0; 
  int iSlLft, iSlRgt; 
 
  int iTpBeg, iTpEnd; 
 
  LS  aLS[]; 
  int nLS;  
 
  LC  aLC[]; 
  int nLC;  
} 

3.1.2.4.2 Semantics 

Lines implement the characteristic lines of a Texture. A Line has a geometry described by Line Segments 
(LSs) and a coloring described by Line Color Profiles (LCs) placed along its course. 
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A Line primitive is built of a chain of Line Segment (LSs), and its 2D geometry is determined by these 
segments. Every Line Segment is part of exactly one single Line, and is terminated by exactly 2 Line Points 
(LPs) – one at each end. In addition to the LPs at the 2 ends of each line, a Line is always terminated by 
exactly 2 Terminal Points (TP) – one at each end. 

Every Line Point hosts exactly 1 Line Color Profile (LC), and every LC is currently hosted by exactly 1 LP. For 
a closed Line, the number of LSs equals the number of LPs & LCs; For a non-closed Line LSs are 1 less than 
LPs & LCs. 

 

Figure 4 — Synthesized Texture Line (LN) 
The collection of LCs along a Line determines the coloring behavior of the line, together with the Line's 
iLnType.  

The external contour of a Texture, and borders between Layers and Sub-Layers are built of Lines. Lines 
participating in a contour are marked by using the Line's iContourType. 

Properties: 

Name Description  
iLnType The type of coloring behavior across the "width" dimension of this Line. This indicates the type of 

Line Color Profiles (LCs, §3.1.2.8) used along the Line. 
00-RIDGE. 
01-STRIPE 
02-EDGE. 
03-ABSENT (Absent out-branch in Splitting). 
04-PARALLEL (Parallel Ridge linked to out-branch in Splitting). 
A distinction is made between separating and non-separating line types. Separating lines block 
the "diffusion" of color originating at Area Color Points (ACs) near the Line from one side of the 
Line to the other. RIDGE and EDGE lines are separating, while STRIPE lines are non-separating. 

iContourType Marks whether this Line is part of the contour (i.e. outer border) of the Texture or one of its layers.
00-This LIne is not a contour line. 

iSlLft, iSlRgt When this Line separates Sub-layers – the indexes of the sub-layers to the left and to the right of 
the Line. 

iTpBeg, iTpEnd The indexes of the TPs in which this Line begins and ends. 
aLS The array of Line Segments comprising the geometry of this Line. 
nLS The number of elements in aLS. includes last LS ? 
aLC The array of Line Color Profiles describing the coloring of this Line. 
nLC The number of elements in aLC. nLC = nLS+1. 
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3.1.2.5 Line Segment (LS) 

3.1.2.5.1 Syntax 

 
class LS             // Line Segment Geometry 
{ 
  float vX, vY; 
  float hgt; 
} 

3.1.2.5.2 Semantics 

Line Segments are the building blocks of Lines (LNs). 

Every Line Segment is part of exactly one Line, and is terminated by exactly 2 Line Points (LPs) – one at each 
end.  

A Line Segment is an arc which follows a globally fixed mathematical model. In the current implementation of 
the Texture, a Line Segment is unambiguously represented as a parabolic curve. The LS parabola geometry 
is encoded using its vX, vY and hgt. 

 

 

Figure 5 — Synthesized Texture Line Segment (LS) 

The base of the LS arc is described by a vector, given by the LS's starting point LP0 and the (x,y) components of the 
vector – vX and vY. 
The signed height of the LS arc above or below its base is given by LS.hgt. 
The LS parabola is defined only between the LS's starting point LP0 and its end point LP1. 
Properties: 

Name Description  
vX, vY The x,y components of the vector connecting this Line Segment's starting and ending points, in 

pixel units. The LS curve is defined only between the LS's starting and ending points (LP0 and 
LP1). 

hgt The signed height of the parabola of this LS above or below the LS's vector.  

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
9:2

00
4

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e


ISO/IEC 14496-19:2004(E) 

© ISO/IEC 2004 — All rights reserved 9
 

3.1.2.6 Line Points (LP) 

3.1.2.6.1 Syntax 

class LP                 // Line Point 
{ 
} 

3.1.2.6.2 Semantics 

A Line Point indicates the location of the Line Segments (LSs), and Line Color Profiles (LCs) in the texture. 

A Line Point is the meeting point between 2 adjacent Line Segments, i.e. every LS connects exactly 2 LPs. 
Every LC in the texture resides on a single corresponding LP. 

In practice, the LP entity is not represented explicitly in the Texture data structures and bitstream, but it is 
mentioned in the primitive model for completeness. The LP location information can be derived from the LN's 
starting and ending Terminal Points and its Line Segments. 

3.1.2.7 Terminal Point (TP) 

3.1.2.7.1 Syntax 

class TP                 // Terminal Point 
{ 
  float x, y; 
 
  BR   aBR[];            // branches from this TP 
  int  nBR;              // number of branches from this TP 
  int  junctionType; 
 
  class BR 
  { 
    int   iLN;           // index of LN that branches from this BR 
    bool  bOut;          // is this branch an "out-branch"? 
    int   iLnType;       // Line Type of the branching LN. 
  } 
} 

3.1.2.7.2 Semantics 

Terminal Points are a higher level structure, providing additional information regarding the coloring behavior 
at crossings, splittings and end points of lines. Every "Line" is terminated by exactly 2 TPs – one at each end. 

 

Figure 6 — Synthesized Texture Terminal Points (TP) 
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Terminal Points occur in the following circumstances: 

• At any intersection in which 3 or more Lines are branching out – a TP is mandatory. 

• At the end of a Line, where the Line does not connect to any other Line – a TP is mandatory. 

• On a closed Line, (i.e. where the Line has no obvious end point), at least one TP must exist at an arbitrary 
point on the Line. 

• At any point on a line, thus splitting that line into 2 "Lines". 

Properties: 

Name Description  
x, y The coordinates of this TP in the Texture. 
ABR The array of branches from this TP. 
NBR The number of branches in aBR. 
junctionType The junction type of this TP: 

0 - ALLRIDGE junction (separating). 
1 - ALLSTRIPE junction (STRIPE = non-separating ridge). 
2 - ALLEDGE junction  (separating) 
3 - SPLITTING junction (1 RIDGE in and 0 or 1 EDGEs out) 

class BR: a branch in which LNs go "in" or "out" of a TP. 
iLN The index of the Line that branches from this BR. 
bOut Is this branch an "out-branch"?  

"out -branches" and "in -branches" are branches in which a Line "starts" and "ends" respectively. 
"in" and "out" is an arbitrary encoding decision, but every Line starts in an out-branch and ends in an 
in-branch. 

iLnType The line type of the branching Line. See LN.iLnType. 

3.1.2.8 Line Color Profile  (LC) 

3.1.2.8.1 Syntax 

class LC                        // Line Color Profiles 
{ 
  float depth = 0; 
} 

 
class LCseparating              // Separating (EDGE or RIDGE) Line Color Profile 
{ 
  color colorFarLft, colorFarRgt; 
  color colorMidLft, colorMidRgt; 
} 

 
class LCedge                    // EDGE Line Color Profile 
extends LCseparating 
{ 
  float width; 
} 

 
class LCridge                    // RIDGE Line Color Profile 
extends LCseparating 
{ 
  color colorCenter; 
  float widthLft; 
  float widthRgt; 
} 
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class LCstripe                   // STRIPE Line Color Profile 
extends LC 
{ 
  color colorCenter; 
  color colorCurvature; 
} 

3.1.2.8.2 Semantics 

Line Color Profiles (LCs) describe the coloring behavior along Lines. 

Each colorXxx parameter describes the brightness of each of the 3 color components (Y, Cr, Cb) at a certain 
distance (center, middle, or far), and side (left or right) relative to the profile's geometrical center. 

Line Color Profiles have 3 morphologies, corresponding to the 3 possible Line types: EDGE, RIDGE and 
STRIPE. All LCs on a Line are of the same type, given in the Line's iLnType. 

 

  

 

 

Figure 7 — Synthesized Texture Color Profiles (CP) 
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In the current implementation of SynthesizedTexture, an LC is provided for every location of a Line Point (LP) 
in the Texture, so its location is given by the corresponding LP's location2). 

A LN includes an array of LCs (aLC[nLC]) describing its coloring behavior, where nLC = nLS + 1. Thus for a 
Line with nLS segments, the location of LCi for i=0..nLS-2 is the location (LSi.x, LSi.y), and the location of the 
last LC on the Line (i = nLS-1) is (TPLSi.iTpEnd.x, TPLSi.iTpEnd.y). 

For convenience, the LC is also used to store the "depth" value for its respective Line Point. 

 Properties: 

Name Description  
LC Line Color Profile base class 
Depth The depth of this LC's Line at the location of this LC. Default=0.0. 
LCseparating Separating (EDGE or RIDGE) Line Color Profile base class 
colorFarLft, colorFarRgt The far-left and far-right colors of this LC. 
colorMidLft, colorMidRgt The mid-left and mid-right colors of this LC. 
Lcridge RIDGE Line Color Profile 
ColorCenter The central color of this LC. 
widthLft, widthRgt The left and right widths of this LC's Line at the location of this LC, in pixels. 
Lcedge EDGE Line Color Profile 
Width The width of this LC's Line at the location of this LC, in pixels. 
Lcstripe STRIPE Line Color Profile 
ColorCenter The central color of this LC. 
ColorCurvature The "color-curvature" of this stripe. If this stripe is described by a parabola y=Ax2+B , then the 

color-curvature is the coefficient A.  

3.1.2.9 Patch  (PA) 

3.1.2.9.1 Syntax 

 
class PA               
{ 
  float x, y; 
  float r1, r2; 
  float ang; 
 
  color colorCenter;         // central color 
 
  int iSL; 
 
  float depth = 0;      // depth of this PA; may be absent. 
} 

                                                      

2) This arrangement is economical as it saves the space needed to store LC location information, and does not come 
from deeper imaging grounds; note that LCs could theoretically be located on LNs according to an alternative scheme. 
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3.1.2.9.2 Semantics 

A Patch is a small ellipse, typically a few pixels long, whose color is significantly different from its surrounding 
"area color". 

The geometry of a Patch is described by the ellipse's center point, primary and secondary radius, and the 
angle of its primary radius relative to the texture's coordinate system. 

 

Figure 8 — Synthesized Texture Patch (PA) 
The coloring  of the Patch is described by the color at its geometric center, which can then be blended with the 
area color at its perimeter. 

Properties: 

Name Description  
x,  y The x and y coordinates of the geometrical center of the ellipse which represents this Patch. 
R1,  r2 The length of the primary and secondary radius respectively of the ellipse which represents this 

Patch, in pixels. 
Ang The angle of r1 relative to the Texture's X axis, in whole degrees, 0°..359°. 
colorCenter The central color of this PA. 
ISL The index of the sub-layer this PA is on. 
Depth The depth of this PA. Default=0.0. 

 

3.1.2.10 Area Color Point  (AC) 

3.1.2.10.1 Syntax 

 
class AC                        // Area Color Points 
{ 
  float x, y; 
 
  color colorCenter;    // central color 
 
  float depth = 0; 
 
  int iSL 
} 

3.1.2.10.2 Semantics 

Area Color Points (ACs) describe the low-scale color changes in the areas between Lines, and more 
specifically between "separating" Lines, i.e. LNs of LineType EDGE and RIDGE. 

Properties: 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
9:2

00
4

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e


ISO/IEC 14496-19:2004(E) 

14 © ISO/IEC 2004 — All rights reserved
 

Name Description  
x, y The coordinates of this AC in the Texture. 
colorCenter The color at the center of the AC. 
depth The depth of this AC. Default=0.0. 
iSL The index of the sub-layer this AC is on. 

3.1.2.11 Layer (LY) 

3.1.2.11.1 Syntax 

 
class LY 
{ 
  char  name[64]; 
 
  int   X0, X1, Y0, Y1;   // coords of LY's bounding rect 
  bool  bHasDepthDeltas; 
 
  SL    aSL[];  
  int   nSL = 0; 
 
  class SL  
  { 
    point3D orient; 
    float   dist; 
    bool    bOrthogonal; 
    int     surfaceType; 
    int     iLY; 
  } 
} 

3.1.2.11.2 Semantics 

Layers and Sub-Layers are auxiliary structures used in SynthesizedTexture authoring and encoding to group 
Texture primitives. Properties such as Depth and "controlling-polybone" are then attributed in bulk to all 
primitives in the Layer or Sub-Layer. 

Properties: 

Name Description  
name The name of the layer, given by the author, used as reference in composition applications. 
X0, X1, Y0, Y1 The coordinates of the layer's bounding rectangle. 
bHasDepthDeltas Do texture primitives in this layer have depth deltas (otherwise they inherit their depth from their 

position on the layer plane). Relevant only if decHeader.bHasDepthDeltas is true; 
aSL[] An array of sub-layers that are part of this LY. 
nSL Number of sub-layers in this LY. 
class  SL - sub-layer: 
orient The normalized (x,y,z) representation of this sub-layer's orientation. 
dist The distance of this sub-layer in worldUnits. Typical 1..1000. 
bOrthogonal Is this sub-layer orthogonal to the line of sight? If true then orient is (0, 0, 1.0). 
surfaceType The type of geometry of this sub-layer. default: 0=PLANE. 
iLY Cross reference to the the index of the LY that this sub-layer is in. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
9:2

00
4

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e


ISO/IEC 14496-19:2004(E) 

© ISO/IEC 2004 — All rights reserved 15
 

3.1.2.12 Color 

3.1.2.12.1 Syntax 

 
class color 
{ 
  int y, cr, cb; 
  int R, G, B; 
} 

 
color::toRGB() 
{ 
  R = y + 1.40200*cr 
  G = y - 0.34414*cb - 0.71414*cr 
  B = y + 1.77200*cb 
} 

3.1.2.12.2 Semantics 

A color object can describe color in two methods: YCrCb and RGB. 

YCrCb color values are used for encoding colors in the SynthesizedTexture bitstream, as they display better 
aggregation and compression behavior. 

In the decoding process, YCrCb color values are converted to RGB colors, which are then used in Texture 
rendering. 

3.1.3 Texture Rendering 

3.1.3.1 General 

The process of Texture Rendering reconstructs a displayable bitmap image from SynthesizedTexture 
primitives. 

The reconstruction algorithm starts with the input parameters and computes the brightness (color) value of the 
synthesized image at each of its pixels. It consists of the following principal parts: 

Computing brightness of Lines (Procedure BL below). 

Computing brightness of Patches (Procedure BP below). 

Computing Area coloring, i.e. brightness of the "Background", area between Lines and Patches (Procedure 
BB below). 

Blending the computed brightness values into the final image (The MAIN Procedure below) 

In the case of a color image these computations are performed independently for each color component. 
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3.1.3.2 Procedure MAIN: Computing Final Brightness Values  

 

Figure 9 — Synthesized Texture Rendering Flow 
For any point z in the image plane the final brightness B(z) of the Synthesized image at the point z is 
computed according to the following formula: 

(1)  
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∑
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=

s
s

s
ss

zWPzWBzWL

zBPzWPzBBzWBzBLzWL
zB

)()()(

)()()()()()(
)(  

Here BB(z), BL(z) and BPs(z) are the brightness functions of the Background, of the Lines and of the Patches, 
computed in the Procedures BB, BL and BP, respectively, and the sum ∑

s
runs over all the Patches Ps. 

The weight functions WL(z) and WPs(z) are computed in the Procedures WL and WP, respectively, and  

 WB(z)  =  1 – max(WL(z), WPs(z)). 

Division by the sum of all weight functions in formula (1) guarantees that their sum is identically 1 and that 
formula (1) is a normalized averaging. 

3.1.3.3 Procedure BL: Brightness due to Lines 

This procedure computes for any point z on the image the brightness BL(z), contributed by the Line Color 
Profiles (LCs) of the Lines (LNs) in the texture. 

BL(z) needs to be computed only for those z which are "close enough" to at least one of the Lines in the 
texture, as expressed by the weight function WL. 

Note: The most intuitive and natural way to define the brightness of a Line is to associate to it a coordinate 
system (uu, tt), with uu(z) the (signed) distance of the point z to the line along the normal direction, and tt(z) 
the length parameter along the curve of the orthogonal projection pp(z) of z onto the line. 

Then the brightness cross-sections are computed according to the coordinate uu and interpolated along the 
line with respect to the coordinate tt. 

The corresponding algorithm can be constructed. However, it provides some serious drawbacks: 

- Actual computing of the coordinates uu and tt is a mathematically complicated task. 
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- Even for smooth curves without corners the normal direction is correctly defined only in a small 
neighborhood of the curve (of the size of a couple of pixels in realistic situations). Outside this neighborhood 
no natural mathematical solution exist for defining the normal, the projection etc. 

- For spline curves with corners between some of their links (which usually appear in realistic situations) the 
normal is not defined even locally. Once more, the situation can be corrected by using the mid of the corner 
angles, but the global difficulties of (2) remain and algorithms become rather complex. 

Consequently, we show below an algorithm, which can be considered as an approximation to the “ideal one” 
above. Its main advantage is that the “coordinates” uu and tt (called below u and t) can be computed 
independently for each Line Segment (link) of all the collection of Lines. Moreover, the computation can be 
ultimately rendered as rather efficient (although the description below may look somewhat complicated). 

Below for any point z,  u(z) is the “distance of z to Lines”, S(z) is the closest link to z (with respect to the 
distance u) in the collection of Lines, and t(z) is the parameter, measuring the projection of z onto S(z), 
rescaled to the segment [0, 1]. S(z), u(z) and t(z) are computed by the Procedure DL, described below. 

The Procedure BL distinguished whether the Line Segment S(z) has a “free end” (i.e. an endpoint TP, not 
belonging to any other Line Segment) or not: 

1. S(z) does not have “free ends”. 

Let C1 and C2 denote the equations of the two cross-sections (normalized to the unit width, as described in the 
Procedure CS below) at the two endpoints of the link S(z). For u(z) > 0 let W1 and W2 denote the respective 
right widths RW1 and RW2 of the cross-sections at these points. For u(z) < 0 let W1 and W2 denote the 
respective left widths LW1 and LW2 of the cross-sections at these points. Then in each case 
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where W(z) is the interpolated width 
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S(z) has a “free end”. 

If for this “free end” the parameter t is zero, the brightness BL(z) is computed as above for t(z) > 0. For       
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Here DE is a positive tuning parameter, defining the shape of the end of a Line. BM is half of the sum of the 
brightness parameters colorMidLft and colorMidRgt of the cross-section at the free end. 

If for this “free end” the parameter t is one, t(z) is replaced by 1-t(z) in the above formula. 
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Note: The formula above provides one of possible choices of the shape of Lines near their ends. It assumes 
that the cross-section brightness gradually descends to the “mid value” value BM inside the prescribed 
distance DE. Other shapes can be defined, by properly computing the width and the brightness in the 
neighborhood of the end point. 

3.1.3.4 Procedure CS: Color Profiles (Cross-Sections) of Lines 

This procedure computes a brightness value of an edge or a ridge (unit width) cross-section CS(u) for any 
given cross-section “interior” brightness parameters, as described above, and for any value of u. 

In the Procedure BL u is the distance u(z) to the line, normalized by the width W(z) of the line, so the width 
parameter W is taken into account inside the BL, and it does not appear below. Similarly, the margin 
brightness parameters colorFarLft and colorFarRgt enter the computations in the Background brightness 
Procedure BB. 

3.1.3.4.1 Edge Cross-Section. 

Normalized edge cross-section NEC(u) is defined as follows (Figure 10 — Edge cross-section definition.): 
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Thus the recommended edge cross-section is composed of two symmetric parabolic segments. 

For given brightness parameters colorMidLft and colorMidRgt, the value CS(u) is computed as 

( ) )(222)( uNECLBRBLBuCS ⋅−+=  

 

Figure 10 — Edge cross-section definition. 

3.1.3.4.2 Ridge Cross-Section 

As for edges, the width of the ridges is taken into account in the Procedure BL. Similarly, the margin 
brightness parameters colorFarLft and colorFarRgt enter the computations in the Background brightness 
Procedure BB. Consequently the ridge cross-section computed in the current Procedure CS, is the same for 
separating and non-separating ridges, and is defined by the parameters colorMidLft, colorCenter and 
colorMidRgt, as follows (Figure 11 — Ridge cross-section definition. 

( ) ( ),1222)( +⋅−+= uNECLBCBLBuCS       for u < 0, and 
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( ) ( ),1222)( +−⋅−+= uNECRBCBRBuCS    for .0>u  

 

Figure 11 — Ridge cross-section definition. 
Thus the recommended ridge cross-section is composed of two edge cross-sections, properly aggregated. 

In the process of the blending of these cross-sections with the Background (which incorporates the margin 
brightness values colorFarLft and colorFarRgt) we get back essentially the same cross-section, as shown 
below (Figure 12 — Blending two cross-sections with the Background.). 

 

Figure 12 — Blending two cross-sections with the Background. 

3.1.3.5 Procedure WL: Weight Function of Lines 

This block computes the weight function WL(z), which is used in a final blending of the Lines with the 
Background. The function WL(z) is equal to one in a certain neighborhood of the Lines, and is zero outside of 
a certain larger neighborhood. 

More accurately: 

  1 |u(z)| < UL2·W(z) 

WL(z) = 
 

( )21

1

)(
)()(

ULULzW
zuULzW

−⋅

−⋅
 UL2·W(z) <| u(z)|< 

UL1·W(z) 

  0 |u(z)| > UL1·W(z) 

The distance u(z) is computed in the Procedure DL. 

UL1 and UL2 are tuning parameters; see the last section “Tuning Parameters”. 

Figure 13 shows a typical cross-section and a general shape of the weight function WL(z). 
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Figure 13 — Typical cross-section and general shape of WL(z) 
 

3.1.3.6 Procedure DL: Distance to Lines 

This Procedure computes for any point z in the texture:  

1. The point p(z) on the Lines which is nearest to z, i.e. the “projection” p(z) of z onto the set of Lines. 

d) The distance u(z) between z and p(z). 

e) The link S(z) on which p(z) resides. 

f) The proportion t(z) in which p(z) divides the link S(z). 

Note u(z), p(z) and t(z) are NOT exactly the Euclidean distance, the corresponding mathematical projection 
and proportion respectively; however, in most cases they give a reasonable approximation for these 
mathematical entities. 

These data are computed in the following steps: 

2. For each link (Line Segment, LS) Si in the texture, the corresponding pi(z), ui(z), ti(z) are computed in 
Procedure DDL (See the Synthesized-C figure below) 

g) S(z) is defined as the link Sj,  for which the minimum of the absolute values |ui(z)| is attained (See the 
figure Synthesized-D below) 

h) u(z) is defined as the function uj(z) for the link Sj  = S(z) 

i) t(z) is defined as tj(z) for the above link Sj 
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Figure 14 — Synthesized-C 

 

 

Figure 15 — Synthesized-D 
 

3.1.3.7 Procedure DDL: Distance to a Line Segment 

This procedure computes for any point z its (signed) distance u(z) to a given link S (Line Segment, LS), the 
projection p(z) of the point z onto the link S and the parameter t(z). The Procedure is essentially represented 
on figure Synthesized-C above (which shows, in particular, equidistant lines for the points z1 and z4. 

The straight oriented segment [a, d], joining the end points of the link S is constructed, with the orientation, 
induced from the orientation of the Line, containing S. l1 is the straight line, containing the segment [a, d]. l2 
and l3 are the straight lines, orthogonal to l1 and passing through a and d, respectively.  

Now, for any z in the image plane, the function u(z) is constructed as follows: 

For z between l2 and l3, the absolute value |u(z)| is the length of the segment, joining z and S and orthogonal 
to l1. 
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For z left to l2 , |u(z)| is defined as follows: 

[ ] 2/12
2

2
1 ),(),()( lzDdlzdzu += . 

Here d(z, l1) and d(z, l2) are the distances from z to l1and    

l2 respectively.  D is a tuning parameter, with a typical value D = 4. 

For z right to l3 , |u(z)| is defined as 

[ ] 2/12
3

2
1 ),(),()( lzDdlzdzu += . 

Let ll be an oriented line, formed by the interval of the line l1 from infinity to a, then by the link S from a to d, 
and then by the interval of the line l1 from d to infinity. 

For z right to ll (with an orientation as above) the sign of u(z) is “+”. For z left to ll, the sign of u(z) is “-“.  

For z between l2 and l3, the projection p(z) is the intersection point of S and of the segment, joining z and S 
and orthogonal to l1 . For z left to l2 , p(z) is a, and  for z right to l3 , p(z) is d. 

For any z,  t(z) is the proportion, in which the projection of z onto the line l1 subdivides the segment [a, d]. For 
example, for the point z2 and z3 on Fig Synthesized-D above.  t(z2) = (b-a)/(d-a), and t(z3) = (c-a)/(d-a), 
respectively.  For z left to l2 , t(z) < 0, and for z right to l3 , t(z) > 1. 

Note: The special form of the function u(z) above (for z outside the strip between l2 and l3) is motivated by the following 
reason: when computing in the Procedure BL the brightness of the line near a sharp corner, the form of the distance 
function u(z) determines which link will be taken as the closest to the points in the sector stressed on the Figure below. For 
the distance, computed as above, with the parameter D > 1, this choice is matched with the sign of u(z), as defined above. 
If we would have chosen D < 1, for z in the sector stressed on the figure below, the choice of the nearest link, together 
with the proposed computation of the sign of u(z), would produce a color from the incorrect side of the line. See the figure 
below. 

 

Figure 16 — Distance based selection of line segment 

3.1.3.8 Procedure BP: Brightness of Patches 

Let Cx, Cy, R1, R2, a, colorCenter and MB be the parameters of a certain Patch Ps, as described above. 

Let M be the linear transformation of the plane, transforming the basis ellipse of the Patch to the unit circle. M 
is a product of the translation by (-Cx, -Cy), the rotation matrix to the angle –a, and the rescaling 1/R1 and 
1/R2 times along the x and y axes, respectively. If we put for 

),( yxz = ),(),())(),((, zMyxMzyzx ==′′  
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then the equation of the basis ellipse of the Patch is given by 

2)(zx′ 2)(zy′+ 1= . 

The brightness function BPs(z) of the Patch is then given by 

0)( =zBPs  for 2)(zx′ 2)(zy′+  > 21UP , 

MBzBPs =)( for  ,1)()(1 222 UPzyzx <′+′<  and 

),)()(1()()( 22 zyzxMBCBMBzBPs ′−′−⋅−+=  for  .1)()( 22 <′+′ zyzx  

Here UP1 > 1 is a parameter. See the Figure below. 

3.1.3.9 Procedure WP: Weight Function of Patches 

The weight function WPs(z) for a Patch Ps as above is defined by 

0)( =zWPs  for ,1)( UPzuu >  

1)( =zWPs  for ,2)( UPzuu <   and 

)21/())(1()( UPUPzuuUPzWPs −−=  

for uu(z) between UP2 and UP1, 

where uu(z) denotes the square root of 2)(zx′ 2)(zy′+ . 

Here UP2,  1 < UP2 < UP1, is another tuning parameter.   See the figure below. 

 

Figure 17 — Synthesized Texture Patch and its weight function 
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3.1.3.10 Procedure BB: Brightness of Background 

This Procedure computes the brightness value of the Background at any point z of the image. This value is 
obtained as a result of interpolation between the “global” Background brightness values, the margin brightness 
values of the Lines and the brightness values at the Area Color Points (ACs).  The main difficulty is that the 
interpolation is not allowed to cross the separating lines. To overcome this difficulty a special “distance” d 
between the points on the image is introduced, which is the length of the shortest pass, joining these points, 
and not crossing separating Lines, and which is computed in the Procedure SE below. Then averaging 
weights are computed through the distance d. 

This block uses as an input a certain collection of the ACs Zi, (containing the input ACs, as described above, 
and the margin representing points, produced by the block “MRP’, described below). At each point Zi the 
brightness value Bbi is given. 

The Background brightness value BB(z) is finally produces by the block BB as follows: 

BB(z) is the weighted sum of the global brightness GB and of  the Local brightness functions Bbi(z) over all 
the ACs Zi : 

( )2       ∑+=
i

ii zBbZzdWRBGzWGzSzBB )]()),(()())[(/1()( 1  

          Here ∑+=
i

iZzdWRzWGzS )),,(()()(1  

so the expression (2) is normalized to provide a true averaging of the corresponding partial values.  

The global brightness value BG is provided by the Procedure GB below, or by any of the Gradient Nodes.  

The computation of the Local brightness functions Bbi(z) is performed in the Procedure LB below. 

The distance functions d(z, Zi) are computed in the Procedure SE below. 

The computation of the weight functions WR(d(z, Zi)) is performed in the Procedure WB below.  

The weight GW(z) of the global Background value GB is defined as 

−= 1)(zGW  imax ).,(( iZzdWR  

GW(z) is zero at any z, where at least one of the weights of the representing points is 1, and GW(z) is one 
at any z where all the weights of the ACs vanish. 

3.1.3.11 Procedure GB: Global Brightness of Background 

This Procedure computes the global Background value GB, which appears in the expression (2) in the 
Procedure BB. 

By definition, if the point z is inside the Background region of a Sub-Texture number r, for which the global 
value GBr is defined, GB is equal to this global value GBr. If the point z is inside the Background region of a 
Sub-Texture, for which the global Background value is not defined, GB is equal to the default global value 
DGB. If DGB is not defined, GB is equal to zero. Alternatively, Color Gradients can be used. 

The current procedure consists in a signal expansion that transmits to each pixel its Sub-Texture number. We 
describe it shortly, since it essentially belongs to a higher data representation level. 

First the procedure MRP is applied, which creates margin representing points, carrying the corresponding 
Sub-Texture numbers. These numbers are taken from the corresponding poly-links. 
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Second, the Signal Expansion Procedure is applied to the margin representing points, essentially as in the 
block SE, with the following difference: only the marking and the number of the Sub-Texture is transmitted 
between the pixels on each step of signal expansion. 

As this procedure is completed, each pixel in the image memorizes the number of the Sub-Texture, to which it 
belongs. 

3.1.3.12 Procedure LB: Local Brightness of the Background 

Two types of the local brightness functions Bbi(z) are used. For the first type (zero order) 

Bbi(z) is identically equal to the input brightness value Bbi at the point Zi . 

For the second type (first order) Bbi(z) is equal to Li(z), where Li(z)  is the linear function, such that  

         Li(Zi) = Bbi  

and Li provides the best approximation of the input brightness values at the N nearest to Zi ACs. The choice of 
the type of the local brightness function is determined by the flag LBF: LBF is zero for the zero order and LBF 
is one for the first order of the functions Bbi(z). Here N is an integer valued tuning parameter. 

Typical value of N is 4 or 9: usually the ACs form a regular or an almost regular grid, and the nearest neighbors are taken 
at each point Zi to construct the linear function Li(z). 

3.1.3.13 Procedure WB: Weights for the Background 

As implied by the form of the expression, the weights WR(d(z, Zi)) depend only on the distance d(z, Zi) from 
the point z to the AC Zi. The model function of one variable WR is specified by three tuning parameters UDB 
and UB2,           UDB > UB2 > 0, and BVS (Background Weight smoothness), 0 < BVS < 1, and is defined as 
follows: 

0)( =tWR  for  ,1UBt >  

1)( =tWR  for  ,2UBt <  and 

,)1()23()( 32 vBVSvvBVStWR −+−=  for  ,12 UBtUB <<  

where  ).21/()2( UBUBUBtv −−=  

See the Figure below. 
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Figure 18 — Synthesized Texture Background weight functions 

3.1.3.14 Procedure SE: Signal Expansion 

Let D denote the domain of the Synthesized image, with “cuts” along all the separating Lines  PLi. For any two 
points z1, z2 in D the distance dd(z1, z2) is defined as the (Euclidean) length of the shortest path, joining z1 and 
z2 in D and avoiding all the cuts PLi. See the figure below. 

Note: It might be assumed that the influence of the color at z1 to the color at z2 decreases as the distance 
dd(z1, z2) increases. However, a precise computation of the distance dd is a rather complicated geometric 
problem. Consequently, we use instead of the distance dd(z1, z2) its approximation d(z1, z2), which is 
computed through a “signal expansion algorithm”, as described below. 

 

Figure 19 — Shortest path between points 
The block SE computes the distance d(z1, z2) for any two points z1 and z2 in the image plane. The algorithm is 
not symmetric with respect to z1 and z2: in fact, for a fixed point z1, the distance d(z1, z2) is first computed for 
any pixel z2 of the image. Then an additional routine computes d(z1, z2) for any given z2 (and not necessarily a 
pixel). 

Below the notion of a “neighboring pixel” is used. It is defined as follows: for z not a pixel, the four pixels at the 
corners of the pixel grid cell, containing z, are the neighbors of z. For z a pixel, its neighbors are all the pixels, 
whose coordinates in the pixel grid differ by at most one from the coordinates of z. 
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Below we assume that a certain data structure is organized, in which to any pixel p on the image plane a 
substructure is associated, allowing to mark this pixel with certain flags and to store some information, 
concerning this pixel, obtained in the process of computation. We do not specify here this data structure, using 
instead expressions like “the pixel p is marked”, “the pixel p memorizes…” etc. 

Now for z1 and z2 given, the distance d(z1, z2) is computed in the following steps: 

For any pixel p the distance u(p) to the separating  Line PLi is computed and stored at this pixel. The 
computation of u(p) is performed by the procedure DL, described above, applied only to separating poly-links 
PLi. 

Those pixels p, for which u(p) < FU, are marked as “forbidden” pixels. The forbidden pixels are excluded from 
all the rest of computations, and those pixels that are not forbidden, are called below “free” ones. Here FU is a 
tuning parameter. 

Now the proper “signal expansion” starts. In the first step each of the free neighbor pixels of z1 is marked, and 
this pixel memorizes its Euclidean distance from z1 as the auxiliary distance dd, to be computed. Generally, in 
the k-th step, any free unmarked pixel p, at least one of whose free neighboring pixels was marked in the 
previous steps, is marked. This pixel memorizes as its auxiliary distance dd(p) from z1, the minimum of dd at 
the neighboring free pixels plus the Euclidean distance of p to the neighboring pixel, at which the minimum is 
attained. This process is continued the number of steps, equal to the maximal dimension of the image (in 
pixels). After it is completed, each free pixel p on the image plane memorizes its auxiliary distance dd(p) from 
z1. 

Now for any given point z2 on the image plane, its distance d(z1, z2) from z1 is computed as maximum of D1 
and D2, where D1 is the Euclidean distance of z2 to z1 , and D2 is the minimum over the free neighboring to z2 
pixels p, of dd(p) + the Euclidean distance of z2 to p. 

This completes the computation of the distance d(z1, z2). 

See the Figure below. 

Note: The tuning parameter FU determines the size of a neighborhood of the separating Line, where all the 
pixels are marked as forbidden. Taking any value of FU, larger than 0.8, excludes a possibility of signal 
expansion crossing separating lines. Indeed, for any two neighboring pixels, which are on different sides of a 
separating line, at least one is closer to the line than 0.8 and hence is marked as forbidden. To provide 
stability of finite accuracy computations a bigger value of U may be taken. However, in this case signal 
expansion will not pass a “bottle-neck” between two separating lines, which are closer to one another than 
2FU. Normally such regions will be covered by the cross-sections of these lines. However, a sub-pixel grid 
can be used to guarantee that signal expansion passes thin “bottle-necks” 
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Figure 20 — Signal Expansion in Synthesized Texture rendering 
Various implementation issues: 

Computation of the distance d(z1, z2) and its usage inside the Background grid interpolation form one of the 
central parts of the Synthesized image reconstruction. Consequently, the efficiency of the implementation of 
these blocks is crucial for an overall efficiency of the reconstruction. 

A straightforward implementation of the signal expansion algorithm, as described above, is not optimal. 
However, a number of rather natural and simple modifications bring the efficiency of the signal expansion to 
only few operations per pixel. 

3. Multi-scale implementation. The image is subdivided into blocks in 2 – 3 scales (for example, blocks of 
16x16, 8x8 and 4x4 pixels). First signal expansion is performed between the highest scale blocks (say, 
16x16), exactly as described above. Forbidden are the blocks, crossed by separating Lines. In the second 
stage the forbidden blocks are subdivided into 8x8 sub-blocks, and the expansion is performed for them. 
The new forbidden sub-blocks are subdivided into the 4x4 ones, and the expansion is repeated. In the last 
stage the expansion is completed on the pixels level. 

j) For an application to the Background grid interpolation, the distance d(z1, z2) has to be computed only till 
it riches the threshold UDB (since for larger distances the weight functions vanish). This fact allows one to 
restrict the number of steps in signal expansion to UDB + 1. 

k) Signal expansion and memorization of the distances at the free pixels can be implemented for all the ACs 
at once (especially since the above distance restriction usually makes for any pixel only the information 
relevant, concerning a few neighboring Background grid points). 

l) In the process of signal expansion, all the mathematical data required in the interpolation block (like 
Euclidean distances and weight functions) can be computed incrementally in a very efficient way. 

3.1.3.15 Procedure MRP: Margin Representing Points 

This Procedure constructs a grid of representing points on the margins of all the Lines together with the 
Background brightness values (APs) at these points. Later the constructed margin points are used (together 
with the original ACs) in the interpolation process in the block BB. 
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The margin representing points Mzj are produced in the following steps: 

4. On each Line, the points wk are built with the distance UM1 from one another, starting with one of the 
ends (the distance is measured along the Line). The last constructed point on each Line may be closer to 
the end Terminal Point of this Line, than UM1. 

5. At each wk the line lk orthogonal to the Line and intersecting it at wk is drown. If  wk turns out to be a 
vertex of the Line with a nonzero angle between the adjacent Line Segments LS (links), or a crossing, lk is 
taken to be the bissectrice of the corresponding angle. 

6. On each line lk two points (one point in the case of the bissectrice of the crossing joint angle) are chosen 

at the distance )(2 kwWUM ⋅ from the intersection point wk of lk with the Line (from the crossing wk, 
respectively). All the chosen points, in a certain chosen order, form the output margin representing points 
Mzj. 

7. At each margin representing point Mzj constructed, as described above, the corresponding margin 
Background brightness value Bbj is computed by 

BttABb j )1( −+=  

where A and B are the margin values (colorFarLft or colorFarRgt, respectively) of the cross-sections at the 
ends of the Line Segment S(Mzj), nearest to the point Mzj, and t = t(Mzj). 

S(Mzj) and t(Mzj) are computed by the Procedure DL. 

In the current Procedure UM1 and UM2 are tuning parameters (the first one absolute and the second relative 
to the width), satisfying UM1 < UB1,                 1 < UM2 < UL1. 

See the figure below. 

 

Figure 21 — Margin representing points 
The four figures below illustrate influence of different elements of the Background for different values of tuning 
parameters. 

Figure 22 —  shows an extrapolation of the margin values of the Line. 

Figure 23 —   illustrates the influence of the Area Color Points (ACs). 

Figure 24 —  shows representing points with a larger parameter UB1. 

Figure 25 —  shows a Patch influence. 

IECNORM.C
OM : C

lick
 to

 vi
ew

 th
e f

ull
 PDF of

 IS
O/IE

C 14
49

6-1
9:2

00
4

https://iecnorm.com/api/?name=8d6e15ab13bcc6e5652f932ae2011d3e


ISO/IEC 14496-19:2004(E) 

30 © ISO/IEC 2004 — All rights reserved
 

 

Figure 22 — Line influence 

 

Figure 23 —  Area Color influence  

 

Figure 24 — Effect of larger UB parameter 

 

Figure 25 — Effect of Patch 

3.1.3.16 Tuning Parameters 

All the tuning parameters, listed below, are not changed in the process of sending and playing of images and 
animations. However, their tuning for specific visual displays (and for specific classes of images) may improve 
the visual quality and the player efficiency. 

UL1 – the distance from the Lines (as a proportion to the width of the line), within which the CP (cross-section) 
brightness BL(z) is computed. It coincides with the exterior size of the lines averaging region.  Used in the 
Proceduress BL and WL. 

UL2 – the interior size of the lines averaging region (as a proportion to the width of the line). Used in the 
Procedure WL 

UP1 and UP2 are the corresponding parameters for Patches (referring to the relative distance with respect to 
the Patch size). Used in the Procedures BP and WP. 

UB1 and UB2 are the (absolute) size parameters for the weight functions of the Area Color Points (ACs). The 
parameter BVS characterize the smoothness of these weight functions. Used in the Procedure WB. 

The flag LBF specifies the order (0 or 1) of the local brightness representation. Used in the Procedure LB. 

The integer parameter N is the number of neighboring ACs taken to define the local linear approximations of 
the brightness. Used in the Procedure LB. 

FU is the distance of the separating lines at which pixels are marked as “forbidden”. 

UM1 and UM2 are the absolute and the relative to the width parameters in construction of margin representing 
point. Used in the Procedure MRP. 
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D > 1 is the parameter, defining the “asymmetry” of the distance to the Line Segment, computed in its side 
areas. Used in the Procedure DDL. 

DE > 0 is a parameter, defining the length of the end area of Lines. Used in the Procedure BL. 

3.1.4 The Skeleton 

3.1.4.1 General 

The Skeleton is a set of lines used for transferring motion to the elements of the texture during animation, 
through the process of Texture Warping (§3.1.5). 

 

  

  

  

  

  

 
A Bone (BN),  
bounded by  
2 Joints 

 A Polybone (PB), 
bounded by  
2 Joining Points (JPs)  

  

Figure 26 — Synthesized Texture Skeleton Topology and Geometry 
 

3.1.4.1.1 Topology 

The skeleton topology is based on a finite directed graph3), which includes a set of points called Joints 
(graph vertices), and a set of ordered pairs called Bones (BNs), which are graph "links" that connect specific 
pairs of joints directionally. 

Series of consecutive connected bones are grouped in Polybones (PBs). Polybones terminate in Joining 
Points (JPs). 

The Skeleton is morpologically similar to the Texture, where Bones (BNs) correspond to Line Segments (LSs), 
Polybones (PBs) correspond to Lines (LNs), and Joining Points (JPs) correspond to Terminal Points (TPs). 

                                                      

3) A finite directed graph is a finite set V of nodes called vertices, and a set of ordered pairs (vstart, vend) called links 
that connect some pairs of vertices where vstart, and vend are in V. A graph describes the connectivity pattern of its vertices, 
and has no inherent geometry. 
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However note the direction of polybones is significant to their function, while the direction of texture Lines is 
arbitrary. Additionally, PB need not necessarily terminate in a JP, while all LNs must terminate in TPs. 

Some of the skeleton's Joining Points may be attached to a particular Polybone by a Bond. A bond forces the 
initial relative position between a particular JP and a particular PB to be maintained throughout animation. 

3.1.4.1.2 Geometry 

During authoring and animation, the skeleton is initially laid out on a the plane of the texture which it is 
associated with. When the skeleton's pose changes, i.e. when it moves relative to itself, the skeleton's 
components change their location and shape, but they always remain on the texture plane. 

In addition to skeleton topology, Skeleton data contains one specific geometry, used later:  

• as the default mapping between the layers in the object's texture and the polybones in the skeleton 
topology. 

• as the skeleton's initial pose during authoring and/or playback. 

3.1.4.1.3 Association with Layers 

During authoring and encoding, every polybone is associated with exactly one texture Layer. During decoding, 
this allows associating in bulk each texture primitive in that layer, with a single polybone. 

3.1.4.2 Primitives and Properties 

The following primitive classes are used to store skeleton data, and are the targets of the Skeleton Decoding 
process described in §4.7. 

3.1.4.3 Skeleton 

3.1.4.3.1 Syntax 

 
class Skeleton 
{ 
  char name[16] 
  int  orientation; 
  int  width; 
  int  height; 
 
  aJP[] aJP;     // Joining Points 
  aPB[] aPB;     // Poly-Bones 
  int   nJP = 0; 
  int   nPB = 0; 
 } 

3.1.4.3.2 Semantics 

 
Name Description 
name The skeleton's name. 
orientation A bogus attribute of the skeleton topology, allowing a single topology to have several distinct 

instances, each with a different "orientation". This attribute can then be used in matching or 
adapting an adequate animation for a specific "orientation". 
This is currently used when authors choose to "flip" (mirror) a skeleton - the "orientation" of the 
skeleton is then changed from 0 to 1. Animations created for this skeleton are then adequate 
only for topologies whose "orientation" is 1. alternatively, animations created for orientation=0 
may to be "flipped" in order to be made adequate for the skeleton whose "orientation" is 1. 
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Name Description 
width The width of the skeleton’s plane in pixels. 
height The height of the skeleton’s plane in pixels. 
aJP Array of Joining Point data for this skeleton. 
aPB Array of Polybone data for this skeleton. 
nJP Number of elements in aJP. 
nPB Number of elements in aPB. 

3.1.4.4 Joining Point (JP) 

3.1.4.4.1 Syntax 

class JP                 // Joining Point  
{ 
  int iJP; 
 
  float x, y; 
 
  int iJpBond = -1; 
  int iBrBond; 
 
  BR   aBR[];            // branches from this JP 
  int  nBR = 0;          // number of branches from this JP 
} 

 
class BR 
{ 
  int   iPB;           // index of PB that branches from this BR 
  bool  bOut;          // is this branch an "out-branch"? 
} 

3.1.4.4.2 Semantics 

Name Description  
iJP The index of this JP in the skeleton's aJP array. 
x, y The coordinates of this JP in the skeleton's plane. 
iJpBond, iBrBond let "BondPB" be the polybone that this JP is (optionally) bonded to. Then: 

iJpBond is the index of the starting JP of BondPB. If iJpBond =-1 then this JP does not have a bond. 
iBrBond is the index of the BR that BondPB is branching-out from. 

aBR The array of branches from this JP. 
nBR The number of branches in aBR. 
class BR: 
iPB The index of the Polybone that branches from this BR. 
bOut Is this branch an "out-branch"? 

3.1.4.5 Polybone (PB) 

3.1.4.5.1 Syntax 

class PB                        //  Polybone 
{ 
  int iPB; 
  int iBegJP, iBegBR; 
  int iEndJP, iEndBR; 
  int iLY; 
  int influence; 
 
  BN  aBN[]; 
  int nBN = 0;  
} 
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3.1.4.5.2 Semantics 

 
Name Description 
iBegJP, iEndJP The indexes of the JPs in which this Polybone begins and ends. 
iBegBR The index of the branch in aJP[iBegJP] from which this Polybone begins. 
iLY The index of the Layer that this polybone is associated with. 
influence The range of this polybone's influence on layer iLY. 0=infinite influence; else=influence range from 

polybone, given in pixels. 
aBN The array of Bones comprising the geometry of this Polybone. 
nBN The number of elements in aBN. 

3.1.4.6 Bone (BN) 

3.1.4.6.1 Syntax 

 
class BN             // Bone 
{ 
  float vX, vY; 
  float hgt; 
} 

3.1.4.6.2 Semantics 

 
Name Description 
vX, vY The x,y offset of this Bone's end point from its starting point, in pixel units. 
hgt The height of the curve of this BN. 

3.1.5 Texture Warping 

3.1.5.1 General 

During animation, the Texture is "warped" by re-calculating the location of the texture primitives. This 
calculation is based on the current geometry of the skeleton. 

The geometry of the skeleton changes based on 3 motion patterns of bones in the skeleton: 

• Rotation around one of the bone's end points (joints). 

• Stretching (or shrinking) of a bone along the cord connecting its joints. 

• Bending a bone, by modifying the height of its arc. 

The animation mechanism is comprised of:  

• An influence scheme, specifying the layers influenced by each bone of the skeleton. 

• An influence zone, specifying the points in the layer's texture that are moved. 

• A motion transfer model, specifying the way in which the skeleton motion influences the elements of the 
layer's texture. 
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Figure 27 bellow demonstrates the effect of bone movement on the texture. 

A photo of a bottle with a background was converted to Texture. After conversion, a single Layer (the bottle) 
was cut-out of the image, and a single-layered object was defined. Then, a 3-bone polybone was attached to 
the object. 

  

1. Original 2 Rotation 3 Competing influence zones

  

4 Stretching 5 Bending 6 Complex Skeleton 

Figure 27 — The effect of bone movement on the texture. 
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1. The source image before conversion to Synthesized Texture 
2. Rotation of each bone separately (with no stretching or bending) 
3. Rotation of the polybone as a whole, with another bone added. Note the texture in the added 
bone's influence zone remains static, causing a stretching effect between it and the central polybone 
4. Stretching of the top bone and shrinking of the two bottom bones (with no rotation or bending) 
5. Bending of each bone separately (with no rotation or stretching) 
6. A complex skeleton (resembling humanoid) is attached to the object, and rotation, 
stretching/shrinking, and bending are all applied 

3.1.5.2 The Influence Scheme 

The basic influence scheme of the skeleton is a list, specifying the layers affected by each bone in the 
skeleton. 

 

Figure 28 — The associatioin of layers with polybones. 

The object includes 3 layers, dividing the object's skeleton into 3 polybones, 
whose default influence zones are their respective layers themselves. 

 
Additionally, "artificial" influence regions can be imposed for a polybone, consisting of all the points in the layer 
that are closer to this polybone than a certain threshold. This threshold is chosen according to the actual 
shape of the object to be animated. 

The bone association scheme determines each Texture primitive's controlling bones. Only these bones 
affect the primitive during motion transfer. 

The set of bones controlling a primitive is constructed according to the following scheme: 

A. The primitive's controlling polybones are determined: 

• Each primitive is normally a member in a specific layer in the texture. 

• Each layer is normally controlled by one or more polybones. 

• When the primitive's layer is associated with multiple polybones, the "influence-range" values of the 
polybones in question are used to weight the relative influence of each polybone on the primitive during 
motion transfer. 

Otherwise, if the primitive's layer is associated with a single polybone, this is its controlling polybone. 
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B. The primitive is associated with a specific controlling bone within each controlling polybone: 

• The bone closest to the primitive's center is found for each controlling polybone, and added to the 
primitives set of controlling bones. 

C. Too-far bones are excluded from influence: 

When the primitive has multiple controlling polybones, bones found above that are farther then the respective 
polybone's influence-range are excluded from the set. 

3.1.5.3 The Motion Transfer Model 

The animation of texture is based on translating the motion of the bones of the skeleton into the motion of the 
nearby texture points: 

• The Line Points (LP), defining the course of Lines. 

• The Area Color Points (AC), defining coloring between Lines. 

• The centers of Patches (PA). 

Since the geometry of the entire Texture is completely defined by the position of these points, the skeleton's 
state completely defines the motion of the influenced layers along time.  

The following general scheme is used to translate the skeleton motion to the nearby points: 

• A coordinate frame (§3.1.5.4) is constructed, comprising a coordinate systems around each bone in the 
skeleton. 

• An influence region (§3.1.5.2) for each bone in the skeleton is defined. 

• These coordinate systems and influence regions follow the motion of the skeleton. 
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Figure 29 — The effect of skeleton motion on a texture point: the polybone affecting p is 

displaced (right and downwards), and its geometry changed (the right bone has rotated causing 
the angle with the left bone to become smaller). 

 
Then, in order to define the position of a certain texture point p corresponding to a given motion of the 
skeleton, the following steps are performed: 

• If p does not belong to any of the influenced layers, it does not move. 

• If p belongs to a certain influenced layer, its coordinates with respect to the corresponding bone are 
computed once. 

• During animation, whenever the skeleton moves, a new point p' is calculated, whose coordinates with 
respect to the current state of the bone are the same as the coordinates of p with respect to the original 
state of the bone. 

3.1.5.4 The Coordinate Frame 

3.1.5.4.1 Bone Coordinate System 

The coordinate frame of the Skeleton consists of special coordinate systems, associated with each of the 
bones in the skeleton, and of the influence regions of these bones. 

A coordinate system (U, T) is defined for each bone in the skeleton, so that for any texture point p: 

• u is the distance of p from its nearest bone b. 

• t is the coordinate of the projection of p onto b, i.e. the distance along b of the projection of p from one of 
the end points of b. The projection is not exactly the orthogonal one; instead it takes into account the 
bisectrial lines of the angles between the adjacent bones in the polybone. 
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Figure 30 — A polybone's coordinate scheme, and point p's coordinates (u, t). 
 

p's nearest bone b, as well its coordinates (u, t) relative to b, are pre-computed. 

The new position of p is calculated according to the rule that its coordinates (u', t') relative to the moved b 
remain the same as the initial coordinates (u, t). 

A bone's coordinate systems (U, T) as defined above adheres to the bone regardless of the bone's movement 
relative to the skeleton and to the SynthesizedTexture's world. Thus, the new coordinates (u', t') for a texture 
point q are defined by the same expressions as above: 

• u' is the distance of q from its transformed nearest bone. 

• t' is the coordinate of the projection of q onto the transformed bone, i.e. the distance, along that bone, of 
the projection of q from one of the end points of the bone. 

3.1.5.4.2 Non-Unique Projections 

If a bone in the skeleton has a complicated geometric shape, and if an associated texture point p is relatively 
far from this bone, the projection of p onto the bone, and hence the distance u, the coordinate t and the 
rotation angle w, are not uniquely defined. This, in turn, leads to numerical instability of the relevant 
computations. 

This problem is overcome since: 

• Only the points within a bone's influence region (§3.1.5.2) are actually displaced. In implementations 
these regions are taken small enough to provide uniqueness in the above algorithm. 

• The skeleton's kinematical model restricts motion so that complicated or unstable shapes cannot be 
produced. 
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3.1.5.5 Bending and Stretching of Bones 

3.1.5.5.1 General 

In the general case, the bones of the Skeleton are not only displaced in the animation process, but may also 
be stretched and bent4). This is made possible by using parabolic segments as bones. 

Thus, in addition to its position determined by its two end points, each bone in the skeleton may have the 
following three additional attributes: 

• Bone Stretching (a). 

• Bone Bending amplitude (b). 

• Bone Bending direction (f). 

The effect of stretching and bending a bone on the animation of its associated texture points is linear and thus 
natural. 

 

Figure 31 — The effect of bending and stretching on the texture. 

                                                      

4) In a realistic animation of a human body, stretching and bending of bones is usually unnecessary, since real human 
bones do not normally stretch or bend. However, in non-human or less realistic animations these motion patterns are 
common. Moreover, stretching and bending allow artists to compensate for possible distortions produced by the pose of 
the animated object in the original image. Additionally, these animation patterns allow for various important visual effects 
by means of this essentially 2D mechanism, including 3D-like motion effects. 
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Stretching (or shrinking) a bone by a factor a stretches its coordinate system (U, a*T), thus causing the 
position of associated texture points to be proportionally displaced, causing a stretching effect to the entire 
associated texture. 

Bending a bone bends the bone's coordinate system, but since each texture point's (t, u) coordinates remains 
constant, a bending effect of the entire associated texture is achieved.  

3.1.5.5.2 The Effect on the Texture 

In the figure above, an orthonormal coordinate system, related to the initial joint of the bone, is used. V1 
denotes the bone vector, V is a vector of a generic given point, while V’ denotes the vector of this point after 
transformation.  

Stretching is defined by the stretching parameter a. For the bone vector, V1’ = a*V1. For any vector V: 
represent it in the coordinate system of the bone, as  V = pV1 + qV2, where V1 is the bone vector, and V2 is 
the unit vector, orthogonal to the bone.  Then the new vector V’ is given by V’ = a*pV1 + qV2. 

In other words, a times linear stretching is performed on all the space in the direction of the bone vector V1. 
Bending is defined by the bending amplitude parameter b and the bending direction parameter f. The bending 
direction is given by a unit vector W at the central point of the bone, which is orthogonal to the bone vector V1, 
and it is completely determined by the direction f. 

To compute the result of a bending on any vector V, representation of the vector V in the coordinate system 
as above is used: 

If  V = pV1 + qV2  then V’ =  pV1 + qV2 + b*p(1-p)W, for p between 0 and 1, V’ = V,  for p outside of the 
interval [0,1], i.e. for the projection of the point V on the bone’s line outside the bone. 

3.1.6 Object Animation 

3.1.6.1 General 

The animation effect of Synthesized Texture Objects is achieved by changes made to the appearance of the 
object's Texture along time. 

 

Figure 32 — The animation mechanism 
 

The animation mechanism uses a sequence of frames describing the object's state along a timeline. Each 
frame describes the Object's location and pose at a corresponding point in time. 

Changes in the location include changes to the position and rotation of the object-plane and the offset of the 
Object (i.e. its Skeleton) on that plane. 

Changes in the pose include changes in the relative positions of the bones in the Skeleton, which is laid out 
on the object-plane. These induce changes in the position of the Texture primitives on the object-plane 
through the process of Texture Warping. 
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Finally, the Texture is re-rendered on the visual plain based on the absolute location of the Texture primitives 
in the world, and its projection on the visual plane. For Scenes which Include a Camera Scenario, the position 
and viewing angle of the Camera is additionally considered. 

3.1.6.2 Object State Information 

Each frame in the Synthesized Texture Animation describes the object's geometrical state: 

1. Location – provides the extrinsic motion of the object: 

• the current position and rotation of the object's 2D plane in the SynthesizedTexture's 3D world. 

• the current offset of the object on its 2D object-plane. 

2. Pose – provides the intrinsic motion of the object: 

• the current geometry of the object's Skeleton, as it is laid-out on the 2D object plane. 

3.1.6.3 Frame Sequence Information 

An Animation is a sequence of Frames describing the changes in the object's state along a timeline. 

The frame sequence of an object's animation is described and encoded using a subset of the frames in the 
animation. Frames in this subset are called KeyFrames. 

The frame sequence of an object is divided into one or more sub-sequences called Runs. A run is bound by 
at least a start and end keyframe. The end keyframe of a run is called a run-end keyframe. All other 
keyframes in a run are called run-through keyframes, 

All frames in a run that are not keyframes are called in-between frames. The geometrical properties of in-
between frames are not explicitly described in the bitstream, and are derived instead, in the process called 
tweening (from "between"). In tweening, linear interpolation is performed on the geometrical properties of two 
adjacent keyframes, yielding the values of these properties for the in-between frames. 

Frames between runs are called static frames. In static frames, the object remains absolutely static, 
preserving its state at the end of the preceding run. 

 

       r u n  1                 r u n  2      
K b b b b K b b b b b b b K b b b b b K s s s s s K b b b b b b b b b K s ...
                                      
 b   in-between frame  K   Run-through 

  keyframe 
 K   run-end keyframe  s   static frame    

 

Figure 33 — Synthesized Texture Animation: Runs, Keyframes and inbetweens 
 

3.1.6.4 Primitives and Properties 

The following primitive classes are used to store animation data, and are the targets of the Animation 
Decoding process described in §4.8. 
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3.1.6.5 Animation 

3.1.6.5.1 Syntax 

class Animation 
{ 
  KF[] aKF; 
  int  nKF; 
} 

3.1.6.5.2 Semantics 

Name Description  
aKF The KFs in this Object Animation. 
nKF The number of KFs in aKF. 

3.1.6.6 KeyFrame (KF) 

3.1.6.6.1 Syntax 

class KF         // Object Animation Key Frame 
{ 
  int    iFrame; 
  bool   bRunEnd; 
 
  bool   bHasState3D; 
  float  posX; 
  float  posY; 
  float  posZ; 
  float  rotX; 
  float  rotY; 
  float  rotZ; 
 
  float  locX; 
  float  locY; 
 
  Skelton skl; 
 
  // auxiliary 
  int iFrameDiff; 
} 

3.1.6.6.1.1 Semantics 

Name Description  
IFrame The index of the animation frame that this keyframe describes. 
BRunEnd Is this a run-end KF? Otherwise this is a run-through KF. 

Run-end KFs are coded relative to the object's base KF, while run-through KFs are coded relative to 
their predecessor KF. This is so because the contents of a run-through KF are by definition related 
to the contents of its predecessor KF, while the contents of a Run-end KF are not. 

posX, posY, posZ The position of the origin of the object's 2D plane in the SynthesizedTexture's 3D world, in 
worldUnits. 

rotX, rotY, rotZ The rotation of the object plane about each of the 3D world's axes, in radians. 
locX, locY The offset of the object (i.e. of its bounding rectangle’s top left corner) on the object plane, in pixels. 
Skl The skeleton whose geometry is applied to this keyframe. 

Joint locations are encoded based on the changes in the angles between the bones of the skeleton 
between this keyframe and the previous one. 

IFrameDiff The difference between this KF's frame number and that of the previous KF. 
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3.1.7 Camera Scenario 

3.1.7.1 General 

The Camera Scenario describes the behavior of the SynthesizedTexture Camera along time. Similar to Object 
Animation, The time-based scenario of the Camera is based on a sequence of Frames. 

Each frame describes the camera's 3D state: 

• Position - the position (translation) of the origin of the camera's plane in the SynthesizedTexture's 3D 
world. 

• Rotation - The rotation of the camera's plane about the 3D world's coordinate system. 

Identical to Object Animation (§3.1.6), the Camera Scenario is based on a keyframe mechanism, which uses 
a sequence of KeyFrames to describe the Camera's state throughout all the frames in the scenario.  

3.1.7.2 Primitive and Properties 

The following primitive classes are used to store animation data, and are the targets of the Camera Decoding 
process described in §4.9. 

3.1.7.3 Camera 

3.1.7.3.1 Syntax 

 
class Camera 
{ 
  KF[] aKF; 
  int  nKF; 
} 

3.1.7.3.2 Semantics 

 
Name Description  
AKF The KFs in this Camera Scenario 
NKF The number of KFs in aKF. 

3.1.7.4 KeyFrame (KF) 

3.1.7.4.1 Syntax 

 
class KF         // Camera Key Frame 
{ 
  int    iFrame; 
 
  float  posX; 
  float  posY; 
  float  posZ; 
  float  rotX; 
  float  rotY; 
  float  rotZ; 
 
  // auxiliary 
  int iFrameDiff; 
} 
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3.1.7.4.2 Semantics 

 
Name Description  
IFrame The index of the camera frame that this keyframe describes. 
posX, posY, posZ The position of the origin of the camera's plane in the SynthesizedTexture's 3D world, in worldUnits.
rotX, rotY, rotZ The rotation of the camera's plane about each of the 3D world's axes, in radians. 
IFrameDiff The difference between this KF's frame number and that of the previous KF. 

 

3.1.8 Playback 

During playback, the frames on the SynthesizedTexture's shared timeline are sequentially rendered to a 
shared canvas. 

For each frame: 

• The current position and orientation of the SynthesizedTexture's Camera is calculated, relative to the 
SynthesizedTexture's 3D world. 

• The state of the texture of each of the SynthesizedTexture's objects per this frame is calculated, as 
described above. 

• The bitmap image of each of the object textures is rendered, based on its state, and the state of the 
camera. 

• The rendered bitmap images are projected to the shared canvas. 

•  
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4 Coding and Bitstream 

4.1 Overview 

This section specifies the structure of the ST Bitstream and describes how it is decoded to 
SynthesizedTexture primitives, described in 3.1. 

The ST Bitstream contains the ST primitives data in a highly re-organized arrangement, resulting in very high 
compression rates.  

4.2 Global Input Bitstream and Decoding Context 

The pseudo code below describes the main ST decoding procedure. 

Additionally it introduces the global scope and initiation of the pseudo code sections in this chapter. 

Names of global variables are prefixed with the 'g'. 

4.2.1 Syntax 

global context 
{ 
  ... 
 
  bitsStream gbsMain = new bitsStream(external_input_stream); // the main bit stream 
 
  char signature = gbsMain.word(1); 
  int  version   = gbsMain.word(2); 
 
  Header          gHdr;        // the current decoded Header 
  Scene           gScn;        // the current decoded Scene 
  Camera          gCmr;        // the current decoded Camera 
  Object          gObj;        // the current decoded Object 
  Skeleton        gSkl;        // the current decoded Skeleton 
  Animation       gAnm;        // the current decoded Animation  
  Texture         gTxr;        // the current decoded Texture 
 
  decHeaderBlock  gDecHdr;     // a Header decoder 
  decSceneBlock   gDecScn;     // a Scene decoder 
  decCamera       gDecCmr;     // a Camera decoder 
  decSkeleton     gDecSkl;     // a Skeleton decoder 
  decAnimation    gDecAnm;     // a Animation decoder    
  decTextureBlock gDecTxr;     // a Texture decoder 
 
  bitsStream      gbsTxr;      // the main sub-stream of the texture   
 
  do 
  { 
    char blockType  = gbsMain.word(1); 
    int  blockSize  = gbsMain.word(3); 
 
    switch (blockType) 
    { 
      case 'H': 
        int streamSize = gbsMain.word(4); 
        gDecHdr = new decHeaderBlock(); // initaite Header decoding 
        break; 
 
      case 'S': 
        gDecScn = new decSceneBlock();  // initaite Scene decoding 
        break; 
 
      case 'C': 
        gDecObj = new decObjectBlock(); // initaite Object decoding 
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        break; 
 
      case 'A': 
        gDecTxr = new decTextureBlock();// initaite texture decoding 
        break; 
    } 
  } 
  while (!gbsMain.EndOfStream()); 
 
  ... 
} 

4.2.2 Semantics 

Name Description 
gbsMain This is the main and global to all program bitsStream (§4.11) of the decoder, from which all 

subStreams are then opened. gbsMain feeds from the external input stream provided to the 
decoder. gbsMain.EndOfStream() is assumed to return true iff the end of the external input 
stream is reached. Each time this ‘function’ is called it fetches the specified number of 
elements of the specified data type. 

signature The ST stream signature. Value must be 'V' (0x56). 
version Synthesized Texture version information. 
blockType Synthesized Texture Blocks are the top level sub-divisions of the Synthesized 

Texture bitstream. All blocks are preceded with a unique block-type-ID, read by 
the main loop of the decoder. 
Every block includes a blockType identifier in its first byte. 
'H': Header  - general information about the bitstream and its contents. 
'S': Scene - a Scene description. 
'C': Object - an Object description. 
'A': Texture - a Texture description. 
Block types are described in the following sections. 
Within each Block, some of the data is further grouped and encoded in sub-
structures of type bitsStream and toknStream which support the Synthesized 
Texture's high level of compression. 

blockSize The byte size of the following block. 
streamSize The byte size of the entire bitstream. Note this element is present ONLY before a Header 

block. 
gHdr The global decoded Header. 
gDecHdr The global decHeaderBlock class. Construction initiates header decoding into gHdr. 
gScn The global decoded Scene. 
gDecScn The global decSceneBlock class. Construction initiates Scene decoding into gScn. 
gCmr gScn's global decoded Camera Scenario. 
gDecCmr The global decCamera class associated with decSceneBlock. Construction occurs in 

decSceneBlock() and initiates Camera decoding into gCmr. 
gObj The current global decoded Object. 
gDecObj The global current decObjectBlock class. Construction initiates Object decoding into gObj. 
gbsTxr The main and global subStream of the texture. 
gTxr The current global decoded Texture. 
GSkl gTxr's global decoded Skeleton. 
gAnm gTxr's global decoded Animation. 
gDecTxr The global current decTextureBlock class. Construction initiates texture decoding into gTxr.
gDecSkl The global decSkeleton class associated with decTextureBlock. Construction occurs in 

decSkeleton() and initiates skeleton decoding into gSkl. 
gDecAnm The global decAnimation class associated with decTextureBlock. Construction occurs in 

decAnimation() and initiates animation decoding into gAnm. 
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4.3 Header Block ('H') Decoding 

A SynthesizedTexture Header block is identified by 'H' in its first byte. 

4.3.1 decHeaderBlock() 

4.3.1.1 Syntax 

decHeaderBlock::decHeaderBlock() 
{ 
  gHdr = new Header();  // the decoded header 
 
  bool   bHasNumOfScenes = gbsMain.bit(1); 
    bool   bHasTitle       = gbsMain.bit(1); 
    bool   bHasArtist      = gbsMain.bit(1); 
    bool   bHasDescription = gbsMain.bit(1); 
    bool   bHasCopyright   = gbsMain.bit(1); 
    bool   bHasDate        = gbsMain.bit(1); 
    bool   bIsProtected    = gbsMain.bit(1); 
    bool   bMore           = gbsMain.bit(1); 
  if (bMore) 
  { 
    int    spare14         = gbsMain.bit(7); 
    bool   bMore1          = gbsMain.bit(1); 
  } 
 
  int    numOfScenes = (bHasNumOfScenes   ? gbsMain.word(1)); 
  int    date        = (bHasDate          ? gbsMain.word(4)); 
  int    frameRate   = (bHasFrameRate     ? gbsMain.word(1)); 
  char[] title       = (bHasTitle         ? gbsMain.asciiz(16)); 
  char[] copyright   = (bHasCopyright     ? gbsMain.asciiz(16)); 
  char[] artist      = (bHasArtist        ? gbsMain.asciiz(16)); 
  char[] description = (bHasDescription   ? gbsMain.asciiz(256)); 
} 

4.3.1.2 Semantics 

Name Description 
bHasNumOfScenes Is numOfScenes present? 
bHasFrameRate Is frameRate present? 
bForceFrameRate Should the player or it’s user be allowed to modify the frame rate specified in frameRate? 
spare3_6 Unused bits 
bMore Does another flags byte follow? 
bHasTitle Is title present? 
bHasArtist Is artist present? 
bHasDescription Is description present? 
bHasCopyright Is copyright present? 
bHasDate Is date present? 
bIsProtected Is playing the content in the bitstream protected by Digital Rights Management? 
spare14 Unused bits 
bMore1 Does another flags byte follow? 
numOfScenes Number of scenes in the bitstream. Present only if bHasNumOfScenes is true. 
date Creation date of the stream's contents. Present only if bHasDate is true. 
frameRate Recommended frame rate in frames/second in which the bitstream contents should be 

played. Present only if bHasFrameRate is true. 
title The stream's title. Present only if bHasTitle is true. 
copyright The stream's copyright string. Present only if is true. 
artist The stream's Artist. Present only if bHasCopyright is true. 
description A general description of the bitstream. Present only if bHasDescription is true. 
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4.4 Scene Block ('S') Decoding 

4.4.1 decSceneBlock() 

4.4.1.1 Syntax 

decSceneBlock::decSceneBlock() 
{ 
  gScn = new Scene();  // the decoded Scene 
 
  bool   bHasName  = gbsMain.bit(1); 
  bool   bHasScaledFrame              = gbsMain.bit(1); 
  bool   bHasBackgroundColor = gbsMain.bit(1); 
  bool   bHasCameraScenario     = gbsMain.bit(1); 
  bool   bHasPreviewFrameNum = gbsMain.bit(1); 
  bool   bHasFrameRate     = gbsMain.bit(1); 
  bool   bspare       = gbsMain.bit(1); 
  bool   bMore               = gbsMain.bit(1); 
 
  int    numOfObjects        = gbsMain.word(1); 
  int    backgroundColor     = (bHasBackgroundColor ? gbsMain.word(3)); 
  char[] name                = (bHasName            ? gbsMain.asciiz(63)); 
  int    numOfFrames         = gbsMain.bit(16); 
  int    frameHeight         = gbsMain.bit(12); 
  int    frameWidth          = gbsMain.bit(12); 
  int    scaledFrameHeight   = (bHasScaledFrame     ? gbsMain.bit(12)); 
  int    scaledFrameWidth    = (bHasScaledFrame     ? gbsMain.bit(12)); 
  int    frameRate           = (bHasFrameRate       ? gbsMain.bit(8)); 
  int    previewFrameNum     = (bHasPreviewFrameNum ? gbsMain.bit(16)); 
 
  if (bHasCameraScenario) 
  { 
    gCmr = new Camera();         // gScn's Camera Scenario 
    gDecCmr = new decCamera();   // initaite Camera decoding 
  } 
} 

4.4.1.2 Semantics 

Name Description 
bHasName Is name present? 
bHasScaledFrame Are scaledFrameHeight and scaledFrameWidth present? 
bHasBackgroundColor Is backgroundColor present? 
bHasCameraScenario Is Camera Scenario Present? 
bHasPreviewFrameNum Is previewFrameNum present? 
bHasFrameRate is FrameRate present? 
bspate spare bit 
bMore Does another flags byte follow? 
numOfObjects The number of objects in this scene. 
backgroundColor The scene canvas's background color. Present only if bHasBackgroundColor is true. 
name The scene's name. Present only if bHasName is true. 
previewFrameNum Which frame did the author select as this scene's "preview" frame. Present only if 

bHasPreviewFrameNum is true. If absent, this scene has no preview frame. 
numOfFrames The number of frames in this scene. 
frameHeight,  
frameWidth 

The respective height and width of the scene's frame in pixels. 

scaledFrameHeight, 
scaledFrameWidth 

The respective height and width of the scene's scaled frame in pixels. Present only if 
bHasScaledFrame is true. 

frameRate Frame rate. Present only if bHasFrameRate is true. 
cameraScenario The camera scenario for this scene. If absent this scene is a "fixed camera" scene. 
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4.5 Object Block ('C') Decoding 

An Object block is identified by 'C' in its first byte (objects were previously named "characters"). 

4.5.1 decObjectBlock() 

4.5.1.1 Syntax 

decObjectBlock::decObjectBlock() 
{ 
  gObj = new Object();    // the decoded Object 
 
  bool   bHasName         = gbsMain.bit(1); 
  bool   bHasType         = gbsMain.bit(1); 
  bool   bHasScaledHeight = gbsMain.bit(1); 
  bool   bHasSkeleton     = gbsMain.bit(1); 
  bool   bHasAnimation    = gbsMain.bit(1); 
  bool   bFlip            = gbsMain.bit(1); 
  bool   bText            = gbsMain.bit(1); 
  bool   bMore            = gbsMain.bit(1); 
 
  if (bMore) 
  { 
    bool   bLocked          = gbsMain.bit(1); 
    bool   bMovable         = gbsMain.bit(1); 
    bool   bFlipable        = gbsMain.bit(1); 
    bool   bHasInteraction  = gbsMain.bit(1); 
    bool   spare12_14       = gbsMain.bit(3); 
    bool   bMore1           = gbsMain.bit(1); 
  } 
 
  char[] name         = (bHasName         ? gbsMain.asciiz(63)); 
  int    type         = (bHasType         ? gbsMain.bit(4)); 
  int    scaledHeight = (bHasScaledHeight ? gbsMain.bit(10)); 
 
  if (bHasSkeleton) 
  { 
    gSkl    = new Skeleton();        
    gDecSkl = new decSkeleton();   // initaite Skeleton decoding 
  } 
 
  if (bHasAnimation) 
  { 
    gAnm    = new Animation();   
    gDecAnm = new decAnimation();   // initaite Animation decoding 
  } 
 
  // Text               text; 
  // Interaction        interaction; 
} 

4.5.1.2 Semantics 

Name Description 
bHasName Is name present? 
bHasType Is type present? 
bHasScaledHeight Is scaledHeight present? 
bHasSkeleton Is skeleton present? 
bHasAnimation Is animation present? 
bFlip Flip the object by 180? 
bText Are text properties present? 
bMore Does another flags byte follow? 
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bLocked Can the object recieve interacion from the player. 
bMovable Is object moveable by the player? 
bFlipable Can object be rotated into the Z dimension by more than +/- 180 degrees by the player? 
bHasInteraction Is interaction information present? 
spare12_14 Unused bits 
bMore1 Does another flags byte follow? 
name The object’s name. 
type The object’s type. Present only if bHasType is true. 

• REGULAR (0x01) - This object was authored explicitly, i.e. the player does not 
need to generate it. 

• TEXT (0x02) - This object was authored to portray text. Text information serves 
only for future authoring of the object. 

scaledHeight The object’s scaled height in pixels. Present only if bHasScaledHeight is true. 
skeleton The object’s skeleton. Present only if bHasSkeleton is true.  
animation The object’s animation. Present only if bHasAnimation is true. 
text The text properties of the object. Present only if bText is true and (type == TEXT). 
interaction The object’s interaction rules. Present only bHasInteraction if is true. 
 

4.6 Texture Block ('A') Decoding 

A Texture block is identified by 'A' in its first byte. 

4.6.1 Overview 

This chapter describes the bitstream of the Texture and the process of decoding it to primitives, known as 
Texture Decoding. 

A Texture block contains the data of a single Texture. It is comprised of a sequence of sub-streams, accessed 
during a series of specific decoding stages.  

The target of the decoding process are Texture Primitives. §3.1.2 - The Texture describes the syntax and 
semantics of the target data structures of Texture Decoding.  

4.6.2 decTextureBlock() 

Class decTextureBlock reads and decodes all primitives comprising a single Texture. 

Reading and decoding bitstream data to Texture primitives is done in 8 main decoding stages. Each stage is 
dedicated to decoding and re-constructing certain properties of texture primitives for the entire texture. 

Texture decoding stages are described in detail in the sections following this one. 

Each decoding stage accesses in parallel one or several sub-streams of the main bitstream. ST sub-streams 
group data elements that have been found empirically to reduce data size when properly aggregated, ordered, 
quantized, packed and compressed.  

Texture sub-streams are described and listed in §4.11. 
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4.6.2.1 Syntax 

 
decTextureBlock::decTextureBlock() 
{ 
  bitsStream  gbsTxr(gbsMain);// open main sub-stream of the texture  
 
  gTxr = new Texture();       // let gTxr be the decoded texture 
 
  header               decHeader(); 
 
  locations            decLocations(); 
   
  curveGeometry        decLinesGeometry(); 
   
  subLayerIds          decSubLayerIds(); 
 
  areaColoring         decAreaColoring(); 
 
  lineColorProfiles    decLineColorProfiles(); 
 
  patches              decPatches(); 
 
  depths               decDepths(); 
 
} 

 
4.6.2.2 Semantics 

Class decTextureBlock reads and decodes all primitives comprising a single Texture. 

Reading and decoding bitstream data to Texture primitives is done in 8 main decoding stages. Each stage is 
dedicated to decoding certain properties of texture primitives for the entire texture. Each decoding stage 
"SSS" is executed by a respective class "decSSS". 

The Texture decoding stages are described in the sections following this one, as listed below. 

Each decoding stage accesses in parallel one or several sub-streams of the main bitstream.  

Within the main bitstream, sub-streams are ordered in a specific order, according to the first time they must be 
used in one of the decoding stages. Sub-streams are thus opened and read from the main bitstream 
immediately prior to the decoding stage that first uses them: 

All Texture sub-streams extend the toknStream or bitsStream classes described and listed in §4.11. 
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Decoding Stage  Section 

a. decHeader 

• information about the texture as a whole e.g. texture dimensions. 

• information about the texture's coding and bitstream e.g. quantization 
levels. 

• Geometric information about the texture's Layers (LYs). 

 4.6.3 

b. decLocations 

• The 2D locations of all Terminal Points (TPs) in the texture.  

• The 2D locations of the center points of all Patches (PA) in the texture. 

 4.6.4 

c. decLinesGeometry 

• The geometric shape of all Line Segments (LS) in the texture. 

• The Line Type of all Lines (LNs) in the texture. 

• The width components of all Line Color Profiles (LCs) in the texture. 

• How Lines (LNs) in the texture are connected. 

 4.6.5 

d. decLayersIds 

• Association of texture primitives with Layers. 

• Attributing contour type to LNs. 

 4.6.6 

e. decAreaColoring 

• The location and color of all Area Color Points (ACs) in the texture. 

• The margin color values of all Line Color Profiles (LCs) in the texture. 

 4.6.7 

f. decLineColorProfiles 

• All remaining properties of the Line Color Profiles (LCs) in the texture. 

 4.6.8 

g. decPatch  

• All remaining properties of the geometry and coloring of the patches 
(PAs) in the texture. 

 4.6.9 

h. decDepths 

• All depths of PAs, ACs and LCs, in case they were not previously 
decoded globally. 

 4.6.10 
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4.6.3 Texture Header 

4.6.3.1 decHeader 

4.6.3.1.1 Syntax 

class decHeader::decHeader() 
{ 
  // texture coding flags: 
  bool bHasDepth       = gbsTxr.bit(1); 
  bool bHasContour     = gbsTxr.bit(1); 
  bool bHasRidges      = gbsTxr.bit(1); 
  bool bHasPatches     = gbsTxr.bit(1); 
  bool bHasDepthDeltas = gbsTxr.bit(1); 
  bool spare5_6        = gbsTxr.bit(2); 
  bool bMore           = gbsTxr.bit(1); 
 
  gTxr.width           = gbsTxr.bit(16); 
  gTxr.height          = gbsTxr.bit(16); 
  int  cellSize        = gbsTxr.bit(8); 
  int  qLvl            = gbsTxr.bit(8); 
 
  if (bHasDepth) 
  { 
    gTxr.worldUnit = gbsTxr.bit(16);   
 
    if (gbsTxr.bit(1) == 1) 
    { 
      gTxr.LosOffsetX = gbsTxr.bit(16); 
      gTxr.LosOffsetY = gbsTxr.bit(16); 
    } 
 
    decLayers(); 
    decSubLayersDepath(); 
  } 
} 

 
4.6.3.1.2 Semantics 

Class decHeader reads global information regarding: 

• The texture as a whole e.g. texture dimensions. 

• The texture's coding and bitstream parameters e.g. quantization levels. 

• Layers' information later used to associate and orientate texture primitives relative Bones. 

Name Description  
bHasDepth Does the coded texture have depth 
bHasContour Does the coded texture have a contour line (that is not its bounding rectangle) ? 
bHasRidges Does the coded texture include RIDGE lines ? 
bHasPatches Does the coded texture include Patches (PAs) ? 
bHasDepthDeltas Do primitives in the coded texture have depth corrections (deltas) relative to their layers? 

Default: false, i.e. primitives' depth is derived from their layer's depth information. 
spare5_6 Unused bits 
BMore Does another flags byte follow? 
CellSize The size of the top-level cells used for encoding the texture's occupancy grid, in pixels. This is 

typically 8, indicating cells of 8x8 pixels. 
qLvl  The quantization level used for encoding the texture – reflects level of detail and sampling 

resolution. This is a 0..4 index into quantization tables, see §4.6.9.1.2. 
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4.6.3.2 decLayers() 

4.6.3.2.1 Syntax 

 
decHeader::decLayers() 
{ 
  gTxr.nLY = gbsTxr.bit(8); 
   
  int Xbits = ilog2(height/cellSize); 
  int Ybits = ilog2(width /cellSize); 
 
  for (int lyi = 0; lyi < gTxr.nLY; lyi++) 
  { 
    gTxr.aLY[lyi].nSL = gbsTxr.bit(4); 
    gTxr.nSL += gTxr.aLY[lyi].nSL; 
    for each SL sl in gTxr.aLY[lyi] 
      sl.iLY = lyi; 
     
    gTxr.aLY[lyi].X0 = gbsTxr.bit(Xbits) * cellSize; 
    gTxr.aLY[lyi].X1 = gbsTxr.bit(Xbits) * cellSize; 
    gTxr.aLY[lyi].Y0 = gbsTxr.bit(Ybits) * cellSize; 
    gTxr.aLY[lyi].Y1 = gbsTxr.bit(Ybits) * cellSize; 
 
    gTxr.aLY[lyi].bHasDepthDeltas = gbsTxr.bit(1); 
 
    gTxr.aLY[lyi].name = gbsTxr.asciz(64); 
  }     
} 

 
4.6.3.2.2 Semantics 

 
Name Description  
Xbits, Ybits Number of bits to be used in reading X and Y coordinates of layers' bounding rectangles. 

4.6.3.3 decSubLayersDepth() 

4.6.3.3.1 Syntax 

 
decHeader::decSubLayersDepth() 
{ 
  int nBitsForDistance = gbsTxr.bit(6); 
 
  for each SL sl in gTxrgTxr 
  { 
    sl.surfaceType = gbsTxr.bit(4); 
    sl.bOrthogonal = gbsTxr.bit(1); 
   
    if (bOrthogonal) 
      sl.orient = point3D(0, 0, 1.0); 
    else 
    { 
 
      sl.orient.x = gbsTxr.float(qVecDist, qVecDist.bits()); 
      sl.orient.y = gbsTxr.float(qVecDist, qVecDist.bits()); 
      sl.orient.z = gbsTxr.float(qVecDist, qVecDist.bits()); 
 
 
      // normalize orient: 
      float tmp = sqrt(sl.orient.x^2 + sl.orient.y^2 + sl.orient.z^2); 
      sl.orient.x /= tmp; 
      sl.orient.y /= tmp; 
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      sl.orient.z /= tmp; 
    } 
 
    sl.dist = gbsTxr.float(qVecDist, nBitsForDistance); 
  } 
} 

 
4.6.3.3.2 Semantics 

 
Name Description 
nBitsForDistance Specifies the number of bits to read for the distance float values 

4.6.4 Locations 

4.6.4.1 decLocations() 

4.6.4.1.1 Syntax 

 
class decLocations::decLocations()  
{ 
  // uses: 
  bitsStream bsCntr    (gbsMain); 
  toknStream ts4x1cell (gbsMain);      
  toknStream tsLocType (gbsMain); 
 
  int flags        = gbsTxr.bit(8);    // reserved bit 
  int cellSize     = gbsTxr.bit(8); 
 
  qCord.min = -cellSize/2; 
  qCord.max =  cellSize/2; 
 
  for each cell8x8 in the texture  // for each group of 8X8 cells in aCell[] 
    decCell8X8(cell8x8) 
} 

 
decLocations::decCell8X8(cell8x8) 
{ 
  int bMultiple = 0; 
 
  if (bsCntr.bit(1) == 1) 
  { 
    bMultiple = gbsTxr.bit(1); 
 
    for each cell4x4 in cell8x8  // for each group of 4X4 cells in cell8x8 
      decCell4x4(cell4x4, bMultiple); 
  } 
} 

 
decLocations::decCell4x4(cell4x4, bMultiple) 
{ 
  if (bsCntr.bit(1) == 1) 
  { 
    if (bMultiple == 0) 
      bMultiple = bsCntr.bit(1); 
 
    for each cell2x2 in cell4x4  // for each group of 2X2 cells in cell4x4 
      decCell2x2(cell2x2, bMultiple); 
} 
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decLocations::decCell2x2(cell2x2, bMultiple) 
{ 
  if (bsCntr.bit(1) == 1) 
  { 
    int 4x1cell = ts4x1cell.next(); 
 
    for each cell1x1 in cell2x2 
      if (corresponding bit in 4x1cell == 1) 
        decCell1x1(cell1x1, bMultiple); 
} 

 
decLocations::decCell1x1(cell, bMultiple) 
{ 
  do 
  { 
     int type = ssLocType.next(); 
     switch(type)   
     { 
        case 0: 
          aPA[nPA].x = cell.x + dequant(qCoord, bsCntr.bit(qCoordBits)); 
          aPA[nPA].y = cell.y + dequant(qCoord, bsCntr.bit(qCoordBits)); 
          nPA++; 
          break; 
 
        case default:  
          aTP[nTP].x  = cell.x + dequant(qCoord, bsCntr.bit(qCoordBits)); 
          aTP[nTP].y  = cell.y + dequant(qCoord, bsCntr.bit(qCoordBits)); 
          aTP[nTP].junctionType = type - 1;    
          nTP++; 
          break; 
    } 
  } 
  while(bMultiple && bsCntr.bit(1) == 1); 
} 

 
4.6.4.1.2 Semantics 

Class decLocations reads and decodes: 

• The 2D locations of the Terminal Points (TPs), which define the start and end points of all the texture's 
Lines (LNs).  

• The 2D locations of the centers of all Patches (PAs) in the texture. 

Locations of centers (the geometric centers of TPs and PAs) in the Texture are encoded using the following 
procedure: 

• The area of the Texture is divided into cells of cellSize x cellSize pixels. 

• An occupancy matrix marks the number of centers in each cell.  

• The occupancy matrix is encoded into a stream using the partial quad-tree algorithm. 

• the partial quad-tree algorithm establishes a reference order to all centers. 

• The (x, y) offset of each center from the center of it's cell is recorded. 

 
Name Description 
Type A location may be TerminalPoint or Patch 
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4.6.5 Line Geometry 

4.6.5.1 decLinesGeometry() 

4.6.5.1.1 Syntax 

void decLinesGeometry::decLinesGeometry() 
{ 
  // uses: 
  toknStream tsLsCnt (gbsMain); 
  toknStream tsLsHgt (gbsMain); 
  toknStream tsLsVec (gbsMain); 
  toknStream tsEndTp (gbsMain); 
 
  flags = gbsTxr.bit(8);  // reserved bit 
 
  decTerminalPointTopology(); 
 
  decBranchingLines(); 
 
  decLineWidths();  // RIDGE and EDGE 
 
  decParallelLines(); 
} 

 
4.6.5.1.2 Semantics 

Class decLinesGeometry reads and decodes: 

• The geometric shape of Line Segments (LS) in the texture. 

• The Line Type of Lines (LN) in the texture. 

• The width components of Line Color Profiles (LC) in the texture. 

• How Lines (LN) in the texture are connected. 

4.6.5.2 decTerminalPointTopology() 

4.6.5.2.1 Syntax 

void decLinesGeometry::decTerminalPointTopology() 
{   
  for each TP tp in gTxr 
  { 
    if (tp.JunctionType == SPLITTING) 
      decSplittingTopology(tp);   
    else 
    { 
      tp.nBR = gbsTxr.bit(2); 
 
      for each BR br in tp 
      { 
        br.bOut = true 
        br.iLnType = tp.JunctionType; 
      }   
    } 
  } 
} 
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4.6.5.2.2 Semantics 

This class decodes the type of the Treminal Point. It it is of splitting nature, it calls for decoding all the lines 
ending at this point. 

 
4.6.5.3 decBranchingLines() 

4.6.5.3.1 Syntax 

 
void decLinesGeometry::decBranchingLines() 
{ 
  for each tp in gTxr.aTP[] 
  { 
    for each BR br in tp 
      if (br.bOut) 
        decBranchingLine(tp, br); 
  } 
} 

 
4.6.5.4 decBranchingLine() 

4.6.5.4.1 Syntax 

 
void decLinesGeometry::decBranchingLine(TP tpBeg, BR brBeg) 
{ 
  LN ln; 
 
  ln.iLN = nLN; 
  ln.iLnType = brBeg.iLnType; 
  ln.nLS = tsLsCnt.next() + 1; 
 
  int xTotal = tpBeg.x; 
  int yTotal = tpBeg.y; 
  int xBase = 0; 
  int yBase = 0; 
 
  for each LS ls in ln 
  { 
    ls.hgt = dequantZ(qLsHgt, tsLsHgt.next()); 
 
    if (ls is NOT the last LS in ln) 
    { 
      ls.x = dequantZ(qLsVec, tsLsVec.next()) + xBase; 
      ls.y = dequantZ(qLsVec, tsLsVec.next()) + yBase; 
      xBase = ls.x; 
      yBase = ls.y; 
 
      xTotal += ls.x; 
      yTotal += ls.y; 
    } 
  } 
 
  brBeg.iLN = ln.iLN; 
  ln.iTpBeg = tpBeg.iTP; 
  ln.iTpEnd = decLineEndTp(ln.iLnType, xTotal, yTotal); 
 
  TP  tpEnd  = gTxr.aTP[ln.iTpEnd]; 
  int iBR; 
 
  if (tpEnd.junctionType == SPLITTING)  // only BR[1] and BR[2] are possible 
    iBR = gsbTxr.bit(1) + 1; 
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  else 
    iBR = tpEnd.nBR++;                  // add a new in-branch 
 
  BR brEnd = tpEnd.aBR[iBR]; 
  brEnd.iLN = ln.iLN; 
  brEnd.bOut = false; 
  brEnd.iLnType = ln.iLnType; 
 
  let ls be the last LS in ln; 
  ls.x = tpEnd.x – xTotal; 
  ls.y = tpEnd.y – yTotal; 
 
  gTxr.aLN[gTxr.nLN++] = ln;            // add ln 
} 

 
4.6.5.4.2 Semantics 

This class decodes and computes the line geometry. Coordinates are specified as offsets from previous 
coordinates. 

 
4.6.5.5 decEndTP() 

4.6.5.5.1 Syntax 

 
int decLinesGeometry::decLineEndTp(lineType, x, y) 
{ 
  let cell0 be the cell in which (x, y) resides. 
 
  let vicinity be a NxN cell vicinity around cell0 where 
  { 
    the cells in vicinity are indexed 0.. N^2-1 from vicinity's top-left; 
    cell0 is in the central row and column of vicinity. 
    N = 11;  
  } 
 
  int iCell = tsEndTp.next();  // the index of the cell in vicinity 
 
  let aTpsInCell[] be the list of TPi's in cell[iCell] where 
  {  
    only TPs whose junctionType is SPLITTING or lineType are in the list; 
    TPs in the list are ordered by their order in gTxr.aTP[]; 
  } 
 
  let nTpsInCell be the number of elements in aTpsInCell; 
 
  if (nTpsInCell == 1) 
    return aTpsInCell[0]; // the single element in aTpsInCell 
  else 
  { 
    int nBitsFor_iTP = ilog2(nTpsInCell - 1); 
    int iTP = gsbTxr.bit(nBitsFor_iTP) + 1; 
    return aTpsInCell[iTP]; 
  } 
} 
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4.6.5.5.2 Semantics 

Return the index of the ending TP of the Line starting at (x, y). 

0 1 2 3 4 5 6 7 8 9 10 

11 12 13 14 15 16 17 18 19 20 21 

22 23 24 25 26 27 28 29 30 31 32 

33 34 35 36 37 38 39 40 41 42 43 

44 45 46 47 48 49 50 51 52 53 54 

55 56 57 58 59 cell0 60 61 62 63 64 

65 66 67 68 69 70 71 72 73 74 75 

76 77 78 79 80 81 82 83 84 85 86 

87 88 89 90 91 92 93 94 95 96 97 

98 99 100 101 102 103 104 105 106 107 108 

109 110 111 112 113 114 115 116 117 118 119 

Figure 34 — The vicinity grid (N=11) of (x, y), and the indexing of its cells. 

4.6.5.6 decLineWidths() 

4.6.5.6.1 Syntax 

void decLinesGeometry::decLineWidths() 
{ 
  for each LN of iLnType RIDGE or EDGE in gTxr 
  { 
    let {p0, p1, …, pn} be the separating LCs on LN. 
    let {q0, q1, …, qm} be the subset of {p0, p1, …, pn} so that 
    { 
      q0 = p0; 
      qi = the next pj so (quasiDistance(pj, qi-1) > qLineSampleDistance.step); 
      qm = pn; 
    } 
 
    for each qi  
    { 
      if (ln.iLnType == RIDGE) 
      { 
        qi.widthLft = dequant(qSepW, tsSepW.next()); 
        qi.widthRgt = dequant(qSepW, tsSepW.next()); 
      } 
      else // EDGE 
      { 
        qi.widthLft = dequant(qSepW, tsSepW.next()); 
        qi.widthRgt = qi.widthLft; 
      } 
    } 
 
    for each segment (qi-1, qi) 
    for each p between qi-1 and qi  
    { 
      int dist = quasiDistance(p, qi-1) / quasiDistance(qi, qi-1); 
      p.widthLft = widthInterpol(qi-1.widthLft, qi.widthLft, dist); 
      p.widthRgt = widthInterpol(qi-1.widthRgt, qi.widthRgt, dist); 
    } 
  } 
} 
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4.6.5.6.2 Semantics 

This class determines the width of the line according to its type: Edge or Ridge. 

 
4.6.5.7 decSplittingTopology() 

4.6.5.7.1 Syntax 

 
void decLinesGeometry::decSplittingTopology(TP tp) 
{   
  tp.nBR = 3; 
  tp.aBR[0].iLnType = RIDGE; 
  tp.aBR[0].bOut = gbsTxr.bit(1); 
 
  for (int bri=1; bri<2; bri++) // for each BR in tp.aBR[1..2] 
  { 
    iSplitType = gbsTxr.bit(2); 
    switch(iSplitType) 
    { 
      case 0: 
        br.iLnType = ABSENT; 
        br.bOut = false; 
        break; 
      case 1: 
        br.iLnType = PARALLEL; 
        br.bOut = false; 
        break; 
      case 2: 
        br.iLnType = EDGE; 
        br.bOut = false; 
        break; 
      case 3: 
        br.iLnType = EDGE; 
        br.bOut = true; 
        break; 
    } 
  } 
} 

4.6.5.7.2 Semantics 

This class decodes the nature of the splitting terminal point. Based on the topology the type of the branching 
lines is set. 

 
4.6.5.8 decParallelLines() 

4.6.5.8.1 Syntax 

 
void decLinesGeometry::decParallelLines() 
{ 
  for each SPLITTING TP tp in aTxr 
  { 
    for each BR br in tp 
      if (br.iLineType == PARALLEL) 
        br.iLN = decParallelLine(tp.x, tp.y); 
  } 
} 
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4.6.5.9 decParallelLine() 

4.6.5.9.1 Syntax 

 
int decLinesGeometry::decParallelLine(x, y) 
{ 
  let cell0 be the cell in which (x, y) resides. 
 
  let vicinity be a NxN cell vicinity around cell0 where: 
  { 
    cell0 is in the central row and column of vicinity. 
    the cells in vicinity are indexed 0.. N^2-1, starting from vicinity's top-left; 
    N = 11;  
  } 
 
  int iCell = tsEndTp.next();  // the index of the cell in vicinity 
 
  let aLNsInCell[] be the list of LNi's where for each LN[LNi] ln in the list where: 
  { 
    some LS ls on ln fullfills (ls.vX, ls.vY) is in cell[iCell]; // ln "passes" in 
cell[iCell] 
    ln.iLnType==RIDGE; 
    LNi's in the list are ordered by their order in gTxr.aLN[]; 
  } 
 
  let nLnInCell be the number of elements in aLnInCell; 
 
  if (nLnsInCell == 1) 
    return aLnInCell[0]; // the single element in aLnInCell 
  else 
  { 
    int nBitsFor_iLN = ilog2(nLnInCell - 1); 
    int iLN = gsbTxr.bit(nBitsFor_iLN); 
    return aLnInCell[iLN]; 
  } 
} 

4.6.5.9.2 Semantics 

Return the index of the parallel Line branching at (x, y). 

4.6.6 Layer Ids 

4.6.6.1 decSubLayerIds() 

4.6.6.1.1 Syntax 

 
decSubLayerIds::decSubLayerIds() 
{ 
  if(gTxr.nLY == 1 && !gTxr.bHasCountor) 
  { 
    for all PAs and LNs in gTxr: 
      let iSL be 0; 
      let iContourType be 0; 
    return; 
  } 
 
  bool bHasMoreThanOneSL; 
  bool bHasContourLine; 
  int  iSL; 
 
  int flags = gbsTxr.bit(8); 
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  for each cell2x2 in the texture with Lines or Patches  
  { 
    if (gTxr.nSL == 1) 
    { 
      bHasMoreThanOneSL = false; 
      iLS = 0; 
    } 
    else 
    { 
      bHasMoreThanOneSL = gbsTxr.bit(1); 
      if (!bHasMoreThanOneSL)   // i.e. has one 
        iSL = tsSbLyId.next(); 
    } 
 
    bHasContourLine = gbsTxr.bit(1); 
 
    for each PA pa whose center is in cell2x2 
      pa.iLS = NextSubLayerId(bHasMoreThanOneSL, iSL); 
 
    for each LN ln starting in cell2x2 
    { 
        ln.iSlLft = ln.iSlRgt = NextSubLayerId(bHasMoreThanOneSL, iLS); 
        ln.iContourType = 0; 
 
        if (ln.iLnType == RIDGE || ln.iLnType == EDGE) 
        { 
          ln.iContourType = NextContourFlag(bHasContourLine); 
 
          if (ln.iContourType == 0x04) 
            iSlRgt = tsSbLyId.next(); 
        } 
    } 
  } 
} 

 
decSubLayerIds::nextSubLayerId(bool bHasMoreThanOneSL, int iSL) 
{ 
  if (!bHasMoreThanOneSL)   
    return(iSL); 
 
  return(tsSbLyId.next(); 
} 

 
decSubLayerIds::nextContourFlag(bool bHasContourLine) 
{ 
  if (!bHasContourLine) 
    return(0); 
 
  return(tsSepFlg.next(); 
} 

 
4.6.6.1.2 Semantics 

Class decSubLayerIds reads and decodes: 

• iSL's, used to associate LNs and PAs with a Layer and Sub-layer. 

• Contour type, used to determine which LNs are "contours" of the texture and of sub-layers. 
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4.6.7 Area Coloring 

4.6.7.1 decAreaColoring() 

4.6.7.1.1 Syntax 

decAreaColoring::decAreaColoring() 
{ 
  //uses: 
  bitsStream bsAc        (gbsMain); 
  toknStream tsAcAbsY    (gbsMain); 
  toknStream tsAcAbsCrCb (gbsMain); 
  toknStream tsAcRelY    (gbsMain); 
  toknStream tsAcRelCrCb (gbsMain); 
 
  int flags    = gbsTxr.bit(8);     // reserved bit 
  int cellSize = gbsTxr.bit(8); 
 
  for each layer in the texture 
  { 
     decPointsLoaction(); 
     decPointsColor(); 
     decSepLinesMidAndCenterColors(); 
  } 
} 

 
4.6.7.1.2 Semantics 

Class decAreaColoring reads and decodes: 

• The location and color of Area Color Points (ACs). 

• The far (colorFarLft, colorFarRgt) and central (colorCenter) color values of Line Color Profiles (LCs). 

4.6.7.2 decPointsLoaction() 

4.6.7.2.1 Syntax 

decAreaColoring::decPointsLoaction() 
{ 
  for each cell4x4 in the layer  // for each group of 4X4 cells in the layer 
    decPointsLocationCell4x4(cell4x4) 
} 

 
decAreaColoring::decPointsLocationCell4x4(cell4x4) 
{ 
  if (bsAc.bit(1) == 1) 
  { 
    for each cell2x2 in cell4x4  // for each group of 2X2 cells in cell4x4 
      decPointsLocationCell2x2(cell2x2) 
  }   
} 

 
decAreaColoring::decPointsLocationCell2x2(cell2x2) 
{   
  if (bsAc.bit(1) == 1) 
  { 
    for each cell1x1 in cell2x2  // for each group of 1X1 cells in cell2x2 
      decPointsLocationCell1x1(cell1x1) 
  }   
}            
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decAreaColoring::decPointsLocationCell1x1(cell1x1) 
{ 
  if (bsAc.bit(1) == 1) 
  { 
        aAC[nAC].x  = cell1x1.x;    
        aAC[nAC].y  = cell1x1.y; 
 
        aAC[nAC].iSL = iSL; 
        nAC++; 
  } 
}   

 
4.6.7.2.2 Semantics 

These set of classes decodes the position of Area Color points (AC) of the layer. The points are encoded 
based on a quad-tree topology. 

 
4.6.7.3 decPointsColor() 

4.6.7.3.1 Syntax 

 
decAreaColoring::decPointsColor() 
{ 
  color nbrsAverage; 
 
  for each cell C in gTxr containing AC point 
  { 
    if (PneighborsAverageColor(C, &nbrsAverage)  == 1) 
    { 
      Ac.y   = nbrsAverage.y   + dequantZ(qAcY,    ssAcRelY.next()); 
      Ac.cr  = nbrsAverage.cr  + dequantZ(qAcCrCb, ssAcRelCrCb.next()); 
      Ac.cb  = nbrsAverage.cb  + dequantZ(qAcCrCb, ssAcRelCrCb.next()); 
    } 
    else 
    { 
      Ac.y   = dequant(qAcY,   ssAcAbsY.next()); 
      Ac.cr  = dequant(qAcCr,  ssAcAbsCrCb.next()); 
      Ac.cb  = dequant(qAcCb,  ssAcAbslCrCb.next()); 
    } 
  } 
 
  for each AC ac in gTxr.aAC[] 
    ac.color.toRGB(); 
} 

 
4.6.7.3.2 Semantics 

The color of a point is computed form the average color of the neighboring point. 

 
Name Description  
nbrsAverage This variable holds the color average of the neighboring Area Color points 
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4.6.7.4 PneighborsAverageColor() 

4.6.7.4.1 Syntax 

 
bool PneighborsAverageColor(Cell C, color &nbrsAverage) 
{ 
  nbrsAverage = { 0, 0, 0 }; 
  int  nAC = 0; 
 
  for each AC in Pneighbor(C) 
  { 
    nbrsAverage.y += AC.y; 
    nbrsAverage.cr += AC.cr; 
    nbrsAverage.cb += AC.cb; 
    nAC++; 
  } 
 
  if (nAC == 0) return(0); 
   
  nbrsAverage.y  /= nAC; 
  nbrsAverage.cr /= nAC; 
  nbrsAverage.cb /= nAC; 
 
  return(1); 
} 

 
4.6.7.4.2 Semantics 

 
Pneighbors (previous neighbors) to a cell C are numbered as follows: 

 
1 2 3   – visited neighbors cells of C 

4 C    (neither necessarily has an AC) 

      

 
4.6.7.5 decSepLinesMidAndCenterColors() 

4.6.7.5.1 Syntax 

 
decAreaColoring::decSepLinesMidAndCenterColors() 
{ 
  for each LN of iLnType RIDGE or EDGE in gTxr 
  { 
    let {p0, p1, …, pn} be the separating LCs on LN. 
    let {q0, q1, …, qm} be the subset of {p0, p1, …, pn} so that 
    { 
      q0 = p0; 
      qi = the next pj so (quasiDistance(pj, qi-1) > qLineSampleDistance.step); 
      qm = pn; 
    } 
 
    for each qi  
    for each parameter colorPrm in {qi.colorFarRgt, qi.colorFarLft, qi.colorCenter}  
    { 
      if (i == 0) 
      { 
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        qi.colorPrm.y   = dequant(qAcY,    tsAcAbsY.next()); 
        qi.colorPrm.cr  = dequant(qAcY,    tsAcAbsCrCb.next()); 
        qi.colorPrm.cb  = dequant(qAcCrCb, tsAcAbsCrCb.next()); 
      } 
      else 
      { 
        qi.colorPrm.y  = qi-1.colorPrm.y  + dequantZ(qAcY,    tsAcRelY.next()); 
        qi.colorPrm.cr = qi-1.colorPrm.cr + dequantZ(qAcY,    tsAcRelCrCb.next()); 
        qi.colorPrm.cb = qi-1.colorPrm.cb + dequantZ(qAcCrCb, tsAcRelCrCb.next()); 
      } 
    } 
 
    for each segment (qi-1, qi) 
    for each p between qi-1 and qi  
    { 
      int dist = quasiDistance(p, qi-1) / quasiDistance(qi, qi-1); 
      p.colorFarRgt = colorInterpol(qi-1.colorFarRgt, qi.colorFarRgt, dist); 
      p.colorFarLft = colorInterpol(qi-1.colorFarLft, qi.colorFarLft, dist); 
      p.colorCenter = colorInterpol(qi-1.colorCenter,  qi.colorCenter,  dist); 
    } 
 
    for each LC lc on LN 
      for each parameter colorPrm in {lc.colorFarRgt, lc.colorFarLft, lc.colorCenter}  
        lc.colorPrm.toRGB(); 
  } 
} 

 
4.6.7.5.2 Semantics 

The YcbCr color components of separating lines are decoded in this class 

 
4.6.8 Line Color Profiles 

4.6.8.1 decLineColorProfiles() 

4.6.8.1.1 Syntax 

 
class decLineColorProfiles::decLineColorProfiles() 
{ 
  toknStream tsSepY        (gbsMain); 
  toknStream tsSepCrCb     (gbsMain); 
  toknStream tsSepW        (gbsMain); 
  toknStream tsNsepDifY    (gbsMain); 
  toknStream tsNsepDifCrCb (gbsMain); 
  toknStream tsNsepCrv       (gbsMain); 
 
  int flags = gbsTxr.bit(8);     // reserved bit 
 
  decSepartingColorProfiles();   
  decStripeColorProfiles(); 
} 

 
4.6.8.1.2 Semantics 

Class decLineColorProfiles reads and decodes: 

• The remaining Line Color Profile (LC) data that was not encoded in previous decoding stages. 
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